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Additional Background
Thus far, recent tree mortality and forest die-off events due to
climatic disturbance have primarily been observed in case studies
focusingonparticular species and regionsof interest (e.g., refs. 1–3).
Assessments encompassing a broader range of forests have been
limited because the temporal and spatial coverage of forest-growth
data are insufficient (but see refs. 4 and 5). This problem may
eventually be overcome in the US, in part by the USDA Forest
Inventory and Analysis program that now collects a vast amount of
forest-growth data annually throughout the country. Also holding
promise are studies that use satellite imagery to monitor growth
dynamics across large geographic areas (6–8). Like forest inventory
data, however, satellite records are at present relatively short,
and there are challenges in identifying and interpreting tree mor-
tality from satellite data (e.g., compare the divergent findings
of refs. 9–11).
Conveniently, many trees have been growing for hundreds or

even thousands of years while annually recording environmental
changes and tree growth rates in the form of their growth rings
found in the cross-sections of their trunks. In general, wide rings
are produced during years of optimal climatic conditions while
thinner rings grow in response to poor conditions (12, 13). Sta-
tistically and mechanistically quantifiable relationships between
ring widths and climate have provided a basis for using tree-ring
width chronologies for reconstructing numerous past climate
histories. Tree-ring scientists have collected cores and cross-
sections from many thousands of trees and measured time series
of tree-ring widths for thousands of sites around the world.
A large database of annual tree-ring widths and standardizing
ring-width index chronologies are archived in the International
Tree-Ring Data Bank (ITRDB and maintained by the National
Climate Data Center (NCDC) (see www.ncdc.noaa.gov/paleo/
treering.html).
Although tree-ring width chronologies have most commonly

been used to provide long-term “proxy” estimates of regional and
broader-scale climatic variations, they have infrequently been
used to estimate forest growth variations. A problem with using
existing tree-ring width chronologies originally developed for
climatic studies to evaluate forest growth is that the sites and
trees within them were usually systematically selected and sam-
pled for maximum climatic responsiveness, and not for obtaining
an unbiased representation of forest populations or the spatial/
geographic distributions of forests. At least two studies that we
are aware of, however, have demonstrated that widely distrib-
uted (spatially) tree-ring width chronologies from relatively small
numbers of sampled trees per site (stand) can provide useful
representations of forest growth at the stand to regional scales.
The two examples are from studies in southern Finland and
SW US where ring-width records were directly compared with
complete or statistically unbiased growth-inventory data repre-
senting many thousands of trees and large areas (14, 15).
Several other studies to date have attempted to infer forest

growth responses to climate variability from ring-width chro-
nologies. For example, Peterson and associates have collected
and analyzed tree-ring data from many sites to determine the
primary climate variables that affected annual growth rates for
various species across a number of climate regimes within the
montane Pacific Northwest (16–20). McKenzie et al. (21) ana-
lyzed 185 tree-ring records in search of positive growth trends
since 1850 in western North America. They found that although
annual growth rates had not significantly increased at the ma-

jority of sites, pronounced increases had occurred at some high-
elevation and high-latitude sites. Although this conclusion is
subject to the same concerns described above (nonrandom se-
lection of the original sites and trees), no other dataset con-
taining annual tree growth information across such a broad
geographical, temporal, or taxonomic range is available. In this
light, the McKenzie et al. (21) study represented an inspiring use
of a multicentennial dataset of tree growth to evaluate an im-
portant ecological response to global climate change.
The tree-ring component of our study builds on these previous

studies that have implicitly or explicitly inferred forest growth
across geographic regions, species, and climate types from ring-
width chronologies. It would certainly be valuable to carry out
detailed assessments of the strengths and weaknesses of existing
ring-width chronology data sets for estimating forest growth at
various spatial scales. For example, it should someday be possible
to compare tree-ring chronologies with incipient long-term in-
ventory data sets (e.g., experimental forests, FIA plots etc.) at
stand to regional scales.

Methods of Tree-Ring Analysis. Tree-ring data. We obtained 1,148
chronologies of tree-ring width index values for all sites within the
continentalUnited States listed by the ITRDB in September 2009,
as well as four unpublished chronologies provided by the authors
andH.Grissino-Mayer.Each chronology represents theaverageof
multiple trees at a site (typically>10 trees). As opposed to raw ring
widths, ring-width index (RWI) values were used for each site
because they have been standardized to preserve interannual
variability and remove long-term growth trends caused by aging
and increasing trunk diameter (22). Removal of these long-term
biological trends typically increases the proportion of interannual
variability in ring-width values that can be explained by climate.
Although RWI values cannot translate directly to estimates of
productivity or growth rate in absolute terms (e.g., wood volume
or whole-tree biomass increment per year), they generally rep-
resent relative radial growth rates fluctuating around a common
mean index value of 1.0. A RWI value of 2.0 represents a year
when radial growth was twice that of a normal year. A RWI of 0.5
represents a year when radial growth was half that of a normal
year. We used the existing standardized index chronologies in the
ITRDB that were provided by the contributors. Although the
specific standardization approach (i.e., types of curves fitted to
ring-width series, and various averaging and other time series
treatments) varied among the chronologies, in general, the
chronologies were developed to preserve most of the interannual
to decadal variance that was in common among sampled trees
within sites. See “The use of pre-standardized ring-width index
records” in SI Text for more on this issue.
To increase the probability that each RWI record was not

