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Abstract 

Today, there exists a widespread belief that certain radiocarbon dates from Late Bronze Age 

sites in the Aegean are in conflict with dates derived from Near Eastern and Egyptian texts, 

Egyptian astronomy, datable deposits of pumice and tephra from volcanic eruptions and 

numerous archaeological interconnections between Egypt, Cyprus and the Aegean.  Attempts to 

date the Late Bronze Age eruption of the volcanic island of Thera (Santorini) provide an 

important example.  In assessing these dates, this paper highlights a number of problems of 
14

C 

dating. 

Inherent problems include regional variation evident in some periods in their 

significantly different radiocarbon year measurements of tree segments of known 

dendrochronological range between trees from Germany and from central Turkey, a possible 



2 
Archaeometry paper 12-14-10 

“island effect,” and especially the possible presence in samples of 
14

C-deficient carbon resulting 

from gas emission fields such as those which exist over large parts of Italy or from volcanic 

point, line or area sources, or from upwellings from carbon reservoirs in sea water, and the 

hardwater effect resulting from sample contact with carbonates such as limestone.  

Correctable problems include a flaw in major calibration programs, which narrow 

reported error ranges solely in response to the number of measurements made irrespective of the 

consistency, inconsistency, or gross disparity of the radiocarbon ages obtained from the samples 

measured and the unsatisfactory manner in which radiocarbon measurements are frequently 

presented to the archaeological community. 

 

Introduction 

Improvement in communication between scientists providing radiocarbon dates and other 

chronologists, including archaeologists, historians, dendrochronologists, astronomers and 

mineralogists sourcing pumice and tephra, is the goal of this paper.  The achievements, problem 

areas, and limitations of each discipline and method should be clearly communicated to 

chronologists of all disciplines.   

We discuss the intense controversy about the date of the Bronze Age eruption of Thera 

(Santorini) (Fig. 1) because it illustrates clearly the major problems of archaeological 

radiocarbon dating and the lack of adequate communication between disciplines and because 

determining the date is important to our understanding of the interconnections between the major 

civilizations of the second millennium BC in the Eastern Mediterranean, and of the development 

of Aegean civilization.  The massive eruption destroyed all sites on the island, a principal node 

on Aegean trade networks, and had a profound impact on the Minoan civilization centered in 
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Crete.  The attempted dating of samples from the Volcanic Destruction Level at the harbor site of 

Akrotiri on the south coast of the island of Thera benefits from the fact that there can be no doubt 

as to the context, but suffers from the oscillating nature of the calibration curve, derived for the 

most part from decadal measurements of German, and to a lesser extent Irish, trees, which 

provide similar radiocarbon measurements at c. 1615 BC and 1525 BC.  Certain proposed 

radiocarbon dates of material from the Volcanic Destruction Level would place the eruption just 

before the beginning of the oscillation at c. 1615 BC, a result incompatible with the traditional 

chronological date c. 1525–1500 BC.  The traditional chronology is based on Egyptian and Near 

Eastern historical and astronomical records via numerous archaeological interconnections, 

including finds of pumice and tephra from the Theran eruption in closely datable contexts, 

whereas earlier archaeological contexts contain pumice from volcanoes in the Dodecanese 

known to have erupted at earlier dates.
1
 

 

Problems of Radiocarbon Measurement 

Inter-laboratory variation in measurements of 
14

C in divided samples, while significantly reduced 

in general recently, continues to exist.  A mean offset of 27 ±2 radiocarbon years on samples 

divided between the Heidelberg Radiocarbon Laboratory and the Quaternary Isotope Laboratory 

at the University of Washington, Seattle was unfortunately never resolved.
2
  The inter-laboratory 

offset between the Oxford Radiocarbon Accelerator Unit and the VERA laboratory in Vienna 

averaging -11.4 radiocarbon years, but with a standard deviation of 68.1 radiocarbon years, 

indicating according to the investigators an unknown error component of 54.5 radiocarbon years, 

                                                 
1
 These issues have been discussed in numerous articles (e.g., Wiener 1998; 2001; 2003a; 2003b; 2006a; 2006b; 

2007).  The most recent exchanges in the debate over the dating of the Late Bronze Age Theran eruption are: Wiener 

2009a; 2009b; 2009c; Manning et al. 2009; Friedrich et al. 2009. 
2
 Reimer et al. 2004, table 1. 
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also remains unexplained.
3
  Unresolved disparities in measurements of trees of known 

dendrochronological date occur among logs from the same site (e.g., Gordion in Turkey for the 

years 1580, 1570 and 1560 BC); within measurements from trees in the same geographic area 

(e.g., two forests near the Rhine River at 1550 BC); and between the trees from Germany which 

form the backbone of the calibration curve and the trees from Gordion in Turkey in a number of 

periods (e.g., c. 1325 and 1225 BC, 1080–990 BC and especially between 850 and 750 BC, when 

the average offset is 28.8 ±26.3 radiocarbon years).4  When radiocarbon measurements of trees 

of the same known dendrochronological date differ markedly, at least one of the measurements 

has provided an erroneous date; whereas agreement between two measurements provides no 

guarantee against error in both.   

