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Abstract:
The skew map developed by Hardison in 1974 was based on records of at least 25
years in lengths. It is still used today, over 30 years later. The first edition of Bulletin
17 states: “It is expected that Plate 1 [the skew map] will be revised as more data
become available and more extensive studies are completed.” Today, tremendous
advances in computing power and spatial statistical methods allow for a much better
analysis of the larger data set now available. This paper describes a Bayesian
Generalized Least Squares (B-GLS) framework together with diagnostic statistics
introduced by Reis et al. (2005) that can be used to develop regional skew
relationships. An example using data from the Illinois River Basin illustrates useful
diagnostic statistics including pseudo R2, Bayesian plausibility, leverage, influence
and σ-influence. The B-GLS framework and diagnostic statistics developed in this
analysis are being applied to an ongoing study in the southeast United States which
will produce a regional skew estimator.

Introduction
This paper further develops the Bayesian Generalized Least Squares (B-GLS)

regression framework first presented in Reis et al. (2005). This operational regression
methodology is used in the estimation of regional shape parameters, as well as flood
quantiles. The focus of this paper is implementing the B-GLS framework developed
by Reis et al. (2005) in conjunction with diagnostic statistics presented by Reis et al.
(2005), Reis (2005), and Griffis and Stedinger (2006). New diagnostic statistics for
use with regression analyses presented in this paper include pseudo adjusted R-
squared ( 2

GLSR ), Bayesian plausibility value (ψ) and σ-Influence. These new statistics

in conjunction with the average variance of prediction for a new site (AVPnew), error
variance ratio (EVR), misrepresentation of the beta variance (MBV), leverage and
influence allow for a comprehensive examination of the regression models.
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Hydrologic Regression Analysis
The B-GLS regression framework developed by Reis et al. (2005) can be used

with streamflow data in order to derive empirical relationships between hydrologic
characteristics at a site, such as the log-space skewness coefficient used to fit a log-
Pearson Type III distribution, and physical watershed characteristics. The GLS
model used in the B-GLS analysis was developed by Stedinger and Tasker (1985) and
Tasker and Stedinger (1986). In the analysis it is assumed that the actual value of the
quantity of interest yi for a given site i can be described by a function of
physiographic characteristics with an additive error

iij

k

1j
j0i ββy δ++= ∑

=

X i =1,2,…n sites (1)

where Xij (j=1…k) are the elements of a matrix of k explanatory variables based upon
the physical characteristics for each site used in the regression model, and δi are the
independently distributed model errors with mean zero and variance 2

δσ . However, in

most analyses, only an estimate of yi is available, and thus a time-sampling error ηi

should be introduced into the model. As formulated in Reis et al. (2005, eqn. 6), the
GLS model becomes

εXβδηXβ +=++=ŷ where iii yŷ η+= i =1,2,…n sites (2)
Thus the observed regression model errors εi are the sum of the model errors δi and
the sampling errors ηi. The total error vector ε has mean zero and a covariance matrix

[ ] )ˆ()( 22 yΣIΛεε +== δδ σσTE (3)

where )ˆ(yΣ is the covariance matrix of the sampling errors in the sample estimators.
The B-GLS regression framework constructed by Reis et al. (2005) for the

regionalization of hydrologic data requires specification of prior distributions for both
the β parameters and the model error variance 2

δσ . An almost non-informative

multivariate normal distribution with a mean of zero and a large variance is used here
as the β prior. An exponential distribution with parameter λ was used as the model
error variance 2

δσ prior. The parameter λ is the reciprocal of the prior mean for 2
δσ .

Following Reis et al. (2005), we set λ to 6 with the understanding that as experience
accumulates a smaller value could be justified. After determining the prior
distributions, Reis et al. (2005) calculated the posterior moments of the β parameters
and the full posterior distribution of the model error variance 2

δσ . In doing so, they

showed that B-GLS provides a more realistic description of possible values of the
model error variance, especially in cases where the sampling error variances are
larger than the model error variance.