unduly influenced by anomalous individual trees, but instead
represented the productivity of numerous trees, we only con-
sidered RWI values that were calculated using five or more tree
cores. Notably, the ITRDB only clarifies how many cores, not
trees, are represented in each chronology, but commonly, two
cores are collected from each tree. We only considered chro-
nologies with at least 60 annual RWI values (years) after 1895 so
that we could evaluate statistical relationships between ring-width
indices and a seasonal climate dataset that began in fall 1895.
Ring-width records fit these criteria at 1,097 sites.
Notably, most RWI records used in this study were collected in

the 1980s and 1990s and do not extend throughmuch of the recent
warming event that began in themid-1970s. Seventy-three records
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extend through 1979, 35% extend through 1989, and only 9%
extend through 1999. This means that the majority of RWI
records cannot reflect potentially long-term nonlinear growth
responses to the warming trend of the most recent decades, such
as adaptation or substantially decreased growth rates beyond
some temperature threshold. All RWI records do, however,
overlap with the warming trend that occurred between the 1910s
and 1940s. The 1910s–1940s warming trend was comparable in
magnitude and duration to the recent warming trend, allowing
RWI records to more accurately represent long-term relation-
ships between tree growth and temperature variability than they
would have in the absence of a multidecadal trend. Notably, the
past warming trend is not a perfect analog to the current trend
because temperatures were generally cooler in the first half of
the 20th century. Also, within the SW region, precipitation was
relatively stable about the long-term mean during the 1910s
through 1940s period. SW precipitation has declined from above
the mean to below the mean during the recent warming event,
likely exacerbating drought stress caused by increased temper-
atures (Fig. S1). See SI Text on growth models for a further
discussion of nonlinear growth response to climate.
Climate data. We obtained monthly gridded climate data (total
precipitation and average daily maximum, minimum, and dew
point temperature) for 1895 through 2008 from the PRISM group
at Oregon State University. PRISM datasets are grids with 2.5-
arcminute (≈4 km) spatial resolution. For each tree-ring site, we
averaged the records of the 9 grid cells (3 by 3) centered on the
reported site because the locations of the sites were not always
precisely reported. Using each site’s monthly record of the four
climate variables listed above, we calculated annual total pre-
cipitation, average daily minimum temperature, average daily
maximum temperature, and average relative humidity for each 3-
mo season, beginning with October through December and end-
ing with July through September.
Notably, increasing concentrations of atmospheric carbon di-

oxide (CO2) will likely have important impacts on plants, and
these effects are anticipated to vary widely by region and species
(23). The effect of CO2 enrichment on tree growth is difficult to
identify in RWI records, however, because the concentration of
atmospheric CO2 has been steadily rising throughout the in-
dustrial era without substantial interannual variability. Therefore,
the decreasing radial growth rate that generally occurs in growing
trees may mask a positive growth relationship with CO2. The
naturally negative trend in ring-widths may also cause a negative
growth relationship with increasing CO2 to be difficult to in-
terpret. The statistical standardization process used to eliminate
ring-width trends associated with increasing tree-size are likely to
remove any long-term growth trends associated with increased
atmospheric CO2.We therefore made no specific effort to include
the effects of the increasing atmospheric CO2 on tree growth.
Growth model. Treating each of the 1,097 RWI records in-
dependently, we used multiple linear regression analysis to create
a climate-based growth model for each tree population. Often,
growth is most responsive to a given climate parameter (pre-
cipitation, maximum temperature, minimum temperature, and
relative humidity) during a portion of the year, and depending on
the time of year, the growth response may be positive or negative.
We therefore evaluated the effect of each climate parameter
during each of the four 3-mo seasons over a 12-mo period that
begins in October and ends in September (4 climate parameters ×
4 seasons = 16 variables).
To reduce the probability of using climate variables that are

statistically associated with, but do not actually impact tree
growth, we only incorporated a given climate variable in a growth
model if it made a “substantial contribution” to the predictability
of ring-width indices. To do this, we conducted a forward step-
wise regression. For each model, we began with the single vari-
able that most strongly correlated with the RWI record. Using