Intra-year seasonal variation in the production of 
14

C also affects radiocarbon 

measurements.  The difference between the summer high and winter low today generally ranges 

between eight and thirty-two radiocarbon years, and may exceed this range.  Seasonal variation 

prior to the impact of industrialization on the atmosphere may have been greater.
5
  Radiocarbon 

measurements of seeds of known date collected in Egypt between AD 1700 and 1900 disclosed 

an offset of 19.5 ±5 calibrated years earlier than calibration curve dates for this period.
6
  The 

result raises the question of whether an adjustment with respect to Aegean measurements is 

required as well.  In addition, radiocarbon measurements of decadal tree segments with years of 

greatly varying ring thickness may have only a loose connection to measurements of seeds with 

brief growing seasons within a single year. 

 

                                                 
3
 Manning et al. 2006b, 5. 

4
 Kromer et al. 2010, 875–6. 

5
 Keenan 2004, 102–3; Housley et al. 1999, 167; Levin et al. 1992; Levin and Hesshaimer 2000. 

6
 Dee 2010. 
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Reservoir Effects 

Reservoir effects of various kinds present major problems with regard to Aegean radiocarbon 

measurements.  Periodic upwelling of deep seawater releases 
14

C-deficient carbon into the 

atmosphere where it may be absorbed by plants, thus skewing measurements from coastal sites 

toward older dates.
7
  A recent study of five-year Japanese tree-ring segments of known 

dendrochronological date from 1060 BC to AD 400 found that for some periods the radiocarbon 

dates obtained differed significantly from the calibration curve dates.  The authors suggest an 

―island effect‖ as a possible cause.
8
  Several studies suggest the possibility of upwelling of 

14
C-

deficient carbon from the Aegean, either via the periodic exchange of water with the Black Sea 

which is rich in 
14

C-deficient carbon,
9
 or the release of 

14
C-deficient carbon from underwater 

volcanic vents, one of which is located 7 km north-northeast of Thera.
10

 

The critical sources of 
14

C-deficient carbon include volcanic and non-volcanic gas vents, 

geothermal fields, and general soil degassing.
11

  In Italy the area of terrestrial CO2 emissions 

stretches from Tuscany to Sicily, and from the Tyrrhenian Sea to the Apennines.
12

  Similar 

emissions have been observed in areas of southern Italy, and on the volcanic island of 

Stromboli.
13

  Reported radiocarbon dates from Italian sites whose historical contexts are clear are 

frequently 100–300 years too early.
14

  At Sulphur Banks on Hawaii, three living tree ferns and 

one Ohia leaf growing one to five miles from a volcanic vent gave radiocarbon ages between 81 

                                                 
7
 Rapp and Hill 2006, 153. 

8
 Imamura et al. 2007. See also Ozaki et al. 2007; Ozaki et al. 2009. Sakamoto et al. (2009) note that with respect to 

radiocarbon dates from the Japanese archipelago ―possible local offsets of the curve cannot be ignored.‖ Stuiver and 

Braziunas (1993) describe how irregular water-circulation oscillations of 
14

C-deficient water, some with a 

periodicity of forty to fifty years, operate globally. 
9
 Keenan 2002. 

10
 For vents near Melos, see Pain 1999, 41. 

11
 Frezzotti et al. 2009. 

12
 Frezzotti et al. 2009, 109. 

13
 Rogie 1996; Chiodini et al. 1999; Rogie et al. 2000; Cardellini et al. 2003; Chiodini et al. 2004; Gambardella et al. 

2004; Minissale et al. 1997; Carapezza et al. 2009. 
14

 Turfa 2006. 
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and 303 years.
15

  In addition, groundwater that has been in contact with soil degassing or with 

limestone, a notorious source of 
14

C-deficient carbon, if absorbed by plants or consumed by 

living creatures, sometimes results in measurements which provide dates that are older than true 

dates.
16

 

 

Statistical Issues 

The combination and calibration of radiocarbon measurements, based on Gaussian and Bayesian 

statistics and conventions employed in the various calibration programs, pose many issues.  

