
 2 WITHDRAWAL SYMPTOMS—In the 
southeastern United States, power 
plants account for two-thirds of all 

withdrawals of freshwater. Nationally, the 
amount of freshwater withdrawn to cool 
power plants is roughly the same as that for 
crop irrigation.6 In the Southeast, electricity’s 
water withdrawals easily top agriculture’s: 
power plants there withdraw an average of 
40 billion gallons of freshwater every day, or 
65 percent of the region’s total.7

Some plants lose or “consume” large 
amounts of the withdrawn water to evapo-
ration (see the text box on p. 2): a typical 
600-megawatt coal-fired power plant con-
sumes more than 2 billion gallons of water  
per year from nearby lakes, rivers, aquifers,  
or oceans.8,9

 1 THIRSTY FOR POWER—Keeping U.S. 
power on each day requires more 
water than 140 New York Cities. The 

electric sector withdraws 143 billion gal-
lons of freshwater per day.2 More than half 
of the country’s 104 nuclear power reactors 
use once-through cooling (see the text box 
on p. 4).3 Each of these plants withdraws 
25 to 60 gallons of water for each kilowatt-
hour of electricity it generates.4 Coal plants 
with similar cooling systems typically with-
draw almost as much—20 to 50 gallons per 
kilowatt-hour—even without considering the 
water needed to mine coal or store coal waste 
from power plants (see the text box on p. 3). 
Those figures mean that for a nuclear or coal 
plant to generate the electricity for one load of 
hot-water laundry (using electric appliances), 
3 to 10 times more water must be withdrawn 
at the plant than is used to wash the clothes.5
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10 Things You Should Know

 Energy and water are woven into our 
daily lives and strongly linked to one an-
other. Producing energy uses water, and 

providing freshwater uses energy. Both these 
processes face growing limits and problems.1 
In most power plants, water cools the steam 
that spins the electricity-generating turbines. 
Refining transportation fuels requires water, 
as does producing fuels—for example, mining 
coal, extracting petroleum, or growing crops 
for biofuels. Using water in our homes and 
businesses requires getting it there, treating it, 
heating it, and more. Because of these links 

between energy and water, problems for one 
can create problems for the other. In places 
where using energy requires a large share of 
available water, or where water resources are 
scarce or stressed by competing pressures (such 
as the needs of farmers or of local ecosystems 
or, increasingly in many parts of the United 
States, by climate change), the energy-water 
connection can turn into a collision—with 
dangerous implications for both.

The 10 facts below summarize the water 
impacts of our energy choices—and ways to 
address them.

Average daily water use  
by U.S. family of four
Assuming its home is powered by a 
coal-fired or nuclear power plant that 
takes freshwater for once-through 
cooling, an average family of four 
directly uses 400 gallons of freshwater 
per day, while indirectly using 600 to 
1,800 gallons through power plant 
water withdrawals.

=100 gallons

indirect use via power plant
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 5 WHAT DOES CLEAN MEAN?—
Clean energy can mean low 
carbon and low-water—or not. 

Increasing energy efficiency will allow 
us to meet our energy needs with less 
electricity—and thus with less water 
use at power plants. Shifting to certain 
renewable energy technologies, such as 
wind turbines and solar photovoltaic 
modules, means generating electricity 
with essentially no water at all. But 
water usage by other renewable energy 
options varies widely. Technologies 
that can be particularly water-intensive 
include concentrating solar power 
(CSP), bioenergy, geothermal, and 
hydroelectric. Some CSP plants use 
far less water per unit of energy than 
a typical coal or nuclear plant to cool 
steam; other CSP facilities use more.17