Model Selection
In order to determine which covariates, if any, should be included in a

regression model, descriptive statistics have been developed to evaluate how well the
model describes the data. The goal of model selection is to resolve which set of
possible explanatory variables best fit the data affording the most accurate skew
prediction, while also allowing for the simplest model possible. Traditional diagnostic
statistics available for model selection include R2, likelihood ratios, Mallows Cp

statistic, Akaike Information Criterion (AIC), and the Bayesian Information Criterion
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(BIC) [Linhart and Zucchini, 1986; Gelman et al., 2004]. Many of these statistics
penalize additional complexity: thus, a sufficient improvement in the model’s
prediction ability must result so as to support the inclusion of an additional
independent variable. Below, we develop descriptive statistics to evaluate the B-GLS
regression parameters.

Average Variance of Prediction
The Average Variance of Prediction (AVP) is a natural metric to use in

evaluating models because the main motivation of creating the model is to be able to
make accurate skew predictions at both gauged and ungauged sites. However,
because the AVP accounts for the sampling variance of the parameters, the greater the
number of parameters, the larger penalty potentially assessed.

As noted in Reis et al. (2005) [following Tasker and Stedinger, 1986], our
AVPnew assumes that the sites used in the regression are representative of sites where
skew predictions will be made because values of their independent variables are used
to compute the average variance of prediction for new site AVPnew, as follows:

∑
=

+=
n

i

T
iinew Var

n
EAVP

1

2 ]ˆ|[
1

][ xyβxδσ (4)

If the prediction is being computed for an old site, i.e. site i used in the regression
analysis, one needs the average variance of prediction for an old site AVPold,:
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Here ei, is a unit column vector with 1 at the i-th row and zero otherwise.

Bayesian Plausibility Value
The Bayesian Plausibility Value, ψ, developed by Reis (2005) describes

whether zero is a plausible value for each β-parameter in a regression model given the
prior and the data. In the Bayesian framework, the posterior pdf of the β-parameters is
obtained. As discussed by Lindley (1965) and Zellner (1971), given the posterior pdf
of β and the data available, one can construct a credible region for the regression
parameters. This credible region is a summary of the posterior beliefs about the
parameter and can then be the basis of a hypothesis test that concludes that a
parameter is zero if zero is included in a 90% or a 95% credible region. This allows
one to perform the equivalent of classical hypothesis tests within a Bayesian
framework using the posterior distribution of each parameter. Here we define the
plausibility level for zero to be the smallest probability ψ such that zero is in a 100(1-
ψ)% credible region for a parameter. This is analogous to the P-value computed in
classical statistics to describe the statistical significance of an estimate and whether
the parameter should be included in a model, rather than being assigned a value of
zero, which is the default in this case. As such, a plausibility value of 5% or less (or
10% if a 90% credible region is used), suggests that the model would be improved by
setting the value of the tested parameter to zero. The plausibility value is computed as
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wherein Φ is the standard normal cdf, and the conditional mean b (σ
δ

2 ) and standard

error σ b (σ
δ

2 ) for βι are both dependent on 2
δσ ; υ = sign[µβ] = 1 for µβ ≥ 0 and -1 for

µβ < 0;.
The Bayesian P-value discussed by Bayarri and Berger (2000) and Robins et

al. (2000) corresponds to the probability that another random sample X would
generate a more extreme value of a test statistic than that which was observed, and
thus is a statistic more consistent with the classical P-value. These authors and others
have tried to develop a Bayesian P-value that strictly reflects the data and not the
prior. However, the Bayesian Plausibility Value reflects the Bayesian point of view
that the prior is also information about the parameters, and thus, it is appropriate to
use such information when deciding when to include a parameter in a model.

Pseudo-R2
GLS and Pseudo ANOVA table

The traditional Ordinary Least Squares (OLS) measures, R2 and 2R , explain
the degree to which a model explains the variability in the data. These measures use
the partitioning of the sum of squared deviations and associated degrees of freedom to
analyze the variance of the signal versus the model error. However, for Weighted
Least Squares (WLS) and GLS these measures are inappropriate because they group
together both the sampling )ˆ(yΣ variance and the model error I2

δσ variance.