AMS laboratories employ different methods of analyses, few of which have been published.  The 

chosen method can have a significant impact on the quality of the results.  The commonly used 

standard error of the mean can be too small or too large by a factor of two, but on average is too 

small; moreover, radiocarbon intercomparisons assume a Gaussian distribution of the results 

even though this is known not to be the case.17  Sometimes even the meaning of basic terms 

differs between laboratories.  The OxCal, Calib and Demokritos Laboratory (Athens) programs 

differ, for example, in their use of ―probability.‖  In the OxCal program 80% probability means 

80% of 100, whereas in the Calib program it means 80% out of the two-sigma standard deviation 

of 95.4%, and the Demokritos program is unique, generally giving broader ranges (in our view 

appropriately so), but sometimes producing very different results.  Moreover, 
14

C measurements 

generally do not conform to the ―ideal‖ standard distribution; rather the actual distribution under 

extensive replication is wider than the quoted errors, even after the exclusion of outliers.  The 

quoted error denotes at best the variability within the same measurement run.18 

                                                 
15

 Chatters et al. 1969, Table II.  Radiocarbon measurements from the 1960s are, of course, problematic. 
16

 Mörner and Etiope 2002; Fischer and Heinemeier 2003; Rapp and Hill 2006, 149–50. 
17

 Palonen et al. 2010, 948. 
18

 Boaretto et al. 2005, 43. 
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Most importantly, the OxCal and Calib programs share a basic fault: the programs narrow 

the error range solely in response to the number of measurements made, irrespective of how 

consistent, inconsistent, or even wildly discordant the individual 
14

C measurements may be.  

(The statistical issue was noted independently in another context by T. Jull.19)  Of prime 

importance to the Theran debate are the 28 measurements of seeds found in the Volcanic 

Destruction Level at Akrotiri, which produced measurements whose reported central ages were 

as much as 250 years apart, with the total maximum width of the respective probability bands of 

course wider still.   Measurements of the same species of seed provided central radiocarbon ages 

215 radiocarbon years apart in the case of peas and 97 years apart in the case of barley.  An 

analysis of the data by Manning et al. of this discordant dataset asserted a measurement 

precision, based on the fact that there were 28 measurements, of 3344.9 ±7.5 years!20  The 

claimed precision is essential to their conclusion that radiocarbon dates support unambiguously 

Manning‘s proposed Aegean Long Chronology because, as Manning has previously noted, any 

age in the 3320s BP is potentially compatible with historical dating in light of the oscillating 

calibration curve (Fig. 2).21  With an error band of ±25 rather than ±7.5, a radiocarbon age of 

3344.9 BP would be potentially compatible with a date for the eruption of c. 1525 BC, even 

without any correction for a seasonal/regional offset or reservoir effects from known sources on 

or near Thera.22   

Ramsey has noted (pers. comm. of 30 December 2009) that there are two potential 

methods of addressing the problem within the OxCal program.  The first is to insert a minimum 

range which the investigator—e.g., the archaeologist submitting the samples—regards as a 

                                                 
19

 In Sharon et al. 2007, 9. 
20

 Manning et al. 2006a; 2006b. 
21

 Manning 2005, 108. 
22

 Wiener 2009a; 2009b. 
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minimal acceptable error range, based on her/his understanding of the nature of the database.   In 

practice this is never done, given the intrinsic uncertainty and the fact that archaeologists seldom 

understand the complex statistical issues involved.  The second method suggested by Ramsey of 

addressing the problem inherent in the calibration program is to introduce an asymmetric 

adjustment to the error range toward older dates to allow for estimated local reservoir (and/or 

regional/seasonal) effects.  Such putative effects are also impossible to quantify, however.  

Higham et al. note that measurement of bones poses particular problems with respect to reservoir 

effects, but that it is not possible to determine a suitable average correction factor.23  (In 

considering the historical consequences of Eastern Mediterranean radiocarbon measurements, the 

authors of the present paper make allowance for an error range of ±20 years in any case, with an 

additional asymmetric allowance where there is reason to believe that a regional/seasonal 

variation or, more importantly, a reservoir effect, is likely—e.g., +20/-50 to -90 BP for certain 

measurements of Theran Volcanic Destruction Level material.)  Of course it would be possible 

to employ the earliest plausible date indicated by the well-founded historical date range for the 

Theran eruption as a Bayesian boundary, but it is precisely this historical dating which the 

radiocarbon determinations in question are said to challenge. 