this first variable, we initially developed a simple univariate lin-
ear model to predict RWI values. We established the strength of
the initial model by calculating the coefficient of determination
(R2) between predicted and actual RWI values. Next, we in-
dependently tested each variable as a second potential predictor
of RWI in a bivariate linear model. We chose the single variable
that contributed to the greatest improvement in the model R2,
and if R2 improved by >0.02, we accepted the new variable as
a second RWI predictor. We repeated this process until the
multivariate model R2 could no longer be improved by >0.02 by
adding a single variable.
With many potential predictors, there is a substantial risk of

overfitting a multivariate model. To reduce this risk, we used
cross-validation to evaluate the true predictive power of each of
the 1,097 growth models. Cross-validation involves sequentially
removing one RWI value at a time, calculating new regression
coefficients using the climate and ring-width data from all other
years, and predicting the missing RWI value. The correlation
coefficient yielded by correlating these modeled RWI values with
actual values is more representative of each model’s true pre-
dictive power because each modeled RWI value was calculated
using a model developed using independent data (24).
Cross-validated correlation of modeled and actual RWI re-

cords produced a significance of P < 0.01 for 963 of the 1,097
(88%) records evaluated. However, a P value of 0.01 under-
estimates the true probability of a false statistical relationship
between modeled and actual ring widths because each growth
model had more than one opportunity to include a false but sta-
tistically present relationship.We therefore limited all projections
of 21st century growth to the 853 sites where modeled and actual
RWI values correlated with a cross-validated P value of <0.001.
Although significance tests (P values) are not technically valid for
cross-validated correlations, we felt that using such a strict stan-
dard for model acceptability sufficiently minimized our risk of
using growth models that assumed false relationships between
growth and climate.
Importantly, climate can affect tree growth over more than just

one growing season. Physiological and stand-dynamics effects that
are not related to climate can also affect growth over multiple
consecutive growing seasons. These multiyear effects on tree
growth often cause autocorrelation within RWI records. To
isolate only year-to-year variability in the ring-width record, this
autoregressive component is often removed before analysis in
tree-ring studies (25). After extensive testing, however, we de-
termined that removing the autoregressive component from
ring-width records did not result in a substantial improvement to
the accuracy of most ring-width models. In fact, many models
performed substantially worse on these “pre-whitened” ring-
width records.
Climate also impacts tree growth in a nonlinear fashion. For

example, additional precipitation may only contribute to con-
tinued growth until the soil is saturated. Growth models often
account for issues such as above-ground runoff and hygrostatic
soil properties using a soil water balance term that accounts for
how precipitation rate, temperature, humidity, soil properties,
and conductive properties of overlying vegetation interact to im-
pact water availability to plants (26–28). We did not use such a
variable in this study, however, because we did not know enough
about the soil or plant properties at each site to make accurate
calculations of soil-water balance.
An alternate method of dealing with nonlinear relationships

between climate and ring width was to simply include nonlinear
growth predictors into the growth models. In an analysis where
models were allowed to include quadratic relationships, nonlinear
relationships with precipitation were most commonly chosen at
sites throughout the Rocky Mountains. Nonlinear relationships
with temperature were most common in the northwestern US.
However, there was no obvious commonality among sites and/or
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species within these regions where nonlinear relationships sub-
stantially improved model performance. Therefore, it seemed
likely that the addition of a nonlinear component to the model-
building process would lead to overfitting of many ring-width
models, and we ultimately did not allow for the incorporation of
nonlinear relationships in any of the ring-width models.
Growth response to 21st century climate.We used the PRISM climate
dataset to model RWI values at each site from 1950 to 1999. We
then used four distinct scenarios of 21st century climate to model
2050–2099 RWI values. For each scenario, we compared the
average modeled 1950–1999 RWI value to that for 2050–2099
and then calculated the percent change in annual growth rate
due to climate change (cf. ref. 29).
Thedatasets representing thefirst two scenariosweredeveloped

by the National Center for Atmospheric Research (NCAR) using
the CCSM3 General Circulation Model (GCM). We obtained
these datasets from the World Climate Research Program’s
(WCRP’s) Coupled Model Intercomparison Project phase 3
(CMIP3)multimodel dataset. The first scenario represents the A2
case, which assumes business-as-usual greenhouse gas emissions
throughout the 21st century (30). The second scenario represents
the A1B case, which assumes that the rate of greenhouse gas
accumulation in the atmosphere will slow after 2050 (31). These
model datasets are gridded, with 1.4-degree spatial resolution,
and are identical from 1896 through 1999.
We downscaled the 1.4-degree CCSM3 climate projections so

