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Abstract

This paper explores Bayesian Markov Chain Monte Carlo (MCMC) methods for evaluation of the posterior distributions of

flood quantiles, flood risk, and parameters of both the log-normal and Log-Pearson Type 3 distributions. Bayesian methods

allow a richer and more complete representation of large flood records and historical flood information and their uncertainty

(particularly measurement and discharge errors) than is computationally convenient with maximum likelihood and moment

estimators. Bayesian MCMC provides a computationally attractive and straightforward method to develop a full and complete

description of the uncertainty in parameters, quantiles and performance metrics. Examples illustrate limitations of traditional

first-order second-moment analyses based upon the Fisher Information matrix.
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1. Introduction

Estimation of flood quantiles and other extremes is

an important issue. Determination of the magnitude of

design floods with a specified exceedance probability

is required for many engineering works, such as the

design of bridges, dams, canals, and water intakes,

and for the development of flood risk management

projects. But determining the magnitude of the 100-

year flood is not enough. Decision makers should be

provided estimates of the precision of the estimated

quantiles so they can appreciate the uncertainties.

Uncertainties in quantile estimates are often based on
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asymptotic approximations. Papers and books

describe approximate confidence intervals for quan-

tiles of distributions used in hydrology (USWRC,

1982; Stedinger, 1983a; Kite, 1988; Chowdhury and

Stedinger, 1991; Stedinger et al., 1993; Bobee

and Ashkar, 1991; Ashkar and Ouarda, 1998; Whitley

and Hromadka, 1999; Cohn et al., 2001; Frances,

2001; Coles and Pericchi, 2003) illustrating the

importance of the provision of measures of precision.

However, uncertainties in anticipated expected ben-

efits and other project performance indices are also

desirable, particularly when decision-making is cast

in a more comprehensive risk and uncertainty frame-

work (NRC, 1995; USACE, 1996; Al-Futaisi and

Stedinger, 1999; National Research Council, 2000).

The data available for a single site is usually

insufficient to obtain estimates of flood quantiles with
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great precision. Regional and historical information

can be incorporated into flood frequency analyses to

increase the precision of the estimators. The former

uses data from different sites in an attempt to

substitute space for time (National Research Council,

1998; Stedinger and Lu, 1995; Hosking and Wallis,

1997). The latter incorporates into the analysis

information about floods that occurred before the

beginning of a systematic gauged record (Jarrett and

Tomlinson, 2000; House et al., 2002; Benito and

Thorndycraft, 2004). Several studies have illustrated

the use of historical information in flood frequency

analysis (Stedinger and Cohn, 1986; Jin and Stedin-

ger, 1989; Pilon and Adamowski, 1993; Salas et al.,

1994; Stevens, 1994; Frances et al., 1994; Cohn et al.,

1997; Kuczera, 1999; Martins and Stedinger, 2001;

Ostenaa et al., 2002; O’Connell et al., 2002; Blainey

et al., 2002; Parent and Bernier, 2003; Thorndycraft

et al., 2002; Benito et al., 2004; Frances, 2004; Ouarda

et al., 2004). These studies generally show that the use

of historical information can be of great value in the

reduction of the uncertainty in flood quantiles

estimators, though many have raised concerns with

measurement and recording errors (Hosking and

Wallis, 1986, 1997; Sho et al., 2000; Blainey et al.,

2002; Baker, 2003).

The most common estimation methods in flood

frequency analysis are based on either the method of

moments or the maximum likelihood. Other authors

have proposed the use of the Bayesian approach with

systematic data for special cases when it is possible

to use conjugate priors that yeild a closed

form posterior distribution for the parameters (Vicens

et al., 1975; Wood and Rodriguez-Iturbe, 1975; and

Stedinger, 1983b). More recently, Parent and Bernier

(2003) developed a Bayesian procedure for the peak

over threshold (POT) model that uses semi-conjugate

informative priors leading to a quasi-analytical

formulation. Coles and Pericchi (2003) and Coles

et al. (2003) argue for use of a Bayesian approach

and employed a MCMC algorithm with the three-

parameter GEV distribution for modeling systematic

extreme rainfall data in Venezuela.

Bulletin 17B recommends weighted moments

estimators for use with the LP3 distribution when

historical information is available. Cohn et al. (1997)

propose the Expected Moment algorithm (EMA) as

an alternative to the weighted moment method.
EMA was extended to include regional skew

information in Griffis et al. (2004).

Kuczera (1996) discusses problems posed by

measurement errors and uses a maximum likelihood

procedure to incorporate the distribution of possible

measurement errors into an analysis for the three-

parameter GEV distribution. Subsequently, Kuczera

(1999) used importance sampling with Monte Carlo

simulation to conduct a full Bayesian analysis of a

record with systematic and historical information.

(His algorithm is described below.) O’Connell et al.

(2002) also took a full Bayesian approach to

incorporate historical information and measurement

errors into their flood frequency analysis. O’Connell

et al. (2002) searched for the primary modes of the

parameters using simulated annealing and the simplex

method. The credible intervals of the parameters are

calculated numerically through a sophisticated adap-

tive grid algorithm to support numerical integration of

the posterior distribution of the three parameters over

their infinite range of possible values.

This paper employs a fully Bayesian approach for

flood frequency analysis with historical information

and measurement error. Bayesian Markov Chain

Monte Carlo (MCMC) methods are employed to

derive an empirical approximation of the posterior

distribution of parameters, flood quantiles and other

functions of the parameters of both the log-normal and

Log-Pearson Type 3 distributions. Relative to MLE-

based approximations, a full Bayesian analysis

provides a more accurate description of flood risk

and parameters uncertainties, and more realistic

credible intervals for both flood quantiles and flood

damages for data sets with historical information

reflecting the joint distribution of possible measure-

ment errors. The use of Bayesian MCMC to fit a

two-parameter log-normal distribution or a three-

parameter Log-Pearson Type 3 distribution with

systematic and historical information is attractive

because it: (i) allows a full Bayesian analysis of the

data including appropriate descriptions of the

uncertainty in any function of the parameters, (ii) it

allows a wide range of descriptions of the joint

distribution of uncertainties in the data including the

magnitude of historical peaks and exceedance

thresholds, and (iii) the numerical procedures are

relative straightforward without significant increase in

complexity or computational effort with additional
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descriptions of data uncertainty, nor does it require

that the parameter space be represented by a grid for

numerical integration.
2. Parameter estimation with historical

information

This section describes four methods that have been

used to estimate the parameters of a distribution with

flood records that may include historical information.