 6 MPG OR GPM?—Powering 
your car with ethanol may use 
dozens of gallons of water  

per mile. The “water footprint” of 
conventional biofuels, such as corn 
ethanol, can be very large. Creating a 
single gallon of ethanol consumes, on 
average, about 100 gallons of freshwa-
ter. In some regions, however, ethanol 
production can take three or more 
times that amount—mostly depending 
on water needs for irrigation.19 Water 
requirements for some other forms of 
biofuel are lower. Estimates indicate 
that it will require only 2 to 10 gal-
lons of water to produce each gallon 
of “cellulosic” biofuel from drought-
resistant grasses and waste wood.20

 3 IN HOT WATER—Water dis-
charged from a coal or nuclear 
plant is hotter—by an average 

of 17°F in summer—than when it 
entered the plant.10 Roughly one-
third of all U.S. power plants use 
once-through cooling11 and so return 
virtually all the water they withdraw. 
Still, these plants’ significant water 
withdrawals can have a large impact 
on water quality, including tempera
ture. Half of all coal plants report 
releasing water in the summer at peak 
temperatures of 100°F or more.12 This 
thermal pollution can stress or kill 
fish and other wildlife. On Georgia’s 
Chattahoochee River, for example, 
several thousand fish perished each 
summer until Georgia Power retrofit-
ted its coal-fired plants with cool-
ing towers in 2002.13 Coastal power 
plants discharging warmed seawater 
can similarly harm local marine 
ecosystems.14

 4 HIGH AND DRY—Water troubles 
can shut down power plants. 
Just since 2004, water stress 

has led at least a dozen power plants 
to temporarily reduce their power 
output or shut down entirely, and 
prompted at least eight states to deny 
new plant proposals.15 During pro-
longed heat in the summer of 2010, 
for example, water temperatures in 
the Tennessee River hit 90°F, forcing 
the Browns Ferry nuclear plant to 
significantly cut the power output of 
all three of its reactors for nearly five 
consecutive weeks—all while cities 
in the region were experiencing high 
power demands for air conditioning.16

U.S. freshwater withdrawals
Power plants account for the largest 
share of freshwater withdrawals in 
the United States.

thermoelectric

41%
irrigation
 37%

drinking 
water 
13%

industrial 5%
other 4%

N
uc

le
ar

 R
eg

ul
at

or
y 

Co
m

m
is

si
on

In 2007 and 2010, the Browns Ferry  
nuclear plant (Athens, AL) was 
forced to curtail power production 
of all three of its reactors. During 
these events, electricity needs were 
met by other power generators—
though at higher prices. Such events 
illustrate the risks and costs that are 
“hard-wired” into today’s electric-
ity system: a lack of adequate water, 
or adequately cool water, can crip-
ple power plants precisely when we 
most need electricity.

Understanding Power Plant 
Water Use
Water withdrawal: The total amount of 
water taken from a surface- or ground-water 
source. In most cases, some fraction of that 
water will be returned to the water source 
and available for other withdrawals.18 Water 
withdrawal can become a large problem 
during drought and heat waves: water 
can be too warm, or levels too low, to 
cool the power plant, or the cooling 
water used by the plant can be made too 
warm to safely discharge.

Water consumption: That part of with-
drawn water that is not readily available 
for re-use because it is evaporated in power 
plants. The amount of water consumed 
by power plants is a particular concern 
in water-constrained regions (including 
large parts of the western United States).
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likely by 2025.27 Such tensions are 
not confined to arid regions. In the 
Southeast, for example, prolonged 
drought brought simmering disputes 
between Georgia, Tennessee, and 
other stakeholders over the rights to 
Tennessee River water to a boiling 
point in 2008.28 By 2030, electric 
capacity is predicted to grow nearly 
30 percent in the western United 
States and 10 percent in the South-
east,29 a trend that would force the 
question: With what water?