In the B-GLS framework, the error of most concern is the model error
variance because the sampling error is unexplainable and represents noise that
complicates the analysis. Thus, a new measure is needed in which the sampling error
variance is separated from the total error variance, leaving behind the fraction of the
variance accounted for by the model and by the model error. Such a statistic for the
B-GLS regression model, Pseudo-R2

GLS, was developed by Reis (2005). We proposed
that it be calculated, as:

( ) ( )[ ]
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where ( )k2ˆδσ is the estimated model error variance with k explanatory variables and

( )0ˆ 2
δσ is the estimated model error variance when no explanatory variables are

present. Pseudo-R2
GLS is a direct extension of the traditional adjusted R2 in that it uses

the ratio of unbiased estimators of the variance of the error δ and the variance of y. If
σ̂δ

2(k) = 0, then RGLS
2 = 1 as it should, even though the model is not perfect because

Var[ηi + δi] is still not zero because Var[ηi] > 0.
Table 1 presents a pseudo Analysis of Variance (ANOVA) table for WLS or

GLS. This table describes how much of the variation in the observations can be
attributed to the regional model, and how much of the residual variation can be
attributed to model error and sampling error, respectively. The problem is that we
cannot actually resolve what the model errors are because we do not know the values
of the sampling errors ηι for each i. But we can describe the total sampling error sum
of squares by its mean value, which is tr[Σ(ŷ)] , where tr[A] is the trace of matrix A.

And because there are n equations, the total variation due to the model error δ for a
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model with k parameters has a mean equal to 2
δσn (k). That provides descriptions of

two of the three sources of variation.
Now, for a model with no parameters other than the mean, the estimated

model error σδ
2(0)  describes all of the variation in iii yŷ η+= not explained by the

sampling errors ηι. Thus, it should on average equal the actual variation in y due to
regression and the variation due to the model errors δ. We describe the TOTAL
expected sum of squares variation due to model, model error, and sampling error as

nσδ
2(0) + tr[Σ(ŷ)] . Therefore we would attribute to the model an expected sum of

squares equal to n[σδ
2(0) − σδ

2 (k)] . This is called a pseudo ANOVA because the

contributions of the three sources of error are estimated or constructed, rather than
being determined from the computed residual errors and the observed model
predictions, and the impact of correlation among the sampling errors is ignored.

Table 1: Pseudo ANOVA table
Source Degrees-of-Freedom Sum orsquares
M odel

M odelError

Sam pling Error

Total
EVR =

M BV =

k

n-k-1

n

2n-1 ( ) ( )[ ]∑+ ytrn ˆ02
δσ

n[σδ
2 (0) − σδ

2 (k )]

( )[ ]∑ ytr ˆ

( )[ ] ( )kyntr
n

2/ˆ
1

δσ

( ) ( )ii
T ww

n
ΛΛ /1vectorstheiwwhere

1 2
δσ

( )kn 2
δσ

Error Variance Ratio and the Misrepresentation of the Beta Variance
The Error Variance Ratio (EVR) is a modeling diagnostic used to determine if

a simple OLS regression is sufficient or a more sophisticated WLS or GLS analysis is
appropriate. EVR is the ratio of the average sampling error variance to the model
error variance. An EVR greater than 20%, indicating that the sampling variance is not
negligible when compared to the model error variance, suggests the need for a WLS
or GLS regression analysis. The EVR is calculated as follows,

( )kn
EVR

2

)]ˆ([tr

error)SS(model

error)gSS(samplin

δσ
yΣ

== (8)

Although the EVR distinguishes between OLS and WLS/GLS analyses, it
does not determine whether a WLS or GLS regression is best suited for the data.
Thus, the Misrepresentation of the Beta Variance (MBV) statistic was developed to
determine whether a WLS regression is sufficient or if a GLS regression is
appropriate (Griffis and Stedinger, 2006; Griffis, 2006). The MBV describes the
error produced by a WLS regression analysis in its evaluation of the precision of

WLSb0 , which is the estimator of the constant WLS
0β , as the covariance among the

estimated yi’s generally has its greatest impact on the precision of the constant term
(Stedinger and Tasker, 1985). If the MBV is substantially greater than 1, then a GLS
analysis should be employed. The MBV is calculated as follows,
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Leverage and Influence
Leverage and influence are two descriptive statistics used to evaluate the fit of

the regression model to the data, model adequacy and data quality. Leverage, as
adopted by Tasker and Stedinger (1989, eqn. 23), considers whether a specific
observation, or x-value, is unusual, and thus likely to have a large impact on the
estimated regression coefficients. When this leverage statistic is applied to WLS and
GLS regressions, both the x-value of the observation is taken into account as well as
the statistical weight placed on the point. Thus, leverage measures the marginal/unit
impact of the residuals iε on the estimated yi-values. The Tasker and Stedinger

