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Abstract. In part I of this study the strong teleconnections between large-scale

atmospheric circulation patterns and the peak of snowpack measured by snow water

equivalent (SWE) in Washington State were established by a linear regression model.

However, the underlying dynamics of snowpack for each snow telemetry (SNOTEL) site

are unknown. The statistically significant correlations between the peaks of snowpack

and large-scale climate indices do not necessarily imply linear relationships among them.

Moreover, these correlations do not imply a deterministic or stochastic dynamic process

underlying snowpack SWE data. To better understand the complexity of snowpack

dynamics in Washington State, a technique developed from nonlinear time series analysis

and dynamic theory called surrogate data testing was used to investigate the complexity

of snowpack dynamics in terms of determinism vs. randomness. Some relatively new

concepts, such as embedding dimensions, time delay, phase re-construction, correlation

dimensions and prediction errors are introduced to hydrologists and water managers to

characterize the complexity and predictability of the snowpack at specified sites.
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1. Introduction

Despite numerous studies that have shown the significant correlations between

streamflow or snowpack and large-scale patterns of climate variation over the Pacific,

little work has been done to relate this climate information to the complexity of snowpack

dynamics. This may be due to oversimplified observations that snowpack is a seasonal

phenomenon and its year-to-year variability can be characterized by warm years that tend

to be relatively dry with light snowpack, and cool years that tend to be relatively wet with

heavy snowpack. However, in part I of this study it was shown that the combined effects

of climate variability and its interaction on snowpack are complex, and the peaks of

snowpack as measured by snow water equivalent (SWE) at twenty-five snow telemetry

(SNOTEL) sites in Washington State vary from middle December to early June from

location to location. In addition, a recent study conducted by the National Assessment

Synthesis Team (USGCRP, 2000) shows that the snowpack in the Columbia River basin

may start to melt earlier and thus shift peak streamflow to earlier in the year,

complicating reservoir flood management, and increasing the risk of late-summer

shortages. It is therefore the objective of this study to identify the underlying SWE

dynamics of snowpack in Washington State.

Unlike the construction of conventional statistical models or models based on the laws of

physics, the SWE time series are used here to construct a topologically equivalent

trajectory of a true dynamic system of snowpack SWE for each SNOTEL site under the

study. This approach has solid theoretical origins dated in early1980s. Takens [1981]
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proved that the original dynamic system is topologically equivalent to an embedded

system as long as the embedding dimension m is as twice as large as the dimension of the

original system n. Here several relatively new concepts, such as embedding dimension,

time delay, phase reconstruction, correlation dimensions and prediction errors will be

introduced to water managers in characterizing the complexity and predictability of the

snowpack at specified sites.

In the past, the complexity of snowpack was studied either by physically-based models

ranging from simple energy balance constructions to full general circulation models, or

by statistical models ranging from simple linear regressions to time series models. For

example, Mesoscale Model version 5 (MM5) and Community Land Surface Model

(CLM) developed by the National Center for Atmospheric Research was used to simulate

the snowpack in the Northwestern United States (Miller, 2005), but the results are poor.

In many cases the assumptions are made concerning the hydrological processes involved,

and the data are thereafter inadvertently used to either calibrate or fit a prejudiced model.

In this paper, a data-driven approach was taken to investigate the underlying dynamics of

the snowpack. Instead of pre-assuming underlying hydrologic processes, field data were

used to construct a dynamic system that is topologically equivalent to the true dynamics

under the investigation. This powerful method will presents the underlying “hidden”

dynamics through the data itself and without preconceived assumptions. Hence, the

complexity of the data’s underlying dynamics can be characterized by the system’s

dimensionality, predictability, periodicity, deterministic nonlinearity and probability. The

theoretical foundation of the characterization is drawn from the Takens time-delay
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embedding theorem of phase space reconstruction [Takens, 1981). Takens proved that the

attractor of a dynamic system in phase space can be reconstructed from a time series of a

single component with the embedding vectors

( ) { ( ), ( ), , ( ( 1) )}i i i it x t x t x t mτ τ= + + −x K (1)

Where m denotes the embedding dimension, τ is the sample time, usually called time

delay and x denotes one component of vector x . Here two concepts are introduced:

phase space and attractor. In dynamic systems, phase space is the space in which all

possible states of a system are represented, with each possible state of the system

corresponding to one unique point in the multidimensional space. The succession plot of

these points presents the system’s state evolving over time. A sketch of the phase portrait

(its shape) may give qualitative information about the dynamics of system, such as a

cycle. An attractor is a set of points to which the system evolves after a long enough time.