 9 CLIMATE COMPLICATIONS—
As the climate changes, so 
does the water cycle. Increas-

ing climate variability—extreme heat 
and extended drought, in particular— 
is already testing the resilience of  
energy and water systems in the South-
west and other regions. Further climate 
change will pose far-reaching chal-
lenges. The Northeast and Midwest 
can expect more spring flooding and 
extended summer drought.30 In the 
Southeast, where both air and water 
temperatures are expected to rise,31 in-
stances where water is too warm to be 
used to cool power plants may become 
far more frequent. Other regions—
notably the Southwest—can expect far 
less runoff and precipitation, especially 
in the warm months. Longer, more se-
vere droughts will leave arid areas even 
drier.32 With declining snowpack, for 
example, flows in the Colorado River 
are projected to decrease 20 percent be-
low current averages by 2050.33 The net 
effect nationally will be a more variable 
and unreliable water situation.34

California’s single biggest user of 
electricity is the State Water Project.23 
This system, serving 29 local water 
agencies, consumes enough to power 
more than 450,000 households24—or 
a city roughly the size of San Di-
ego. Similarly, the Central Arizona 
Project, a 336-mile aqueduct deliver-
ing water to Phoenix and Tucson, is 
Arizona’s largest electricity user.25

 8 WATER UNREST—Water supply 
conflicts are growing across 
the United States. Particu-

larly in the West, conflicts between 
competing water users—e.g., farmers, 
electric utilities, cities—are building. 
Such conflicts, many of which have 
an energy dimension, are expected to 
intensify, especially during periods of 
drought or other water stress.26 Even 
without factoring in the exacerbating 
role of climate change, water sup-
ply conflicts involving several major 
Southwest cities—including Denver, 
Albuquerque, Las Vegas, and Salt 
Lake City—are considered highly 

Unconventional fossil fuels—
such as “liquid coal” or oil from tar 
sands or shale—can have serious 
water implications. A coal-to-liquids 
plant supplying 50,000 barrels of 
fuel per day would withdraw al-
most 5 billion gallons of water in a 
year21—a figure similar to the highest 
water use seen for gasoline—but does 
not account for the large volumes of 
water needed to mine and wash the 
coal before processing.

 7 THE FLIP SIDE—California uses 
19 percent of its electricity and 
32 percent of its natural gas 

for water.22 Just as energy produc-
tion requires large amounts of water, 
the inverse is also true: substantial 
amounts of energy are used to pump, 
transport, treat, and heat the water 
we use every day. Nationwide, the 
EPA estimates, treating and distribut-
ing drinking water and wastewater 
together account for 3 percent of en-
ergy use. In some parts of the coun-
try, the energy toll is much higher. 

Electricity and Water Pollution
Thermal pollution is not the only way 
thermoelectric power plants affect 
water. The arsenic, mercury, lead, 
and other toxic substances contained 
in the 120 million tons of coal plant 
waste produced every year can 
severely contaminate drinking water 
supplies.35 Coal mining in the United 
States uses an estimated 80 million 
to 230 million gallons of water each 
day—the equivalent of 10 million to 
20 million showers. The EPA estimates 
that strip mining of coal by moun-

taintop removal has buried almost 
2,000 miles of Appalachian headwater 
streams—some of the most biologi-
cally diverse streams in the country.36

Natural gas-fired plants are less 
water-intensive than coal or nuclear 
plants. Still, extracting gas from shale 
deposits, such as those found in Texas, 
Pennsylvania, and New York, through 
a process known as hydraulic fractur-
ing can potentially lower local water 
quality, as well as strain local water 
supplies.37

 0.1–0.6 GPM

cellulosic biofuel

 0.1–0.3 GPM

gasoline

 0.6–20 GPM 
corn ethanol

Water required to produce 
transportation fuels
Running a typical car (getting the 
equivalent of 24 miles per gal-
lon of gasoline) on corn ethanol 
can require one-half to 20 gallons 
of water per mile—or more—de-
pending on the water used for irri-
gation. “Cellulosic” biofuel would 
require less than one gallon of wa-
ter per mile. Gasoline, while not a 
renewable resource, requires the 
least water: less than half a gallon 
for extracting and refining oil.