The Bayesian approach is introduced last and its

computational implementation with Monte Carlo

algorithms is described. The focus of this paper is

the performance of the Bayesian methods and their

ability to represent hydrologic data and its precision,

and to improve upon the characterization of

uncertainty provided by maximum likelihood

estimators.

2.1. Weighted moments

Bulletin 17B (USWRC, 1982) describes pro-

cedures employed by US federal agencies for flood

frequency analysis. It recommends the use of the

adjusted-moment estimator to fit the Log-Pearson

Type 3 distribution when historical information is

available. It requires that all historical floods that

exceed a threshold of perception have a numerical

value to represent their magnitude. The values of

unobserved historical floods below the perception

threshold are represented by the sample average and

variability of below-threshold floods during the

system record period.

The performance of this method has been explored

by Stedinger and Cohn (1986) and Cohn et al. (1997).

Both studies show that the adjusted moments

method is not as good as competing methods, such

as maximum likelihood analysis. Thus attention here

will focus on Bayesian methods as an extension of the

likelihood principle upon which MLEs are based.

2.2. Expected moment

Cohn et al. (1997) present the expected moments

algorithm (EMA), which is another moment-based

quantile estimator developed to use systematic and

historical information. EMA uses an iterative
procedure to compute parameter estimates that reflect

both the systematic and historical flood records. They

report Monte Carlo results showing that EMA

performs better than the adjusted-moment estimator

when fitting a Log-Pearson Type 3 distribution, and as

well as MLEs in a case where it regularly converged.

Cohn et al. (2001) provides approximate variance

estimates that can be used to compute confidence

intervals for quantiles correcting for the correlation

between the quantile and standard deviation

estimators. Monte Carlo experiments demonstrate

that the confidence intervals did cover the actual

quantiles with nearly the target frequency.

EMA is an attractive alternative to the weighted

moment estimators currently recommended by

Bulletin 17B, particularly for the LP3 distribution

for which MLEs have trouble. Interest here is to see if

Bayesian methods can also overcome the problems

with MLEs. Bayesian methods naturally incorporate a

wide range of data uncertainties and provide the

posterior distribution of any function of the

parameters without use of the specialized corrections

for EMA provided by Cohn et al. (2001).

2.3. MLE approach

Maximum likelihood estimators are one of the

standards in statistical inference because of their

theoretical motivation and asymptotic efficiency for

distribution satisfying several regularity conditions

(Bickel and Doksum, 1977). Stedinger and Cohn

(1986) develop maximum likelihood estimators that

incorporate historical and paleoflood information into

a flood frequency analysis. Their Monte Carlo results

for the log-normal distribution demonstrate that the

MLE procedure is flexible and robust, and more

efficient than the adjust-moment estimator suggested

by Bulletin 17. The maximum likelihood represen-

tation of the problem proceeds as follows.

Suppose one has s years of systematic observations

denoted by {x1, ., xs}, and knows both the number of

floods k that exceeded a perception threshold X0 over

an h year period and the magnitudes of those historical

floods, which are denoted {y1, ., yk}. When the

annual floods are independent events, the likelihood

function for this data is simply the product of three

terms, the probability of seeing the systematic data,

the probability of observing k floods above X0 in h
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years, and the likelihood of seeing {y1, ., yk} given

they were greater than X0

[ðDjqÞ Z
Ys

iZ1

fXðxiÞ
h

k

" #
FXðX0Þ

ðhKkÞ½1 KFXðX0Þ�
k

( )

!
Yk

jZ1

fXðyjÞ

(1)

where D represent the data and q represents the

parameters, fX( ) and FX( ) are the probability density

function (pdf) and the cumulative density function for

X, and fY( ) is the pdf for the historical floods. Because

we know Y is greater than X0:

fY ðyÞ Z
fXðyÞ

½1 KFXðX0Þ�

With this substitution, the likelihood function

becomes

[ðDjqÞ Z
h

k

" #
FXðX0Þ

ðhKkÞ
Ys

iZ1

fXðxiÞ
Yk

jZ1

fXðyjÞ (2)

In some cases, due to the recording limitations on

the estimation of the magnitudes of the historical

floods, one may prefer to rely only on the observation

that k floods exceeded the threshold X0 in h years.

Stedinger and Cohn (1986) called this type of

representation of information binomial-censored data.

Omitting the third term in (1) yields the likelihood

function for binomial-censored data:

[ Djq
� �
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iZ1
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h
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ðhKkÞ½1 KFXðX0Þ�
k

( )

(3)

The MLEs are the values of the parameters that

maximize the likelihood function. However, finding

the best point estimate of the parameters is not

enough. Quantifying parameter uncertainty is also

important.

The uncertainty in the MLE estimators is usually

estimated through a quadratic approximation of the

likelihood function which represents the inverse of the

Fisher Information matrix (Bickel and Doksum,

1977). The quadratic approximation of the log

likelihood function for LN2 with censored data is
reported in Appendix. The performance of this

approximation is evaluated in Section 3.

A drawback of the MLE approach is that it does not

always work well, such as when fitting a Log-Pearson

Type 3 distribution (Cohn et al., 2001). Bobee and

Ashkar (1991) show that with the first-order conditions

for a local maximum of the likelihood function for the

LP3 distribution, a is never less than one. However, the

LP3 distribution can always be made to go to infinity

for any 0!a! 1 by letting the lower bound approach

the smallest observation (largest for b!0). Some

authors have reported failures on finding a local and

reasonable maximum of the likelihood, especially for

small sample sizes. Hirose (1995) showed there may be

more than one local maximum for a given sample size.

Kuczera (1996) and O’Connell et al. (2002) show that

when measurement error is present, the likelihood

function may be multi-modal. It is hoped that use of the

likelihood function in a Bayesian framework may

result in good estimators because a Bayesian analysis is

based upon the whole likelihood function, and not just

the maximum which may not be representative of the

character of the entire likelihood function.
2.4. Bayesian inference and Monte Carlo simulation

Bayesian inference is an alternative to the classical

statistical inference. With a Bayesian approach, our

understanding of the likelihood the parameters have

different values is described by a probability density

function. A Bayesian analysis combines the infor-

mation in the data represented by the entire likelihood

function with prior knowledge about the parameters,

which may come from other data sets or a modeler’s

experience and physical intuition. Parameter esti-

mation is made through the posterior distribution

which is computed using Bayes’ Theorem

pðqjDÞ Z
[ðDjqÞxðqÞÐ
[ðDjqÞxðqÞdq

(4)

where p(q|D) is the posterior distribution of the

parameters q, [(D|q) is the likelihood function, and

x(q) is the prior distribution of q. The denominator is a

normalizing constant that scales the posterior so that

the area under the posterior pdf equals one.