that they matched the 1896–1999 mean and variability at each
tree-ring site. To do this, we first upscaled the original 2.5 arc-
minute PRISM data to 1.4-degree spatial resolution and adjusted
the CCSM3 modeled datasets so that their means from 1896 to
1999 matched those of the upscaled PRISM datasets. We then
determined the linear relationship between the 1.4-degree
PRISM data and the site-specific (3 by 3 grid around each tree-
ring site) PRISMdata using linear regression. Finally, we used this
relationship between site-specific and 1.4-degree PRISM climate
data to downscale the already adjusted CCSM3 modeled climate
data to represent each site.
The third and fourth 21st century climate scenarios did not use

low-resolution climate data generated by a GCM. They assumed
that linear climate trends already established during previous
decades will continue throughout the 21st century. The third
scenario assumed that any linear climate trends established in the
PRISM dataset from 1895 through 2008 will continue through
2099. The fourth scenario only considered linear trends estab-
lished from 1979 through 2008, when observed warming accel-
erated globally. For each tree-ring record, we created annual
climate projections for 2009 through 2099 by shifting the values
from 1909 to 1999 according to the appropriate linear trend. In
the cases of very strong trends in these third and fourth scenarios,
we did not allow extrapolated precipitation to become negative
and we confined extrapolated relative humidity values to between
zero and 100%.
The use of prestandardized ring-width index records. An unavoidable
drawback to using records of tree-ring widths to establish rela-
tionships between tree growth and climate variability is that there
are trends in records of tree-ring widths that are caused by
nonclimate factors. These trends generally occur over the course
of decades to centuries and, because they are not associated with
climate, they must be statistically removed from the ring-width
records before associations between ring widths and climate can
be accurately quantified (12, 22).
The standardization process is partly subjective but usually

implemented systematically. Careful consideration of individual
tree-ring series is often required to determine the appropriate
standardization technique, and although some series may be
detrended by specifically choosing curve types, most series within
sites are based on a common curve fitting approach. The most
common trend that is removed is a negative exponential-type trend

of declining ring widths caused by the ever-increasing cross-
sectional area of the trunk of a growing tree. Also common is
a temporary trend toward increasing ring widths during the be-
ginning years or decades of a tree’s life as its roots become in-
creasingly established and growth allocation gradually shifts from
height to girth (32). Changes in ring widths may also be removed if
they are believed to be caused by stand dynamics that are not di-
rectly related to climate variability. For example, ring widths may
be temporarily suppressed due to broken branches caused by
a fallen neighboring tree or ring widths may become wider due to
reduced competition after the death or removal of a neighboring
tree. These effects may be indicated by unique growth changes
within just one or a few trees rather than the whole set of trees
sampled in a site.
Without substantial care, however, standardization can easily

counteract its purpose by introducing false trends in ring-width
records. The ends of ring-width records are particularly vulnerable
to these effects (33). For example, the removal of a linear trend
from a record that decreases somewhat logarithmically causes an
artificial increase in ring-width index values at the end of the re-
cord. On the other hand, removal of a negative exponential trend
from a record that decreases linearly causes an artificial decrease
in ring-width index values at the end of the record. To avoid ar-
tifacts of standardization, it is fairly common to apply a smoothing
spline to remove all low-frequency variability that occurs beyond
some temporal threshold. This type of trend removal must be
done with care, however, because it does not discriminate be-
tween low-frequency variability caused by nonclimate processes
and those caused by relatively slow climate processes such as the
Pacific Decadal Oscillation, Medieval Warm Period, and Little
Ice Age.
A shortcoming intrinsic to all standardization techniques is that

relationships between tree growth and climate variability on de-
cadal to centennial scales are often removed. This means that, to
some degree, standardized ring-width index records do not fully
reflect trees’ ability to acclimate to long-term trends in environ-
mental conditions. Such acclimations are known to occur and
have been observed as reallocations of resources among various
parts of the tree (7). In an attempt to identify long-term growth
trends in forests across western North America, McKenzie et al.
(21) performed very conservative standardizations to remove
ring-width trends caused by tree size and keep as much low-fre-
quency variability in ring widths as possible. The goal of that study
was to identify tree populations that may have experienced in-
creased radial growth in recent decades, so the conservative
standardization techniques used were meant to safely error on the
side of retaining negative growth trends associated with tree size.
This gave the authors confidence that the few populations that
showed positive poststandardized ring-width trends truly did ex-
perience a positive growth trend.
To error on the side of understandardization, however, is to

introduce false statistical relationships between RWI values and
climate. Thus, we chose to use the prestandardized ring-width
index records provided by the ITRDB because they were pre-
sumably standardized by individuals who carefully considered how
to best standardize each individual ring-width record using a cer-
tain amount of expertise on the site and the sampled population.
We felt that although it may appear to bemore scientifically sound
to start with raw ring-width records and standardize all records
using a consistent and conservative technique, an automated
standardization process would likely cause more problems than it
would solve, particularly by introducing artificial trends to the ends
of ring-width index records that could easily be misinterpreted as
responses to 20th century climate change.
To evaluate the impact of standardization on the relationships