For the set to be an attractor, trajectories that get close enough to the attractor must

remain close even if slightly disturbed. Geometrically, an attractor can be a point, a curve,

a manifold, or even a complicated set with fractal structures known as a strange attractor.

A trajectory of the dynamical system in the attractor does not have to satisfy any special

constraints except for remaining on the attractor. The trajectory may be periodic or

chaotic or of any other type.

Takens embedding theorem states that if a time series comes from a dynamical system

that is on an attractor, the trajectories constructed from the time series by embedding will

have the same topological properties as the original one provided that 2 1m D≥ + ,

where D is the dimension of the original attractor. This implies that if the original

World Environmental and Water Resources Congress 2007:  Restoring Our Natural Habitat © 2007 ASCE



attractor has dimension D , then an embedding dimension of 2 1m D≥ + will be sufficient

for reconstructing the attractor. In practice, choosing the length of time series, the optimal

embedding dimension and time delay still remains a difficult problem, and it is critical in

many applications including this one.

Once Takens embedding theorem is applied to SWE time series, the unobserved state

variables may be studied in phase space, and the properties of reconstructed attractors are

equivalent to that of the original system. Hence, the complexity of the original system can

be characterized from the geometrical and dynamic properties of reconstructed attractors.

Those properties are usually measured by dimensions. The most commonly studied

dimension is called correlation dimension, which is a measure of the dimensionality of

the space occupied by a set of random points. For example, if we have a set of random

points on the real number line between 0 and 1, the correlation dimension will be 1, while

if they are distributed on say, a triangle embedded 3D-space, the correlation dimension

will be 2. This is what we would intuitively expect from a measure of dimension. The

real utility of the correlation dimension is in determining the (possibly fractional)

dimensions of strange attractors, and the algorithms to calculate correlation dimensions

are provided by Grassberger and Procaccia [1983a, b].

However, before calculating dimensions for an attractor, necessary procedures must be

undertaken with care because the algorithms, especially algorithms calculating

correlation dimensions, only work under the very strict conditions that data quality and

quantity are sufficient to observe clear scaling regions. Further, these algorithms may
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incorrectly characterize non-chaotic and even linear stochastic process as low-

dimensional chaos, particularly those of power law type linear correlations [e.g. Theiler,

1986; Osborne and Provenzale, 1989]. Therefore, before building a model from the data

(e.g. for prediction purposes), or applying algorithms for phase space reconstruction (e.g.

calculating correlation dimensions), it is advisable to check whether the data alone

suggest this type of modeling or calculation. The procedure of conducting such a test is

called a surrogate data test, and will be described in the next section.

2. Surrogate data test

An important problem in hydrology is to determine whether or not an observed time

series, such as streamflow, rainfall precipitation, temperature and SWE, is deterministic,

contains a deterministic component, or is purely random. The surrogate data test is a

statistically rigorous, foolproof framework, that can be used to test such time series data,

in which surrogate data sets are generated from the original data set by preserving some

structure of the original data, but destroying the deterministic structures. Then one applies

some test statistics to both the surrogates and original data. The statistics chosen for the

test should be robust, i.e. when the distribution of samples departs from an assumed

distribution, the statistic still has test power. If the statistics in original data are different

than that in the surrogates, then one may reject the null hypothesis that an underlying

linear stochastic process is in effect. Otherwise, the null hypotheses cannot be rejected

and a degree of underlying determinism can be assumed. The surrogate data test herein is

referred as a statistical procedure that includes formulating a hypothesis, choosing a test

statistic, specifying a probability of false rejection. In general, there are four standard
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hypotheses to test: (i) whether or not a time series is generated from a white noise; (ii)

whether or not a time series is generated from a linearly filtered noise; (iii) whether or not

a time series is generated from a linearly filtered noise through a static monotonic

nonlinear transformation; (iv) whether or not a time series is generated from a periodic

orbit with uncorrelated noise. The techniques required to conduct these tests were first

suggested by Theiler, et al. [1992], extended by Schreiber and Schmitz [1996, 2000],

Kantz and Schreiber [1997], Small and Tse [2002] and others.