Providing a full posterior distribution of the

parameters is an advantage of the Bayesian approach
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over classical methods, which usually provide only a

point estimate of the parameters represented by the

mode of the likelihood function, and make use of

asymptotic normality assumptions and a quadratic

approximation of the log-likelihood function to

describe uncertainties. With the Bayesian framework,

one does not have to use any approximation to

evaluate the uncertainties because the full posterior

distribution of the parameters is available. Moreover,

a Bayesian analysis can provide credible intervals for

parameters or any function of the parameters which

are more easily interpreted than the concept of

confidence interval in classical statistics (Congdon,

2001).

Kuczera (1996) shows that correlated measure-

ment errors from extrapolation of the rating curve

beyond the range of flow measurements decrease the

precision of estimated flood quantiles. Potter and

Walker (1985), Kuczera (1996), O’Connell et al.

(2002) and Carling et al. (2003) provide estimates of

the uncertainty in estimated flood peaks. For instance,

interpolation within the range of flow measurements

yields errors of about 1–5% (error coefficient of

variation), while extrapolating increases the uncer-

tainty up to 30% in poor situations. Estimating peak

discharge of historical floods by hydraulic calcu-

lations have errors of about 15–20% and may reach

25% for paleostage measurements. O’Connell et al.

(2002) use discrete three-point error distributions to

define a likelihood function to include such uncer-

tainties in their Bayesian analysis.

Sometimes the errors in different flood measure-

ments are independent. However, a common and

important case is when rating-curve errors affect the

computed value of several flood peaks and flood

exceedance thresholds (Kuczera, 1999). This case

requires integrating the entire likelihood function over

the distribution of the possible errors in the rating

curve or flood routing model to yield the appropriate

likelihood function

[ðDjqÞ Z
Ð

[ðfxiðuÞg; fyiðuÞg;X0ðuÞjqÞgðuÞdu

where the vector u describes the possible errors in

individual flood measurements and the uncertain

in parameters of the rating curve (or routing model)

that affect the computed flow values [{xi(u)},

{yi(u)},X0(u)], associated with stage records for
the systematic floods, historical floods and the

perception threshold; here g(u) is the pdf for the

parameter vector u describing possible errors in the

stage-discharge function and in individual measure-

ments. Such a computation can easily be incorporated

with a MCMC analysis with relatively little impact on

the computational effort. One just adds u as an

additional vector of unknown parameters with prior

g(u), and the MCMC analysis will provide the required

computation.

Computing the denominator of Eq. (4) may not be

easy. There are simple cases for which one can choose

a conjugate prior to obtain a posterior that is

analytically tractable (Zellner, 1971). In these cases,

the normalizing constant can be easily computed.

When choosing a conjugate prior is not possible, the

normalizing constant can be computed numerically in

low-dimensional cases, as illustrated by O’Connell

et al. (2002). However, in more complicated cases

where the dimension of u and the parameter vector q

is large, computing the normalizing constant can be

computationally infeasible. Such problems had lim-

ited the use of the Bayesian approach for some time

(Gelman et al., 1995).

The rapid development of computers in the last two

decades provided a tool for numerically intense

methods in statistical inference, including Markov

Chain Monte Carlo (MCMC) methods. MCMC

samples values of the parameters from the posterior

distribution without computing the normalizing con-

stant. The two most popular MCMC algorithms are

the Gibbs sampler, named by Geman and Geman

(1984) and examined by Casella and George (1992),

and the Metropolis-Hastings algorithm based on the

papers by Metropolis et al. (1953) and Hastings

(1970).

Standard and efficient MCMC routines for uncen-

sored and censored normal samples are used in

Section 3.2 to simulate the posterior distribution of

the parameters of the two-parameter log-normal

distribution. The Metropolis–Hastings algorithm is

used in Section 4.2 to generate the posterior

distribution of the parameters of the LP3 distribution.

With the LP3 care is taken to employ proposal

distributions that provide an efficient simulation with

a description of the likelihood function valid with log-

space skew coefficients near zero to avoid the

numerical problems that would result had the natural
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parameterization of the gamma density function been

employed.

Tierney (1994), Chib and Greenberg (1995) and

Gelman et al. (1995) provide a theoretical descrip-

tion of the MCMC algorithm. The Metropolis–

Hastings algorithm simulates a Markov Chain in a

Monte Carlo study to generate a set of points

whose distribution converges to the posterior

distribution. Let qj be the vector of parameters at

the jth iteration. Then one employs a proposal

transition distribution q(qj,qjC1) that satisfies the

reversibility condition

pðqjÞqðqj; qjC1Þ Z pðqjC1ÞqðqjC1; qjÞ (5)

where p(q) is the desired posterior distribution for

q. The reversibility condition is a sufficient

condition for p(q) be the equilibrium distribution

of the chain. This condition basically requires that

the unconditional probability of moving from one

set of parameters qj to a new set qjC1 must be

equal to the unconditional probability of moving

from qjC1 to qj. For any trial proposed distribution,

a transition distribution that satisfies (5) is obtained

by assigning probabilities a of moving from qj to

qjC1 and vice-versa so that the reversibility

condition is satisfied

pðqjÞqðqj; qjC1Þaðqj; qjC1Þ

Z pðqjC1ÞqðqjC1; qjÞaðqjC1; qjÞ; qj sqjC1

Chib and Greenberg (1995) show that the needed

probability a is

aðqj; qjC1Þ Z min
pðqjC1ÞqðqjC1; qjÞ

pðqjÞqðqj; qjC1Þ
; 1

	 

(6)

The probability of a move is also called the

acceptance probability. In Eq. (6), it depends on the

ratio between the values of the posterior distribution

at the two points. The trial proposal distribution q

generates only a possible set of new parameters,

which are accepted or rejected depending on the

ratio in Eq. (6). If the unconditional probability of

moving from qj to qjC1 is larger than the

unconditional probability of moving in the other

direction, then the move is accepted, otherwise the

proposal is accepted with probability a. If the move

is not accepted, the parameters retain their values

from the last iteration.
The choice of an adequate proposal distribution q

is key to an efficient implementation of the Metropo-

lis–Hastings algorithm. One wants a proposal distri-

bution that gives a reasonable acceptance rate, which

is the average number of acceptances in the

simulation, and generates a series that covers the

entire parameters space so that the final sample

accurately describes the posterior distribution. If the

proposal distribution nominates values of the par-

ameters that are very far from the current position, it is

likely it will result in a low acceptance rate and the

simulation procedure will be inefficient. On the other

hand, if it only proposes values very close to the

current position, the acceptance rate may be high, but

it will take a long time to cover the parameter space

thoroughly and again the simulation procedure will be

inefficient. In both extreme cases, one sees a highly

correlated series of values which results in an

uncertain estimate of the distribution of the par-

ameters for a fixed simulation run length (Gamerman,

1997).