 A recent attempt by Friedrich et al. to date a branch from an olive tree found in the 

volcanic tephra on Thera c. 7 km from Akrotiri presents its own problems.
 24

  First, there is no 

way of knowing whether the olive branch was living at the time of the eruption.  Aegean olive 

trees are often covered in dead branches, and some long dead, since their owners hesitate to 

remove them for fear of damaging the tree (O. Rackham, pers. comm. of 11 May 2008; H. 

Blitzer, pers. comm. of 23 July 2008). Second, the claim that the investigators have been able via 

                                                 
23

 Higham et al. 2010, 653. 
24

 Friedrich et al. 2006a; 2006b. 
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X-ray tomography to count year rings on the branch is severely challenged by reports from 

dendrological laboratories that rings of olive trees are impossible to count with any confidence.  

In blind tests no two laboratories could agree on the number of ―rings‖ on olive tree branches 

recently collected on Thera; moreover olive trees do not display anything approaching annual 

rings even if agreement could be achieved on the number,
25

  which vitiates also the wiggle-match 

to the calibration curve claimed by Friedrich et al.  The fact that the four segments of the branch 

studied by Friedrich et al. gave radiocarbon measurements which descended in order is also not 

germane, since this would be true in any event—e.g., if the four segments each contained a 1% 

reservoir of 
14

C-deficient carbon resulting in measurements c. 80 years too old, the 

measurements of the four segments would still descend in order.  

 

Other Archaeometric Evidence for the Dating of the Eruption 

Four hundred and fifteen samples of pumice and tephra from the Minoan eruption of Thera have 

been found at 19 sites in Egypt, the Levant, Cyprus and the Aegean, all of them from New 

Kingdom contexts, whereas the 27 examples of pumice from earlier contexts all come from non-

Theran eruptions.  The investigators note that if the Aegean Long Chronology were correct, ―it 

would indeed be most peculiar a phenomenon that pumice from the Minoan Santorini eruption 

were abundantly available along the shores of the Eastern Mediterranean, yet for some reason 

had been left unnoticed and unused by the local inhabitants for 100–150 years.‖
26

  At one of the 

sites, Tell el ‗Ajjul near Gaza, Theran pumice, Egyptian New Kingdom pottery, and Cypriot 

White Slip I pottery similar to a bowl recovered from the Theran Volcanic Destruction Level are 

accompanied by five radiocarbon dates from seeds not affected by Aegean reservoir effects 

                                                 
25

 Humbel 2009; Cherubini et al. 2003. 
26

 Steinhauser et al. 2010, 408. 
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which center on c. 1525 BC., the historically and archaeologically appropriate date for the 

eruption, while only touching the Aegean Long Chronology eruption date of c. 1613 BC at the 

limit of the two-sigma range (Fig. 3).  

 

Conclusions 

Certain radiocarbon dates for the eruption of Thera may differ from the prevailing historical date 

range due to: 1) factors specific to the area of the eruption; and 2) problems inherent in the 

process of calibration and in the statistical packages currently in use.  Specific factors include the 

oscillating nature of the calibration curve between c. 1615 and 1525 BC; the particular reservoir 

effects likely present in measurements of samples from volcanic Thera and to some extent from 

islands composed of limestone such as Crete; and to a lesser extent, seasonal/regional differences 

between Aegean seeds/trees and northern oaks.  General problems include the inherent 

uncertainties of calibration and the problematic nature of the statistical procedures currently 

employed, which provide probability estimates whose error ranges are based solely on the 

numbers of measurements included, irrespective of their degree of consistency or (sometimes 

major) inconsistency, and which avoid entirely the potential asymmetric bias toward older dates 

resulting from reservoir effects.  Archaeologists submitting samples typically are unaware of the 

existence of such issues.  Radiocarbon laboratories accordingly have a professional obligation to 

inform their clients clearly of the uncertainties and limitations of radiocarbon dating, both with 

regard to the particular samples submitted and in general. The duty is magnified when proposing 

a date range for an event as important as the date of the Theran eruption, which affects the 

chronology and history of the entire Eastern Mediterranean world. 
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Figure 1. Map of the Aegean. 

 

 

 
 

Figure 2. INTCAL09 calibration curve.  

Detail of the period 1700–1470 BC. 

 

 

 
 

Figure 3. Radiocarbon dates from Stratum H5 at Tell el ‗Ajjul (after Fischer 2009, fig. 4). 

 