In case (i), surrogate data sets are obtained by simply shuffling the original time series.

This will destroy any temporal correlation, so that the surrogates are generated randomly

but with the same probability distribution as the original time series. In case (ii) surrogate

data sets are generated through the discrete Fourier transform of the original time series

by shuffling the phase of complex conjugate pairs, but keeping the amplitude so that the

surrogates will have the same power spectrum as the original time series, but no

nonlinear determinism. In case (iii) surrogate data sets are generated as same as in case (ii)

but both the power spectrum and probability distribution of the original time series are

preserved. In case (iv) surrogate data sets are generated by the pseudo-periodic surrogates

(PPS) algorithm developed by Small et. al. [2001, 2002], which preserve coarse

deterministic features, such as periodic trends, but destroy fine structures, such as

deterministic chaos. It is out of the scope of this paper to show the details of surrogate

data testing, but interested readers are referred to Theiler et. al. [1992] for surrogate data

testing for linear stochastic process, and Small et. al [2001, 2002] for pseudo-periodic

time series and the references therein.
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For the time series of SWE under this study the periodic feature is obvious. But at lower

elevation sites the snowpack is influenced by regional climate, such as mild temperatures

combined with the high winter-season precipitation, and therefore the snowpack

fluctuations within the winter season can be large. Therefore, case (i) and (ii) are out of

the question, and the question is whether or not the periodicities underlying the process

are from a linear stochastic process, possibly through a static monotonic nonlinear

transformation? If not, is it more complicated than an uncorrelated noisy periodic orbit?

And is there any additional determinism in the system? These questions are basically

hypothesis tests (iii) and (iv). So, in the rest of this section the focus is on conducting

these two hypothesis tests for the SWE time series at twenty five SNOTEL sites in

Washington State. For the convenience of readers, Table 1 re-list the sites studied in part

I.

(Table 1)

First, it is assumed that the underlying process of snowpack is linear stochastic, possibly

through a static monotonic nonlinear transformation. If the hypothesis is rejected, then

the second hypothesis to be tested is that SWE time series is sampled from an

uncorrelated noisy orbit. It should be noted that the rejection of a linear stochastic process

only means that the underlying process is nonlinear, exhibiting only short-term stationary

deterministic dynamics with uncorrelated noise, but does not mean long-term

determinism or chaos is present. Therefore, two different algorithms are used to generate
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surrogates for these different purposes. For the first null hypothesis, the algorithm

proposed by Theiler and colleagues was used to generate surrogates by shuffling the

phase of the Fourier transform of the data, while preserving its power spectrum (linear

correlations) and probability distribution, but destroying any additional nonlinear

structures. The description of the algorithm and its applications in hydrology can be

found in She and Basketfield [2005] for details. So, the PPS algorithm, which preserves

coarse deterministic features, such as periodic trends, but destroys fine structures, such as

deterministic chaos, will be applied in the remainder of this section.

For the second hypothesis, PPS algorithm was used to generate surrogates. The PPS data

exhibit the same periodic features as the original data, but have no other deterministic

structures. This was be done by reconstructing the attractor in phase space defined by (1),

then iterating trajectories randomly among spatial neighbors. The algorithm is restated

here from the paper by Small and Tse [2002].

Step 1. Construct the vector delay embedding { }
1

wN d

t t
z

−

=
from the original time series of N

observations { }
1

N

t t
y

=
according to

2( , , , )t t t t t mz y y y yτ τ τ+ + += K (2)

Where the embedding dimension m and time delayτ remain to be chosen. The

embedding window wd is defined as 1wd mτ= − .

Step 2. Let { | 1, 2, , }t wA z t N d= = −K be the reconstructed attractor.

Step 3. An initial point 1s A∈ is chosen at random, and set i = 1.

Step 4. Choose a near neighbor jz A∈ of is according to the probability distribution
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|| ||
Pr( ) exp t i

j t

z s
z z

ρ
− −

= ∝ (3)

Where the parameter ρ is the noise radius.

Step 5. Set 1 1i js z+ += , and increment i by 1.

Step 6. if i < N, then go to step 4.