After sampling the parameters one can estimate

the marginal density distributions, compute means

and standard errors, and estimate credible intervals

not only of the parameters but also of any function

of them, such as desired quantiles and flood

damages.
2.5. Importance sampling and measurement error

Kuczera (1999) presents a conceptually similar

approach for evaluating the posterior distribution of

the parameters and other quantities; instead of using

a general Markov Chain Monte Carlo simulation to

evaluate the posterior distribution of such functions,

he uses a specialized and potentially more efficient

importance sampling algorithm (Gamerman, 1997).

For this purpose he develops a quadratic approxi-

mation of the posterior probability density function

which is used as the basis of a multivariate normal

approximation. To evaluate the expected value of

any function h(qjq) of the flow q for parameter

values q, where h may be the exceedance prob-

ability of q or the pdf at q, one needs to be able to

compute:

EfhðqjqÞg Z
Ð

hðqjqÞpðqjDÞdq (7)
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The trick to facilitate a Monte Carlo evaluation

of (7) is to write the required integration asð
hðqjqÞpðqjDÞdq¼ C

ð
hðqjqÞlðDjqÞxðqÞdq

¼ C

ð
hðqjqÞ

lðDjqÞxðqÞ

f ðqÞ
f ðqÞdq ð8Þ

where C is a normalizing constant corresponding to

the denominator in (4), and f(q) is the pdf of an

‘importance’ distribution chosen to approximate

p(qjD). Kuczera uses a multivariate normal distri-

bution for f(q) with an inflated variance to ensure

good coverage. His Monte Carlo algorithm draws a

large number of points qi from the distribution f(q),

and assigns to each the probability

pi Zwi=S where wi Z
[ðDjqiÞxðqiÞ

f ðqiÞ
and S Z

X
wi

(9)

Thus (qi, pi) jointly represent the posterior distribution

of q, and the computation of the mean value of h(qjq) at

these points with the assigned probabilities yields a

convenient numerical approximation of the value of

the integral E{h(qjq)}. The computation of S provides

the required normalization of the likelihood function

and corresponds to the computation of C; this step

introduces some bias in small samples because the

estimator of the integral in (7) using (8) will be the

ratio of two random variables ½
P

wihðqjqiÞ� and S

(Gamerman, 1997).

The efficiency and accuracy of this importance

sampling approach depends upon how well f(q)

approximates the posterior distribution of the par-

ameters; the most critical issue is that f(q) covers all of

the likely values of q, otherwise a few of the

probabilities pi can be very large (Gelman et al.,

1995). As shown by examples in Kuczera (1996,

1999), and the examples below, the likelihood

function need not have the shape of a multivariate

normal distribution, and thus the appeal of the more

general and flexible MCMC simulation methods

employed here, and by Parent and Bernier (2003).

If the likelihood function is defined by an integral

over the measurement-error vector u, then this

importance sampling approach would still work if

one simulates jointly the values of q and u using a

importance distribution f(q,u) that well approximates
[(D|q,u)x(q)g(u) wherein g(u) is the pdf of the

measurement-error distribution. For example, MCMC

analysis with q and u treated as parameters would for

any function h(qjq) evaluate the integral

Eq;ufhðqjqÞg Z
Ð

hðqjqÞpðq;ujDÞdq du

Z

ðð
hðqjqÞðCÞ[ðfxiðuÞg; fyiðuÞg;

X0ðuÞjqÞxðqÞgðuÞdq du

Z
Ð

hðqjqÞðCÞ
Ð

[ðfxiðuÞg; fyiðuÞg;
�

X0ðuÞjqÞgðuÞdu
�
xðqÞdq ð10Þ

where this last expression clearly is the quantity that is

required in that it includes the average over the

distribution of u of the likelihood function for the

data, and where C is the required normalization

constant from Eq. (4):

1=C Z
Ð

pðq;ujDÞdq du

Z
Ð Ð

[ðfxiðuÞg; fyiðuÞg;X0ðuÞjqÞgðuÞdu
� �

xðqÞdq

(11)

3. LN2 example

This first and simple example illustrates the

differences between the Bayesian approach and the

classical statistical method, which finds the point

estimate through MLE and then assumes that the

uncertainties can be approximated by a quadratic

function. The analysis considers the Bayesian and

asymptotic-MLE descriptions of the uncertainty in the

parameters and quantiles of a LN2 distribution with

historical information.
3.1. Description of the data

A data set with 120 years of observations was

generated using a log-normal distribution with a log-

space (natural logarithms) mean mZ6.9 and log-space

standard deviation sZ0.83. Thus the coefficient of

variation CV equaled 1 and the real-space mean is

equal to 1000 (Stedinger, 1980). Only the last 20 years

were considered to be systematic data, and the

censoring threshold of the earlier historical period

was chosen to be equal to the 99th quantile

(X0Z6842). In the sample, two floods exceeded
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the 99th quantile in the 100 year historical period, and

a third flood exceeded the threshold in the systematic-

record period, as can be seen in Fig. 1. The

magnitudes of those three floods were 6890, 7720,

and 7180, respectively.

In order to illustrate the consequences of using the

asymptotic MLE and Bayesian approaches in flood

frequency and uncertainty analyses, we examined the

estimated uncertainties in the estimator of the flood

quantiles and of the expected value of flood damages

employing the damage function D(q) developed in

Al-Futaisi and Stedinger (1999). For a flood of

magnitude q in a hypothetical basin

DðqÞ Z aDðq
3=5 Kq3=5

0 Þ H C ðq3=5 Kq3=5
0 Þ

� �
(12)

where aDZ24, q0 is the discharge threshold above

which damage begins and is set equal to the 80th

quantile, and HZ300 (see Al-Futaisi and Stedinger

(1999) for details). The expected value of flood

damage is estimated by numerical evaluation of the

integral using the pdf for q:

E½DðqÞ� Z

ðN

q0

Dð ~qÞf ð ~qjqÞd ~q (13)
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µ

Fig. 2. Contour lines of the likelihood function of the LN2

distribution. Solid lines represent the likelihood with only 20 years

of systematic data, while the dotted lines represent the likelihood

with censoring data with hZ100 and kZ2.
3.2. MLE and asymptotic normality

Fig. 2 shows the contour lines of the likelihood

function for two different situations, one with only

the systematic data and the other in which the number
and magnitudes of two historical floods (kZ2) above

the perception threshold (99th quantile) during the

historical period (hZ100 years) is included to the

likelihood function (censored data as in Eq. (2)).