=
 1 gallon of 
water per 
mile (GPM)
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 10 UNDOING THE ENERGY-
WATER COLLISION—
We have many tools at 

hand. A number of technologies 
offer strong opportunities to address 
the energy-water collision.

No-water energy: Using technologies 
such as wind and photovoltaics means 
doing away entirely with water use 
for electricity production.38 Reducing 
the need for generating the electric-
ity or transportation fuels in the first 
place—through more-efficient ap-
pliances, buildings, and vehicles, for 
example—not only saves money and 
reduces heat-trapping gases and other 
pollutants, but also eliminates the 
corresponding water use.

Low-water energy: Shifting old coal 
or nuclear plants using once-through 
cooling to more-water-efficient closed-
loop cooling technologies would 
increase water consumption, potentially 
even doubling it, but would reduce 
water withdrawals by two orders of 
magnitude. Dry- and hybrid cooling 

Several steps can be taken to 
reduce the water demand of some re-
newable energy options. CSP plants, 
for example, which are ideally sited in 
some of the country’s sunniest—and 
driest—locations, are increasingly 
turning to dry cooling, despite the 
higher costs. For biofuels, minimiz-
ing reliance on irrigation and switch-
ing to low-water perennial crops—or 
even to waste from cities, farms, 
and forests—could make it possible 
to lower the water requirements of 
biofuel production and reduce heat-
trapping emissions.

Given the many connections be-
tween energy and water, the choices 
we make in the near future about 
how we produce and use energy will 
determine not only the extent to 
which we mitigate the worst impacts 
of climate change, but also how 
resilient our energy system is to the 
variability of our water resources and 
the many competing demands for it. 
Smart choices now will mean lower 
risks, greater energy security, and 
strong environmental and economic 
benefits.
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options help address water consump-
tion. Such technologies could be 
particularly important in water-
constrained regions. Such cooling 
technologies would, however, reduce 
power plant efficiency and increase 
their costs—and, in the case of fossil-
fuel-fired plants, do nothing to reduce 
emissions of heat-trapping gases.39

This fact sheet, which draws from a growing body of research, is the first in our “Energy and Water Collision” series that explores  
the ways in which energy choices affect water resources in the United States, and how this will change in the face of global warming. 
To download a fully referenced version, visit the UCS website at www.ucsusa.org/energy-water.

In the arid Southwest, population and water use have grown rapidly in the past couple of 
decades. This region may double its 2000 population by 2030, according to the U.S. Census 
Bureau, with potential accompanying increases in demand for water and electricity—and 
water for electricity. Complicating matters, changes in the region’s climate are expected to 
lead to large drops in annual runoff and water availability by mid-century.

Power Plant Water Words
Thermoelectric: The conversion of 
thermal energy (heat) into electricity. Fos-
sil fuel and nuclear power plants, as well 
as some forms of renewable electricity 
facilities, boil water to create steam that in 
turn spins electricity-generating turbines. 
These plants typically use water to cool the 
steam. In the United States, 90 percent of 
our electricity comes from thermoelectric 
power plants that require cooling.

Cooling technologies: The mechanisms 
used to cool steam in a power plant:

•	 Once-through systems withdraw water 
from nearby sources (e.g., rivers, lakes, 
underground aquifers, the ocean), 
circulate it through pipes to absorb 
heat from the steam, and discharge the 
warmer water back to the local source.40

•	 Recirculating (closed-loop) systems 
reuse cooling water rather than 
immediately releasing it back to the 
water source. Such systems withdraw 
comparatively small amounts of 
water but lose or “consume” most of 
it through evaporation.41

•	 Dry-cooling systems use air instead 
of water to cool the steam exit-
ing a turbine. Dry-cooled systems 
can decrease total power plant 
water requirements by as much as 
90 percent, though adding cost and 
decreasing efficiency.42

•	 Hybrid cooling systems use air for 
cooling most of the time, but can 
draw on water during particularly 
hot periods.

The Union of Concerned Scientists is the leading science-based nonprofit working for a healthy environment and a safer world.
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