Step 7. The surrogate data set 1 1 1 2 1 1{( ) } {( ) , ( ) , ( ) }t Ns s s s= K is obtained from the first

components of{ }t ts .

The PPS algorithm is very simple, and all details can be found in Small et. al. [2001,

2002].  

 

Figure 1 shows the original SWE time series from Pope Ridge station, along with a

surrogate generated from PPS algorithm and reconstructed attractors. The original data

and the surrogate appear qualitatively similar and the reconstructed attractors

qualitatively look the same.

(Figure 1)

A zeroth-order nonlinear prediction error [Theiler and Prichard, 1996] was chosen as a

discriminating statistic for both hypotheses tests. The reasons for choosing a zeroth-order

prediction error instead of choosing other statistics, such as correlation dimensions, are

that intuitively if the original data contains some deterministic structures, its prediction

error on average should be smaller than that from the surrogates in which the

deterministic structure were destroyed; further, it has been shown that zeroth-order
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nonlinear prediction error is a robust and powerful statistic even in the case when the

random errors are generated from a non-Gaussian process [She and Basketfield, 2005]. 

The significance level for one-sided tests is set to 95 percent, so nineteen surrogate data

sets are required to be generated (comparing the statistics from 19 surrogates with one in

original data set gives a significant level of 95 percent). The null hypothesis may be

rejected when the prediction error is smaller for the original data than for all of the

nineteen surrogates.

From Table 2 one can see that the first null hypothesis was rejected at seventeen out of

twenty-five sites. This indicates that the snowpack dynamics appear to be nonlinear at

these sites. For the computational convenience, all zeros from non-snow cover seasons

were discarded from the time series. This has no effect on the generation of surrogates

and on the tests. For the remaining eight sites, the null hypothesis can not be rejected,

which means that the snowpack dynamics at these sites are likely stochastic and exhibit

no determinism. To further test whether or not the snowpack dynamics at these seventeen

sites are uncorrelated periodic orbits, the PPS algorithm was used. One can see from

Table 2 that only five sites are rejected. This indicates that the snowpack data at these

five sites may not be represented by a simple uncorrelated periodic orbit, but exhibit

correlated noise with a long correlation time, which may be an indication of long-term

determinisms, such as chaos.

(Table 2)
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When applying the PPS algorithm to the second null hypothesis, three parameters must

be selected appropriately: time delayτ , embedding dimension m and the noise radius ρ .

If the time delayτ is taken too small, there is almost no difference between the different

components of the embedding vectors, to such an extent that all points are concentrated

around the diagonal. On the other hand, if the time delay is taken too large, the different

coordinates may be almost uncorrelated, such that the reconstructed attractor becomes

very complicated and the original structure of the attractor is lost. The choice of time

delay τ is here based on the so-called mutual information [Frazer and Swinney, 1986],

which can be considered as a nonlinear analogue to linear correlation and is more

adequate than an autocorrelation function when nonlinear dependencies are present. A

possible rule to choose an appropriate time delay τ is to use the first minimum of the

time delayed mutual information. Thus, the components of the embedding vectors can be

considered independent with at least this lag. The embedding dimensions are determined

using the false nearest neighbors method proposed by Kennel, et al. [1992]. For the

details of how to choose the time delay and embedding dimensions, interested readers are

referred to a text by Kantz and Schreiber [1997]. Similarly the noisy radius ρ must be

chosen carefully. If ρ is too large then the PPS algorithm would introduce too much

randomization and the periodic structures of the original data would be destroyed.

Conversely, if ρ is too small then insufficient noise would produce surrogates excessively

like the data, leading to great likelihood of false positive results. According to Small and

Tse [2002], an intermediate ρ is that which produces surrogates that have the greatest

number of short sequences identical to the data. In their study, choosing ρ in this way

produces surrogates that appear qualitatively similar to the data, but lack any long term
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determinism. The dimensions and time delay chosen to generate surrogates were also

used by zeroth-order prediction error in the tests.