The values of the likelihood function were scales so

that the maximum value is equal to the unity. The first

contour line is equal to 0.98 and gives a good idea of

the location of the maximum. Subsequent contour

lines correspond to decrease of a factor of 3.16 in

the likelihood function (every two contour lines is a

factor of 10). While better behaved than the LP3
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Fig. 3. Solid lines represent the likelihood function of LN2

distribution with censored data. Dotted lines represent the quadratic

approximation of the likelihood function.
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contour lines displayed in Kuczera (1999), one can

still see that in both cases the likelihood function is far

from being concentric ellipses as assumed by an

asymptotical second-order analysis. This occurs in

part because the population variance s2 is bounded

below by zero, resulting in a positively skewed

likelihood function. However, the uncertainty in m

also increases with the value of s2.

This graph also shows that the censored data has a

dramatic impact on the likelihood function, which

becomes even less quadratic. Fig. 3 illustrates how

poor the quadratic approximation is in this specific

case. The contour lines of the quadratic approximation

of the likelihood function are plotted over the contours

of the likelihood function for censored data. The

asymptotic quadratic approximation misrepresents the

real likelihood, and thus may provide a poor

description of parameter uncertainty.
5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8
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µ

Fig. 4. Posterior distribution of the LN2 with censored data and

MCMC sample of parameters with non-informative prior on both m

and s.
3.3. Bayesian MCMC

The Bayesian parameter estimation of the LN2

with historical information was done using the

software Winbugs (Spiegelhalter et al., 2000). This

requires a prior distribution for the parameters and the

likelihood function. Winbugs has a built-in likelihood

function for uncensored and censored normal data that

was used in these simulations.
To check on the role the prior distribution in the

estimation process, two different prior distributions

were considered. One with an almost non-informative

prior for both m and s, where m was normal with mean

zero and variance 1000, and s had a gamma

distribution with mean 1 and variance 100. With the

other prior, s had a more informative prior described

by a gamma distribution with mean 0.7 and standard

deviation 0.3. This more informative prior for s is

consistent with the values of the coefficient of

variation of annual maximum discharges in American

rivers that varies from 0.20 to 1.50 (Landwehr et al.,

1978). This prior for s assigns only a 10% probability

the CV is outside of (0.30,1.96).

For both priors, Winbugs was used to generate

50,000 realizations of m and s from the posterior

distribution. The last 40,000 were used in the

estimation of the mean, standard deviation, and the

marginal density distribution of the parameters and

quantiles. In order to facilitate visualization in Fig. 4,

that sample was thinned to 5000 values by taking

every eighth value.

Fig. 4 presents the contour lines of the posterior

distribution with censored data and the MCMC

sample when one uses a non-informative prior for

both m and s. A picture that corresponded to use of

the informative prior was very similar—the most

significant difference being the decreased likelihood



Table 1

Results of parameter estimation using MLEs and Bayesian MCMC

Method m s Q99/1000 E(damage)/1000

2.5% Mode/

meana

97.5% 2.5% Mode/

meana

97.5% 2.5% Mode/

meana

97.5% 2.5% Mode/

meana

97.5%

MLE quadratic approx. 6.53 6.87 7.22 0.67 0.86 1.06 4.7 7.2 11.2 11.8 65.8 119.8

MCMC non-informative prior 6.46 6.84 7.17 0.71 0.89 1.13 4.8 7.6 12.2 26.6 72.7 149.0

MCMC informative prior on s 6.48 6.86 7.18 0.70 0.87 1.09 4.7 7.4 11.6 25.9 69.9 142.2

a Mode for MLE and mean for MCMC.
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of very small s values. One can see that the sample

generated by Winbugs represents the posterior

distribution very well, recognizing that the probability

of seeing a point within a ring is the product of the

posterior probability, described by the contour lines,

and the width of the ring.

Table 1 presents the results of the parameter,

quantile, and expected value of flood damage

estimation using both MLE along with quadratic-

likelihood approximation to determine uncertainties

(following Cohn (1984)), and the Bayesian approach

with the two different priors. One can see that

uncertainties in both the parameters and flood

quantiles given by the Bayesian analysis with a non-

informative prior are larger than those obtained using

a quadratic approximation of the likelihood function.

The differences are most apparent in the upper bound

on the standard deviation s and the 100-year flood

Q0.99, except for s where the Bayesian result with a

more informative prior on s provides a credible

interval about the same size as the confidence interval.

Numerical estimates of the partial derivatives of

the expected damage function in (13) with respect to

the two parameters were used with a first-order/

second moment approximation of the variance of the

estimated damages to compute an approximate 95%

confidence interval of the expected flood damages

based upon a normal error distribution (Benjamin and

Cornell, 1970; Cohn, 1984). The linear approximation

is not an accurate description of the nonlinear

expected damage function. Therefore, the Bayesian

MCMC credible interval of the expected damage,

which is estimated using the 40,000 values of m and s,

provides a better representation of the uncertainty

distribution of the expected flood damages. Uncer-

tainty intervals for various quantiles are presented in

Fig. 5, which shows the 95% credible interval
generated by MCMC with non-informative prior,

and the 95% confidence interval given by the

quadratic approximation for flood quantiles with

different exceedance probabilities.

The use of a more informative but modest prior on

s lead to slightly tighter credible intervals on all

parameters, flood quantiles, and flood damages in

Table 1. The largest differences occurred for expected

damages, which mostly depends upon rare floods with

exceedance probabilities less than 5%. Moreover the

Bayesian credible intervals for expected damages are

very asymmetric, being almost twice as long above

the mean as below the mean, whereas the use of a

normal approximation based upon the asymptotic

variance of the MLE results in a less-appropriate

symmetric confidence interval.
4. Log-Pearson Type 3 distribution

This section provides a Bayesian analysis for the

LP3 distribution using a Metropolis–Hastings algor-

ithm. First, the LP3 distribution is described. Then,

the prior distributions for the parameters, the like-

lihood function of the data, and the choice of an

adequate proposal distribution are presented. Finally,

the method is applied to several samples. Because

MLEs can have trouble when fitting the three-

parameter LP3 distribution, it would be convenient

if Bayesian procedures were able to deal with this

distribution while still using the likelihood function

for the data. A comparison of credible regions

generated by the Bayesian analysis with confidence

intervals generated using asymptotic results shows the

problems with asymptotic approximations, as was to

be expected because of the nonlinear relationship
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between the highly uncertain skew parameter and

flood quantiles and expected flood damages.
4.1. The model

If floods {Q1, ., QN} are distributed as a Log-

Pearson Type 3 (LP-3) distribution, then XZlog(Q)

has a Pearson Type 3 variate with probability density

function

fXðxÞ Z
jbj

GðaÞ
½bðx KtÞ�aK1eKbðxKtÞ (14)

where a, b, and t are the shape, scale and location

parameters, respectively, and G(a) is the gamma

function. If bO0, the distribution is positively skewed

and t is a lower bound; if b!0, the distribution is

negatively skewed with an upper bound t. As the

shape parameter a goes to infinity, the skew

coefficient goes to zero, and the Log-Pearson Type 3

reduces to the two-parameter log-normal distribution.