between the RWI records used in this study and low-frequency
climate variability, we tested how well modeled and actual RWI
records correlate after both records undergo varying degrees of
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smoothing. The theory is that modeled RWI records reflect the
climate processes that occurred across a broad range of time scales
butactualRWIrecordsdonot.Forexample, ifaring-widthrecordis
standardizedbyremovingthe45-yrunningmean, thentheresultant
RWIrecordcanonlyreflectclimateprocessesthatoccurredontime
scales shorter than 45 y. Therefore, modeled and actual RWI
records smoothed with, say, a 5-y running mean should correlate
fairly well, but modeled and actual RWI records smoothed with
a51-y runningmeanshouldnot correlatewell because themodeled
recordwould still reflect low-frequencyclimatevariabilitywhile the
actual record would consist only of values very close to 1.
Fig. S2 indicates that for the vast majority of the 853 RWI re-

cords with well-performing models within the continental US,
correlations between modeled and measured RWI records re-
mained strong when running means were calculated with windows
as wide as 50–60 y. For SW populations, correlations between
running-mean modeled and actual RWI records tended to be
stronger, but they also tended to decrease substantially when
running means were calculated using 50- to 60-y windows. These
results indicate that RWI records generally represent climate
variability on time scales of a half century and shorter. This is
particularly true among RWI records from the SW US.
This analysis indicates that the majority of SW ring-width re-

cords have been standardized in a relatively conservative manner
that preserves multidecadal variability in interannual growth rates.
Although anthropogenic climate change is certainly expected to
occur on time scales longer than several decades, the accurate
representation of growth response to climate processes on time
scales out to 50 y and often beyond indicates that if low-frequency
climate variability causes trees to begin using adaptation strate-
gies within 50 y or so, then those adaptation processes are likely
reflected in many of the growth equations for tree populations in
the SW US.

Methods of Wildfire and Bark-Beetle Analysis. InSeptember 2009,we
obtained annual shapefiles of insect-induced forest mortality for
Arizona, New Mexico, Utah, and Colorado from the US Forest
Service (USFS) Forest Health Technology Enterprise Team
(FHTET, www.fs.fed.us/foresthealth/technology/ads_standards.
shtml). This dataset represented years 1997 through 2008. We
constrained our analysis to treemortality attributed to bark-beetle
infestation because it is likely that warming and drought stress
within a forest both contribute to increasing theprobability of bark-
beetle infestation (34–36).Wealsoobtainedfire-burn severity data
for all wildfires within the SWUS from 1984 to 2006 from the US
government’sMonitoring Trends in Burn Severity project (MTBS,
www.mtbs.gov). For each year, we calculated the percent of SW
forest and piñon-juniper woodland area that was reported to have
been affected by each of these mortality processes.
For bark-beetle-induced mortality, FHTET identified regions

where >50% of trees had been killed. For fire-induced mortality,
there is no calibrated measure of the percent of trees killed.
Instead, MTBS classifies burned pixels as “low,” “moderate,”
and “severe.” We inferred that “moderate” and “severe” classi-
fications within forest or piñon-juniper woodland areas indicate
that there was substantial tree mortality. The detailed method-
ology that MTBS follows to classify burn severity is described in
Key and Benson (37). In short, burn severity classifications were
based on the total change in the Normalized Burn Ratio (NBR)
during the peak of the growing season before and after burn
events. NBR is based on the difference between near-infrared
(0.76–0.90 μm) and middle-infrared (2.08–2.35 μm) surface re-
flectance, similar to the popularly used normalized difference
vegetation index (NDVI). High reflectance in the near-infrared
is associated with low chlorophyll content. Low reflectance in the
middle-infrared has been shown to be associated with low water
content and high amounts of soil, ash, and charred wood (38). So,
subtracting the postburn NBR from the preburn NBR results in

a positive value (dNBR). The more positive the dNBR, the more
severe the fire is assumed to have been. Notably, basing burn se-
verity classifications upon the total difference in NBR between
images leads to a bias toward low-burn severity classifications in
areas with low vegetation densities such as piñon-juniper wood-
land. Although much of the existing vegetation in a sparsely pop-
ulated area may be thoroughly burned, the average near- and
middle-infrared reflectance across a 30-m pixel will not result in as
high of a change in NBR values as they would in a more densely
populated stand of trees. For this reason, a relativized version of
the dNBR (RdNBR) has been developed (39–41). However,
generalized rules for burn-severity classification using theRdNBR
have not yet been established and applied to the long-termwildfire
record used in this study. Therefore, our estimates of forest and
woodland area experiencing “moderate” and “severe” wildfire
burns are very likely conservative underestimates.
To calculate the percent of forest and piñon-juniper woodland