3. Characterization of snowpack

The spatial and temporal variation of snowpack is influenced by many factors such as

local topography, temperature, wind speed, solar radiation, air and soil moisture, and

consequent microclimates. In part I of this study, it was shown that the effects of large-

scale climate indices and the interactions between them on the snowpack in Washington

State are significant. Figure 2 shows an example of snowpack measured by SWE at

Cougar Mountain of Washington State from 1981 to 1992. It can be seen that the

magnitude of snowpack varies not only year by year, but within years. Multiple peaks are

evident within the same snow cover season from the plot. This many be due to the typical

regional weather pattern of warm temperature and high precipitation during the winter

months. From Table 2 one can see that the hydrologic responses of the snowpack at

Cougar Mountain to those factors are characterized by embedding dimension ( 4m = ),

time delay ( 72τ = , corresponding to autocorrelation), and linearity (a linear stochastic

process cannot be rejected). This indicates that at this low-elevation site the randomness

of the weather pattern dominates the underlying hydrologic process involved. It should be

noted that the nonlinear components in a system do not guarantee the nonlinear behavior

of the system because the random noise may be so strong that the nonlinearity is

destroyed by the noise.
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Among the twenty-five sites under the study seventeen of them appeared to have some

kind of nonlinear structures and five of them appeared to have long-term determinism.

One should keep in mind that a rejection of linear stochastic process in hypothesis 1 only

indicates nonlinearity, not necessarily low-dimensional deterministic chaos. Only when

both hypotheses are rejected, the data may be analyzed further to detect possible low-

dimensional deterministic. Figure 3 shows the local slopes of correlation sum calculated

for the daily SWE at Pope Ridge SNOTEL site. Note that both hypotheses were rejected

at this site. The embedding is done with a time delay of 70 days in 1, 2, ,10m= K dimensions.

It can be seen clearly that forε between 7 and 12 a scaling region was found. For a self-

similar object the local scaling exponent is convergent to a constant for all embedding

dimensions greater than a threshold. In this case, the local scaling exponent converges to

a neighborhood of 2 for all embedding dimensions larger than 4, where the plateau is

convincing. So, this scaling exponent can be used to estimate the correlation dimension

of the attractor reconstructed from daily SWE at Pope Ridge SNOTEL site. This

correlation dimension is a fraction slightly large than 2. A fraction correlation dimension

implies long-term determinism or chaos in a system.

By characterizing the snowpack in these twenty-five SNOTEL sites, it was found that the

underlying hydrologic processes for snowpack vary from linear stochastic, to nonlinear to

chaos. Therefore, caution must be exercised when studying the long-range effects of

climate change on snowpack. For a chaotic system, even the governing equations and

parameters are correct, but a slight difference in initial conditions will result a large error
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for long-term simulations. This is called sensitivity to initial conditions, which is a

signature of chaos.

4. Conclusion and discussion

To date, the characterization of precipitation/snowpack and streamflow has largely been

done by either applying physically-based models or traditional statistical analysis. In

either case, it pre-assumes an underlying hydrologic process or probability distribution of

the data, and as a result the field data are used to either calibrate or fit a prejudiced model.

In this paper, a new method called a surrogate data test was used to characterize the

snowpack without pre-assumptions. It was applied to observed time series of SWE to

detect significant nonlinearity and determinism.

For the past quarter of a century, the techniques used in surrogate data testing, such as

embedding dimensions, time delay, phase reconstruction, correlation dimensions and

prediction errors have rarely been applied to hydrology, hence, they are fairly new and

recent to water resource managers. For this reason, this study demonstrated that the

complexity of the processes underlying snowpack dynamics can be characterized by the

dimensions of a reconstructed attractor in phase space, i.e., linearity vs. nonlinearity and

determinism vs. uncorrelated noisy periodicities. For example, embedding dimension m

gives an upper bound of the dimensions of the original dynamic system. Moreover, this

bound is determined from measured data rather than through a pre-assumed and

potentially prejudiced model subjectively selected by researchers.
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These techniques together with the surrogate data test were applied to characterize

snowpack at twenty-five SNOTEL sites in Washington State. As has been shown in the

last section, the complexity of these SWE are characterized by the length of time delays,

the degrees of embedding dimensions, linear stochastic vs. nonlinear dynamic

characteristics, and deterministic vs. uncorrelated noisy periodic processes presented in

the snowpack.