Because interest is often in distributions with small

skews, numerical problems can result when fitting an

LP3 distribution with MLEs.
Another parameterization based on the mean,

standard deviation, and skewness is often used to

calculate the pth quantile

xp Z m CsKpðgÞ (15)

where Kp(g) is the frequency factor which is the pth

quantile of the P3 distribution with mean zero and

standard deviation 1, and skewness g. The frequency

factor Kp can be well approximated by the Wilson–

Hilferty transformation (Kirby, 1972) for jgj!2 and

0.01%p%0.99

KpðgÞ Z
2

g
1 C

gzp

6
K

g2

36

� �3

K
2

g
(16)

where zp is the pth quantile of the standard normal

distribution.
4.2. A Bayesian framework with a MCMC procedure

For historical and other censored data, the

Bayesian approach is an alternative to the

adjusted-moment procedure recommended by

Bulletin 17B and to EMA. Bayesian inference
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uses the likelihood function, which is an effective

and flexible way to employ a wide range of data

types as well as including measurement errors in

the analysis. Here we use the Metropolis–Hastings

algorithm to generate a sample that represents the

posterior distribution of the parameters m, s, g, and

of the quantiles xp and damages using Eqs. (12)

and (13) This requires a prior and proposal

distributions for the parameters, and the likelihood

function.

4.2.1. Prior distributions

For illustration we use relatively non-informative

priors for m, s, and a more informative prior for g.

Because m can be negative, the prior distribution is

represented by a normal distribution with mean zero

and variance 1000. The standard deviation s must be

strictly positive. Zellner (1971) discusses the use of

non-informative prior for s and suggests it should be

proportional to its reciprocal. Previous studies and

physical intuition indicate that the skewness coeffi-

cient should be well within G1.4, which are plausible

bounds on the skewness coefficient. Were population

skews uniformily distributed on G1.0, their variance

would be 0.33. The adopted prior distribution for g

was a normal distribution with mean zero and

variance 0.3, though this number is certainly too

large a variance (Tasker and Stedinger, 1986; Reis

et al., 2003)

xðmÞwNð0; 10000Þ (17)

xðsÞf
1

s

xðgÞwNð0; 0:3Þ

For a non-informative g-prior we used x(g)w
N(0, 10,000 ).

4.2.2. Likelihood function

Section 2.3 describes a likelihood function that

incorporates historical information. Eqs. (2) and (3)

represent the likelihood function for censored and

binomial-censored data, respectively. It requires

calculation of fX(x) of all observations and the cdf

evaluated at the perception threshold FX(x0). Using

the Wilson–Hilferty transformation to relate

the Pearson variate X to the standard normal variable
z for modest skews g yields

z Z
g

6
C

6

g

g

2

X Km

s

� �
C1

	 
1=3

K
6

g
(18)

Thus, the LP3 probability density function for X

can be computed based on an adjustment to the

standard normal probability density function for z

fXðxÞ Z fðzÞ
dz

dX
Z

fðzÞ

s g
2

xKm
s

� �
C1

� �2=3
(19)

Substituting Eqs. (18) and (19) into either Eq. (2)

or (3) gives the likelihood function to be used in the

Metropolis–Hastings algorithm. This approximation

is relatively well behaved near gZ0 so that the entire

algorithm is computationally stable.

Other mathematical approximations are available

for the Pearson Type 3 or the three-parameter Gamma

distribution. But the mathematical definition of its pdf

involves the gamma function evaluated at aZ(2/g)2,

which is very large for g approaching zero. Thus, use

of the Wilson–Hilferty transformation avoids the

numerical problems that use of the mathematical

definition of the P3 pdf and cdf would have

introduced. The sampling uncertainty associated

with the parameters is much more important than

any error introduced by this numerical approximation,

which could be improved with approximations

discussed by Kirby (1972) and Chowdhury and

Stedinger (1991).
4.2.3. Proposal distribution

The proposed values of the three parameters m, s,

and g are generated independently depending on their

values at the previous iteration. The proposal

distribution for the mean m is a normal with mean

equal to mtK1 and variance equal to s2
tK1 divided by

the number of observations N. The number of

observations N in this case is equal to either (sCk)

if censored data is used or to s when one uses

binomial-censored data. Thus

mt wN mtK1; s
2
tK1=N

� �
(20)

The proposal distribution for s is a gamma

distribution with mean equal to stK1 and variance

modeled as a function of both stK1 and gtK1, as
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described in Stedinger and Tasker (1986)

st wgða; bÞ

a Z
s2

tK1

VarðstK1Þ
; b Z

VarðstK1Þ

stK1

(21)

VarðstK1Þ Z
s2

tK1ð1 C0:75g2
tK1Þ

2N

The proposal distribution for g is a normal

distribution with mean equal to gtK1 and variance

modeled as a function of gtK1 and N, as described in

Bulletin 17B and Tasker and Stedinger (1986).

gt wN½gtK1;VarðgÞ�

VarðgÞ Z 1 C
6

N

	 
2

10½aKb logðN=10Þ�

a Z
K0:33 C0:08jgtK1j if jgtK1j!0:90

K0:52 C0:30jgtK1j if jgtK1jO0:90

(
(22)

b Z
0:94 K0:26jgtK1j if jgtK1j!1:50

0:55 if jgtK1jO1:50

(

As explained in Section 4.1, t is either a lower or

upper bound depending on the sign of b. Every time the

proposed t is either greater than the smallest

observation when b is positive, or is less than the

largest observation when b is negative, the proposed

parameters are rejected because the likelihood function

would be zero for such a set of parameters. Given the

uncertainty in mtK1, stK1, and gtK1, these proposal

distributions will have larger variance than the

posterior distribution of the parameters and thus ensure

that the algorithm explores the entire parameter space.

95 90 80 50 20 10 5 1 0.19999.9
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asymptotic Bayesian MCMC

Fig. 6. Flood frequency plot of a LP3 distribution fitted by Bayesian

MCMC and method-of-moments. Only systematic data was used.