affected by substantial tree mortality, we first estimated the dis-
tribution and total area of SW forest and piñon-juniper woodland
before 1984 (the first year of the burn-severity analysis). To do this,
we used three datasets of land cover. The datasets were the 1981
Brown and Lowe classification of biotic communities in the SW
US (42), the 1992 National Land Cover Data Set (NLCD, http://
landcover.usgs.gov), and the 2004 Southwest Regional Landcover
Data (ReGAP, http://earth.gis.usu.edu/swgap/landcover.html).
We accessed each of these datasets in September 2009. TheNLCD
andReGAP datasets have 30-m spatial resolution. The Brown and
Lowe dataset is a set of geographic polygons (ArcGIS shapefile)
with relatively coarse spatial resolution (1:1,000,000). We re-
sampled this dataset to convert it to a grid of 30-m pixels.
We originally considered forested areas to be areas classified by

BrownandLoweasanykindof conifer forest.Weconsideredpiñon-
juniper woodland areas to be areas classified byBrown andLowe as
“Great Basin conifer woodland” or “Madrean evergreen wood-
land.” However, the coarse spatial resolution of the Brown and
Lowe dataset causes inaccuracies in the locations of the boundaries
between land-cover types. For example, areas identified as wood-
land in the Brown and Lowe analysis were often classified as co-
nifer forest in the NLCD and ReGAP datasets. We therefore
incorporated the higher resolution NLCD, making the assumption
that, in general, anything classified as “evergreen forest” or “mixed
forest” in the 1992 NLCD was probably the same in 1981. In other
words, we considered forest to be present in all locations classified
as forest by either Brown and Lowe or 1992 NLCD. We could not
make this same assumption for piñon-juniper woodland because
the 1992 NLCD does not distinguish between piñon-juniper
woodland and other types of nontree shrubland.However, the 2004
ReGAP analysis does make this distinction. We therefore consid-
ered piñon-juniper woodland to be present at any nonforest loca-
tion identified as “Great Basin conifer woodland” or “Madrean
evergreen woodland” by Brown and Lowe and/or as both “wood-
land” by the 1992 NLCD and “piñon-juniper woodland” by the
2004 ReGAP. Finally, we also made the assumption that all areas
field-mapped as displaying bark-beetle mortality since 1997 must
be either forest or piñon-juniper woodland. There were 647 km2

affected by beetle-induced tree mortality which were not classified
as forest or piñon-juniper woodland using the classificationmethod
described above. We classified these zones as piñon-juniper
woodland because the vast majority of these zones were near the
low-elevation piñon-juniper ecotone. Because we incorporated the
Brown and Lowe classification, which only extends to 37.5 °N, the
SW region evaluated in the mortality analysis was 8% smaller
(55,501 km2) than the SW region considered in the tree-ring
analysis, which extends to 38 °N.
Certainly, given this rather complicated land-cover classifica-

tion scheme, there are errors associated with our estimates of the
area of forest and woodland affected by fire- and beetle-induced
tree mortality. To evaluate the possible magnitude and range of
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these errors, we repeated the annual analysis using five different
methods to define forest and piñon-juniper woodland. These five
methods were as follows:
Method 1.

Forest.
i. Any area defined by Brown and Lowe as conifer forest.
ii. Any area defined by 1992 NLCD as evergreen or mixed

forest.
Piñon-juniper woodland.
i. Any nonforest area defined by Brown and Lowe as Great
Basin conifer woodland or Madrean evergreen woodland.

ii. Any nonforest area defined by 1992 NLCD as woodland and
by 2004 ReGAP as piñon-juniper woodland.

iii. Any area affected by bark-beetle tree mortality but not
found to be forest or piñon-juniper woodland using the
above methods.

Method 2.
Forest.
i. Same as in Method 1.
Piñon-juniper woodland.
i. Same as in Method 1, except not including piñon-juniper
woodland areas defined in (iii) above.

Method 3.
Forest.
i. Any area defined by Brown and Lowe as conifer forest.
Piñon-juniper woodland.
i. Any area defined by Brown and Lowe as Great Basin conifer
woodland or Madrean evergreen woodland.

Method 4.
Forest.
i. Any area defined by 1992 NLCD as evergreen or mixed
forest.

Piñon-juniper woodland.
i. Any nonforest area defined by 1992 NLCD as woodland and
by 2004 ReGAP as piñon-juniper woodland.

ii. Any area affected by bark-beetle tree mortality but not
found to be forest or piñon-juniper woodland using the
above methods.

Method 5.
Forest.
i. Same as in Method 4.
Piñon-juniper woodland.
i. Same as in Method 4, except not including piñon-juniper
woodland areas defined in (ii) above.