The dynamics underlying the snowpack are complex hydrologic processes. Even the

knowledge that certain components of this hydrologic system may exhibit nonlinear

behavior does not necessarily lead to the conclusion that a specific output of the system

(e.g. SWE) is consequently nonlinear, or that this nonlinearity will be proven evident in

snowpack dynamics. Instead of pre-supposing the underlying dynamics, a surrogate data

test was used to represent the dynamics in an “inverse” manner. It has been shown in

section 2 that the surrogate data test is a powerful statistical tool that is capable of

distinguishing nonlinear and chaotic dynamics from linear stochastic and uncorrelated

noisy periodic processes.

In conclusion, the underlying hydrologic processes of snowpack at the twenty-five

SNOTEL sites in Washington State exhibit three different behaviors: linear stochastic,

nonlinear but short-term stationary deterministic, and possible chaotic processes.

Understanding these dynamics will help researchers to adequately model the systems and

make reliable predictions.
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Table 1. Washington State Snotel Sites

Name Time Period Elevation (m) Name Time Period Elevation (m)
Blewett Pass 82-05 1301 Park Creek Ridge 79-05 1402
Bumping Ridge 84-05 1402 Pigtail Peak 82-05 1798
Bunchgrass 84-05 1524 Pope Ridge 82-05 1079
Corral Pass 82-05 1829 Potato Hill 84-05 1372
Cougar Mountain 79-05 975 Rainy Pass 83-05 1457
Fish Lake 84-05 1027 Salmon Meadow 84-05 1372
Green Lake 83-05 1829 Sheep Canyon 84-05 1228
Grouse Camp 83-05 1640 Stampade Pass 83-05 1177
Harts Pass 83-05 1981 Stevens Pass 81-05 1241
Lone Pine 82-05 1158 Surprise Laks 80-05 1295
Lyman Lake 84-05 1798 Upper Wheeler 82-05 1341
Morse Lake 84-05 1646 White Pass 81-05 1372
Paradise 84-05 1561

in Washington State

Period
Snow Cover

Season
Embedding
Dimensions

Time
Delay(days)

First
Hypothesis

Second
Hypothesis

1982-2005 Oct-May 5 71 Not reject Not tested
1984-2005 Oct - Jun 5 79 Reject Reject
1984-2005 Oct - Jun 4 71 Reject Not reject

Corral Pass 1982-2005 Oct - Jun 4 82 Reject Reject
1982-2005 Oct-May 4 72 Not reject Not tested
1984-2005 Oct - Jun 4 73 Reject Not reject
1983-2005 Oct - Jun 4 75 Reject Reject
1983-2005 Oct - Jun 7 76 Reject Reject
1983-2005 Oct - Jun 4 94 Reject Not reject
1982-2005 Oct - Jun 5 71 Not reject Not tested
1984-2005 Oct-Jul 5 77 Reject Not reject
1984-2005 Oct - Jun 4 75 Reject Not reject
1984-2005 Oct-Jul 4 89 Reject Not reject
1979-2005 Oct - Jun 4 73 Reject Not reject
1982-2005 Oct-Jul 5 83 Reject Not reject
1982-2005 Oct-May 5 70 Reject Reject
1984-2005 Oct - Jun 5 73 Not reject Not tested
1983-2005 Oct - Jun 4 79 Reject Not reject
1984-2005 Oct-May 6 65 Reject Not reject
1984-2005 Oct - Jun 5 81 Not reject Not tested
1983-2005 Oct - Jun 4 71 Not reject Not tested
1981-2005 Oct - Jun 5 76 Reject Not reject
1980-2005 Oct - Jun 3 81 Not reject Not tested
1982-2005 Oct-May 5 64 Reject Not reject
1981-2005 Oct-June 5 71 Not reject Not tested

Table 2. Surrogate Data Test of Hypotheses 1 and 2 for Twenty-five SNOTEL Sites

Fish Lake

Lone Pine

Paradise

Blewett Pass
Bumping Ridge
Bunchgrass

Cougar Mountain

White Pass

Name

Green Lake
Grouse Camp
Harts Pass

Lyman Lake
Morse Lake

Park Creek Ridge

Upper Wheeler

Sheep Canyon
Stampade Pass
Stevens Pass
Surprise Laks

Pigtail Peak
Pope Ridge

Rainy Pass
Salmon Meadow

Potato Hill
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Figure 2. Snow Water Equivalent (SWE) Measured at Cougar Mountain
Washington State from 1981 to 1992
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