The solid lines represent the 95% credible interval on flood

quantiles obtained by Bayesian MCMC while the dotted lines

represent the 95% confidence interval of flood quantiles computed

using first-order asymptotic approximation of the variance. The

sample, generated by a LP3 distribution, consists of 25 years of

systematic data with sample mean, standard deviation, and skew

equal to 6.81, 1.17, and K0.66, respectively.
4.3. Results

The first example illustrates how poor the first-

order asymptotic approximation of the variance of

flood quantiles can be in the case of the LP3

distribution. A systematic sample with 25 obser-

vations was generated using a LP3 distribution. The

sample mean, standard deviation, and skew are equal

to 6.81, 1.17, and K0.66, respectively. No historical

information was considered. Bayesian MCMC
and method-of-moments along with first-order

asymptotic approximations of the variance of quan-

tiles were used to fit the data and estimate the 95%

credible/confidence intervals. The asymptotic

variances of flood quantiles were computed using a

normal distribution with the variance formula

provided by Chowdhury and Stedinger (1991) to be

used when the skew is estimated by the at-site sample.

Fig. 6 displays the 95% credible/confidence

intervals in the frequency plot of the data fitted by

the Bayesian MCMC and method-of-moments. One

can see the lower bound of the asymptotic confidence

interval starts to decrease beyond an exceedance

probability equal to 2%. Coles and Pericchi (2003,

Fig. 2) illustrate a similar problem with the analysis of

extreme rainfall in Venezuela. This means that our

lower bound of the asymptotic confidence interval

of the 100-year flood is smaller than the one of the

50-year flood. Clearly, the first-order asymptotic

approximation of the variance of flood quantiles is

not adequate. One can also see the Bayesian 95%

credible interval provides a consistent result here, as it

did for Coles and Pericchi (2003). The Bayesian



Table 2

Results of parameter estimation of LP3 with historical information using MLE, Bayesian MCMC and a modified MLE with a prior on g

Method m s g

2.5% Mode/

meana

97.5% 2.5% Mode/

meana

97.5% 2.5% Mode/

meana

97.5%

MLE 6.67 0.82 1.85

Bayesian MCMC: non-

informative prior on g

6.46 6.76 7.08 0.63 0.82 1.08 K0.28 1.02 2.10

MLE: informative prior on g 6.55 6.85 7.15 0.59 0.79 0.99 K0.45 0.49 1.42

Bayesian MCMC 6.48 6.82 7.13 0.65 0.84 1.12 K0.45 0.42 1.28

a Mode for MLE and mean for MCMC.
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MCMC is not based on asymptotic approximations,

but on the true posterior distribution of the flood

quantiles thereby capturing the skewness of their

posterior distribution.

The second example uses the same sample

generated in Section 3 (Fig. 1) to illustrate the

application of a full and accurate Bayesian approach

for the LP3 distribution with historical information.

Table 2 presents the results of the parameter

estimation given by Bayesian MCMC and MLE. In

the Bayesian analysis, 70,000 values of the para-

meters were generated though only 65,000 were used

in the computation of the mean, standard error, and

credible interval of the parameters and quantiles. The

acceptance rate was about 29%. In the first case

already presented, the acceptance rate was 33%. In a

verification run with a fixed skew of zero (log-normal

distribution) and only systematic data, the acceptance

rate was 50%. Gamerman (1997) indicates that

optimization of the trade-off between acceptance

rate and coverage has generally resulted in acceptance

rates in 20–50% range.

The maximum likelihood procedure had trouble

finding a result that made sense: a local maximum of

the likelihood function occurs where g has a value near

1.85 and a lower bound t almost equal to the smallest
Table 3

Credible intervals and confidence intervals for quantiles and flood damag

Method Q99/100

2.5% Mode/me

MLE 14.0

Bayesian MCMC: non-informative prior on g 5.1 10.1

MLE: informative prior on g 4.4 7.8

Bayesian MCMC 4.8 8.2

a Mode for MLE and mean for MCMC.
observation. This is very near the boundary of the

feasible parameter space and thus this maximum is not

a good representation of the entire likelihood function.

To compare the results of MLE and the Bayesian

approach, a prior distribution for g was introduced into

the MLE computation. This prior distribution is normal

with zero mean and variance equal to 0.3, which gives

less than a 1% chance that jgj is greater than 1.4. A

second Bayesian simulation was also performed with a

non-informative prior for g to show that even in cases

where MLE finds a maximum that does not represent

the likelihood function, Bayesian MCMC provides a

more reasonable result.

Table 2 presents the results of parameter estimation

using MLE with and without a prior distribution on g,

and Bayesian MCMC for those two cases. Table 3

presents the results of flood quantiles and expected

flood damages. The expected flood damages were

calculated according to (13). The uncertainties in both

quantiles and expected flood damages in the MLE

case were computed as in Section 3. (Pilon and

Adamowski (1993), illustrate the asymptotic

analysis.)

Comparing MLE with a prior distribution on g

and Bayesian MCMC with a prior on g, one sees

big differences in s and g, the 100-year flood,
es

0 E(damage)/1000

ana 97.5% 2.5% Mode/meana 97.5%

122.7

29.9 27.8 98.5 246.0

14.0 2.2 65.1 128.0

16.4 25.6 78.5 179.9
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and the expected flood damages. Bayesian MCMC

provides an accurate and skewed credible interval

for quantiles and flood damages. It is not based on

asymptotic assumptions but on the actual posterior

distributions.

Bayesian MCMC with a non-informative prior on

g provides a larger mean for g than with an

informative prior and higly skewed credible region

describing g uncertainty. That increases the values of

the mean of quantiles and expected flood damages as

well as increasing the uncertainties in both. Bayesian

MCMC is able to provide a reasonable description of

the parameters and quantiles even in cases where a

maximum of the likelihood function provides a poor

summary of the information in the data. O’Connell

et al. (2002, pp. 16–9) observe that when measure-

ment error is introduced, the likelihood function has

multiple optima demonstrating ‘how meaningless

single-mode flood frequency estimates can be in the

context of probabilistic risk assessment’.

Fig. 7 shows the flood frequency plot of the LP3

distribution fitted by the Bayesian approach using

historical information along with the 95% credible

interval for the flood quantiles. The largest flood that

occurred in the 20 years of the systematic data actually

has onlya 1%chanceofbeingexceeded.Theavailability
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Fig. 7. Flood frequency plot of a LP3 distribution fitted by Bayesian

MCMC with historical information. The dotted lines represent the

95% credible interval for flood quantiles. The sample, generated by

a log-normal distribution, consists of 20 years of systematic data

and 100 years of historical information, in which two floods

exceeded the perception threshold (99th quantile).
of historical information has reduced the uncertainty in

the more extreme flows relative to the smallest values

(consider pZ0.999 versus 0.001 in Fig. 7).