Among these five methods, method 2 produced the lowest
estimate of percent forest and piñon-juniper woodland affected
by 1997–2008 beetle-induced tree mortality and method 4 pro-
duced the highest (7.33% and 11.31%, respectively). Impor-
tantly, four of the five methods produced estimates between
7.33% and 9.06%. For 1984–2006 wildfire-induced mortality,
method 2 produced the lowest estimate (2.68%) and method 5
produced the highest (3.07%). Table S2 lists how each method
impacted the overall size of the SW region considered, the total
areas of forest and piñon-juniper woodland, and the amount of
each of these land-cover types mapped as affected by tree
mortality associated with bark beetles from 1997 to 2008 and
wildfire burns from 1984 to 2006.

Although estimates of total area of forest and piñon-juniper
woodland affected by these mortality agents varied according to
the methods used to define vegetation type, the annual calcu-
lations were impressively consistent among the five methods (Fig.
S3). This was also generally the case when forest and piñon-
juniper woodland areas were considered independently. As an
exception, there was substantial variability among annual records
of piñon-juniper woodland affected by fire-inducedmortality. The
percent area of piñon-juniper woodland affected by fire was very
small compared with the percent forest area affected by fire,
however. Therefore, disagreement among estimates of piñon-
juniper area burned did not result in large differences in estimates
of overall forest and piñon-juniper area affected by fire-induced
tree mortality.
Notably, these estimates of area experiencing substantial tree

mortalityduetofireareprobablytoolowbecauseofthebiasinherent
in the dNBR calculation, described in the second paragraph of this
section. To evaluate the degree to which this bias may impact our
calculations, we included “low” burn areas and recalculated annual
and total percentages of forest and piñon-juniper woodland area
that experienced tree mortality due to fire. We made these calcu-
lations usingmethod 1 (described above) and duplicated themwith
method4 to again test the impact of our uncertainty in the pre-1984
spatial distribution of forest and piñon-juniper woodland. The two
methods resulted in generally similar annual calculations (Fig. S5).
By including low burn areas in the fire-induced mortality analysis,
the overall area of forest and piñon-juniper woodland affected
increased by 72% usingmethod 1 (method 4: 75%). Although high
amounts of tree mortality certainly did not occur in all low burn
areas, including all lowburn areas offers an estimate of the absolute
highest possible error that could have occurred because of the
dNBR bias.
For forest area only, including low burn areas increased esti-

mates of forested area affected by fire-induced mortality by 68%
(method 4: 70%). For piñon-juniper woodland, the area increased
by 95% (method 4: 106%). Given that the bias toward lower burn
severity is strongest in areas with low tree density, it is likely that
the underestimation of mortality due to “moderate” and “severe”
burns was larger for piñon-juniper woodland than it was for
forest. However, this impact of this error in piñon-juniper
woodland probably has only a small impact on the estimates of
overall forest and piñon juniper area that experienced mortality
due to fire because the overall burned area of piñon-juniper
woodland is relatively low. As an example, the overall area of fire-
induced mortality within SW forest and woodland would only
increase from 2.68% to 3.21% if low severity burns in woodland
were considered to lead to widespread mortality (method 4:
3.03% to 3.36%).
Fig. S5 demonstrates that the annual percent of area burned

within each vegetation type increased for all three burn severity
classes from 1984 through 2006. As the annual burned area
tended to increase over time, the annual percentage of forest
and piñon-juniper woodland area burned at low severity in-
creased faster than the percentage of the more severe burn types.
Viewed in another way, interesting trends emerge. Although

burned area increased from 1984 to 2006 among all three severity
classifications, Fig. S6 indicates a shift toward a greater proportion
of severe fires within forests and a greater proportion of low and
moderate severity fires in piñon-juniper woodland. The reason for
this is not immediately clear and warrants further investigation.
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Fig. S1. Running 5-y average departure from mean daily maximum temperature (A) and minimum temperature (B) anomaly in the southwestern region
highlighted in Fig. 1 (orange area and red line) and the rest of the continental United States (gray area and gray line). Thick lines represent the median PRISM
pixel value within the region. Shaded areas represent the inner quartiles of pixel values (50% of pixel values lie within the shaded region).
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Fig. S2. Box plots of correlation coefficients calculated by comparing smoothed time series of modeled RWI values to smoothed time series of actual RWI
values. Smoothing was done using running means across various window lengths ranging from 1 to 67 y. All correlations used at least 35 y of smoothed data.
We only considered the 853 models used in our main analysis. Boxes bound inner quartiles. Whiskers bound the inner 90% of values. Thick black lines represent
median values.

Fig. S3. Annual percent of forest and piñon-juniper area impacted by mortality caused by bark beetles (A) and moderate and severe wildfire burns (B) for
each of the five methods used to define forest and piñon-juniper woodland. The five methods are described in SI Text: Methods for Wild Fire and Bark-Beetle
Analysis. Method 1 was used in our final analysis.