It is worth mentioning that the sample was

generated by a log-normal distribution, a special

case of the LP3 distribution with parameter gZ0.

Fitting a distribution with 3 parameters increases the

uncertainty in the estimates of both the parameters

and flood quantiles as can be seen by the increased

uncertainty in the quantiles. One can also see the large

uncertainty in g, with 95% credible interval ranging

from K0.45 to C1.28. Fig. 8 shows the very unusual

relationship between the posterior distribution of the

standard deviation and skewness coefficient which is

revealed by the Bayesian analysis (Kuczera (1999)

provides a similar figure).
4.4. Impact of measurement error

Consider now the impact of including measurement

errors, represented by u, into the flood frequency

analysis as suggested by Kuczera (1996). In order to

illustrate how these errors affect the results, suppose

that all the unusually large floods that exceeded the

perception threshold in both the systematic and

historical data, and the discharge associated with the

threshold, are subject to potentially large measurement

errors that result from the hydrologic routing compu-

tation used to assign discharge values to the events.

Consider three cases where that potential error results

in a common multiplicative flood-flow measurement



Table 4

Results of Bayesian MCMC with and without historical information including measurement errors (ME) u, which is log-normally distributed

with mean one and CVZ0.10, 0.20, 0.30

g Q99/1000 E(damage)/1000

2.5% Mean 97.5% 2.5% Mean 97.5% 2.5% Mean 97.5%

Systematic no ME K0.30 0.57 1.48 3.8 9.1 39.9 14.0 104.4 407.5

Historical no ME K0.45 0.42 1.28 4.8 8.2 16.4 25.6 78.5 179.9

Historical CVZ0.10 K0.49 0.41 1.28 4.7 7.9 15.9 23.7 75.0 173.0

Historical CVZ0.20 K0.55 0.36 1.23 4.2 7.2 15.5 18.2 66.2 168.8

Historical CVZ0.30 K0.65 0.30 1.21 3.5 6.5 14.8 11.7 57.3 161.2

Systematic CVZ0.30 K0.43 0.50 1.44 3.6 8.5 39.3 12.0 97.4 392.5
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error factor that is log-normally distributed with mean

one and coefficient of variation equal to 0.10, 0.20, or

0.30. Table 4 presents results of the subsequent

analysis of the flood data set. The first two rows

present a statistical analysis for those cases in which

measurement errors are not considered. Rows 3–5

show the results when measurement errors are

considered in those floods that exceeded the perception

threshold and in the discharge associated with the

threshold. The last row presents the result for the case

in which only systematic data is used and a

measurement error factor with coefficient of variation

equal to 0.30 is considered in the single flood that

exceeded the threshold.
Fig. 9. Impact of measurement error on LP3 precision: Relative width of 95
The effect of a common measurement error in this

case is to place less weight on the observed values of

the largest floods, and the historical information

represented by the historical flood threshold which

would have experienced the same error. When less

weight is placed on those values, as suggested by in

Fig. 2, the mean, standard deviation and skew of the

fitted flood model decrease, resulting in a smaller

100-year flood and smaller flood damage estimates.

This is reasonable for this sample because the

historical peaks were unusually large.

Fig. 9 presents the width of the 95% credible interval

for skew, and the relative width of the 95% credible

interval for the 100-year flood, and the expected
% credible interval. sZ20, kZ2, hZ100, thresholdZ99th quantile.
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damages. It shows that the use of historical information

in this case does not improve significantly the estimation

of the skew. This is explained by the fact that historical

data provides information about the right tail of the

distribution, but gives no information about the left tail.

Fig. 9 does show that the historical information

decreases drastically the uncertainty in the 100-year

flood and expected flood damage even when relatively

large measurement errors are considered. One can also

see that the relative width of the 95% credible intervals

increase as the coefficient of variation of the measure-

ment errors increases. A Bayesian MCMC analysis

allows the joint distribution of measurement errors to be

integrated into the analysis, as this example illustrates.
5. Conclusions

This paper focuses on the use of a Bayesian

framework for flood frequency analysis with histori-

cal information. The required computations are

performed using Markov Chain Monte Carlo

(MCMC) simulation. The Bayesian approach is an

alternative to classical statistical estimators, such as

adjusted-moment, maximum likelihood, and EMA. A

Bayesian analysis provides the full posterior distri-

bution of the parameters, or of any function of the

parameters, such as desired quantiles and flood

damages, by numerically sampling from the posterior

distribution. It was shown through an example using

log-normal and LP3 distributions that an uncertainty

analysis using the Fisher Information matrix does not

provide an accurate description of the actual uncer-

tainty in some quantiles and other functions.

For the Log-Pearson Type 3 distribution with

historical information, Bayesian MCMC has an

advantage over the method of moments (either

adjusted-moments and EMA), because it uses the

full likelihood function, which is an effective and

flexible way to represent information for a site,

whether it be counts, intervals or particular magni-

tudes. Alternatives such as direct numerical inte-

gration (O’Connell et al., 2002) pose challenges

because of the unbounded range of the three

parameters, and experience additional difficulties as

the dimension of the problem is increased as would

occur if additional variables were added to represent

uncertainty in the rating curve or individual flood
measurements. The use of the Metropolis–Hastings

algorithm avoids the numerical problems MLE faces

when fitting the LP3 distribution, such as the non-

existence of a maximum of the likelihood function,

multiple maximum or a maximum value that is not a

reasonable description of the information in a sample.

Importance sampling, described by Kuczera (1999) is

another alternative.

Clearly measurement error can be important when

dealing with historical and paleoflood information, and

it seems critical that the joint distribution of such errors

be appropriately represented. A Bayesian MCMC

approach provides a computationally and conceptually

simple way of appropriately incorporating into flood

frequency analysis the joint distribution of possible

errors in rating curves and individual observations.
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Appendix

This appendix presents the quadratic approximation

of the log likelihood function for a two-parameter log-

normal distribution when censored data is available

(Cohn, 1984). This approximation was used in Section

3 to estimate the uncertainties in the MLEs.

Let L 0 be the likelihood function with censored

data for a log-normal distribution, The quadratic

approximation of L 0 based on the Fisher Information

matrix can be written

L0
approxðm;sÞ Z L0ðmmle; smleÞC0:5 Aðm KmmleÞ
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