Fig. S4. (A) Annual mean and 5-y running mean Palmer Drought Severity Index (PDSI). Annual PDSI was calculated as mean monthly October–September in
the SW region. PDSI data are gridded spatially at 2.5-degree spatial resolution (1). (B) Annual percent of forest and piñon-juniper area impacted by mortality
caused by bark beetles (orange) and moderate and severe wildfire burns (red) overlaid on annual PDSI. Note that the wildfire burn area is multiplied by 5 here
for visualization.

1. Dai A, Trenberth KE, Qian T (2004) A global dataset of Palmer Drought Severity Index for 1870-2002: Relationship with soil moisture and effects of surface warming. J Hydrometeorol 5:
1117–1130.
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Fig. S5. Annual percent of forest and piñon-juniper woodland (A), forest only (B), and piñon-juniper woodland (C) only burned by low (blue), moderate
(orange), severe (brick red) fire. Solid lines and dashed lines represent time series calculated using methods 1 and 4, respectively. These methods are described
in SI Text: Methods for Wild Fire and Bark-Beetle Analysis.

Fig. S6. The percent of annual area burned classified as low (blue), moderate (orange), and severe (brick red) within forest and piñon-juniper woodland (A),
forest only (B), and piñon-juniper woodland only (C). Thin solid lines and dashed lines represent time series calculated using methods 1 and 4, respectively.
Thick lines follow linear annual trends for method 1 calculations. Methods 1 and 4 are described in SI Text: Methods for Wild Fire and Bark-Beetle Analysis.
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Table S1. Projected changes in 50-y mean RWI values for the 235
chronologies from the SW region, comparing 2050–2099 to 1950–
1999

Species Scenario

ΔRWI, %

Mean Median Upper 25% Lower 25%

PIED A2 −40 −38 −15 −62
A1B −27 −24 −8 −47
114-y −11 −4 4 −27
30-y −140 −104 −78 −164

PIPO A2 −48 −48 −15 −72
A1B −34 −34 −5 −28
114-y −17 −11 5 −28
30-y −123 −99 −45 −171

PSME A2 −48 −43 −23 −63
A1B −35 −32 −15 −50
114-y −14 −11 0 −24
30-y −119 −111 −63 −161

PIED, piñon pine; PIPO, ponderosa pine, PSME, Douglas fir.

Table S2. SW Area (km2) impacted by tree mortality due to wildfires from 1984 to 2006 and bark beetles from 1997
to 2008

Method

1 2 3 4 5

SW Area Overall SW area 664,839 664,839 664,839 720,392 720,392
Area of Forest 123,395 123,395 60,811 122,350 122,350
Area of Woodland 116,443 115,796 147,154 59,933 55,424
Area of Forest or Woodland 239,838 239,191 207,965 182,283 177,774
% Forest 18.56 18.56 9.15 16.98 16.98
% Woodland 17.51 17.42 22.13 8.32 7.69
% Forest or Woodland 36.07 35.98 31.28 25.30 24.68

Bark beetles Total Area 18,177 18,177 18,177 20,619 20,619
Area of Forest 13,251 13,251 7,899 13,542 13,542
Area of Woodland 4,926 4,279 8,616 7,078 2,568
Area of Forest or Woodland 18,177 17,530 16,515 20,619 16,110
% Forest 10.74 10.74 12.99 11.07 11.07
% Woodland 4.23 3.70 5.86 11.81 4.63
% Forest or Woodland 7.58 7.33 7.94 11.31 9.06

Wildfire Total Area 9,596 9,596 9,596 9,965 9,965
Area of Forest 5,076 5,076 3,326 4,963 4,963
Area of Woodland 1,344 1,336 2,270 566 489
Area of Forest or Woodland 6,420 6,412 5,596 5,528 5,452
% Forest 4.11 4.11 5.47 4.06 4.06
% Woodland 1.15 1.15 1.54 0.94 0.88
% Forest or Woodland 2.68 2.68 2.69 3.03 3.07

Wildfire or beetle Total Area 27,288 27,288 27,287 30,080 30,080
Area of Forest 17,844 17,844 10,882 18,015 18,015
Area of Woodland 6,245 5,598 10,777 7,588 3,049
Area of Forest or Woodland 24,089 23,442 21,659 25,604 21,065
% Forest 14.46 14.46 17.89 14.46 14.46
% Woodland 5.36 4.83 7.32 4.83 5.36
% Forest or Woodland 10.04 9.80 10.41 9.80 10.04

The five columns represent unique methods of defining forest, woodland, and the SW US. These methods are described in SI Text on
“Methods of Wildfire and Bark-Beetle Analysis.” The main text reports the results of method 1.
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