(1989) leverage for WLS and GLS regression analysis is,

[ ]i
TT

i
i

i
ii Eyleverage 111 )(

)(
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∂
= ΛXXΛXx

bx
x

δσε
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where xib is the estimator of yi associated with xi. The average values of the leverage
statistic is (k+1)/n, where k is the dimension of β and n is the number of sites in the
regression, thus a leverage value greater than 2(k+1)/n can be considered to be large
(Tasker and Stedinger, 1989).

Unlike leverage which highlights points which are likely to affect the fit of the
regression, influence describes those points which did have an unusual impact on the
regression analysis. In many cases, those observations with high influence also have
high leverage. High influence requires a combination of leverage and a large residual
error. The influence measure below, proposed by Tasker and Stedinger (1989), is
based on Cook’s D (Cook and Weisberg, 1982; Clarke, 1994),

2

2

))(1(

ˆ

iiii

iii
i kk

k
D

−+
=

λ
ε

(11)

where kii and λii are the diagonal elements of K = TT XXΛXX 11 )( −− and Λ. Influence
values greater than 4/n are considered to be large.

σ-Influence
In using regional skew models, the model error variance is very important

because it determines the weight placed on the regional value relative to the at-site
estimator. Thus, we are interested in knowing which, if any, observations had an
unusual impact on the estimated model error variance. The σ-influence statistic
describes the influence of each observation on the estimated model error variance,
thus identifying points that are individually responsible for potentially inflating the
estimated model error variance. The influence statistic Di described above identifies
those points with significant influence on the model predictions, thus revealing the
instability of the fitted model’s predictions in those x-value regions. However, Di

only describes the influence a point has on the model’s prediction of skew at each
point’s x-value. It does not necessarily describe whether the point has a significant
influence on the estimated model error variance. The σ-influence considers if a
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residual error iε actually had a large impact on the estimated value of the model error
2
δσ . The σ-influence is calculated,

σ − Influencei =
ε̂i (Λ

−1)ij ε̂ j
j =1

n

∑

ε̂ i (Λ
−1)ij ε̂ j

j =1

n

∑
i=1

n

∑
=
ε̂ i (Λ

−1ε̂ )i

ε̂TΛ−1ε̂
(12)

Here the standardize sum-of-squres ε̂TΛ−1ε̂ used to compute the likelihood function
for the data, and the generalized method of moments model error variance in
Stedinger and Tasker (1985), is divided among the different sites. By construction,
the average value of σ-influence is 1/n, where n is the number of sites in the
regression. σ-influence values greater than 2/n are considered to be large.

Application: Regional Skew Estimation
Bulletin 17B (IACWD, 1981) recommends the use of the Log-Pearson Type 3

distribution for flood frequency analysis. The data available at a given site is usually
too short to provide a good estimate of the skewness coefficient. In order to improve
the precision of the skewness estimator, Bulletin 17B recommends combining a
regional skew with the at-site skew [Hardison, 1975; McCuen, 1979 and 2001;
IACWD, 1981; Stedinger et al., 1993; Griffis and Stedinger, 2007].

Reis et al. (2005) developed regional skew models using 17 sites in the Tibagi
River basin and using 44 sites in the Muskingum River basin. In this study, a
regional skew model was developed using a larger data set: the Illinois River basin
with 62 sites whose record lengths vary from 14 to 90 years. Current efforts are
considering data from ten states in the southeast U.S. to use B-GLS to create a new
regional skewness model. This southeast undertaking is an ongoing project for which
the results to date are presented, as well our expectations for future work.

The Illinois River basin study considered seven explanatory variables, plus a
constant. Two binary variables (Z1,Z2) were employed to explore variability in the at-
site skews that could be explained by hydrologic region. These two binary variables
represented the three Illinois River basin regions: Little Wabash (1,0), Rock (0,1) and
Sangamon (0,0), as described in Tasker and Stedinger (1986). The five other
explanatory variables were: 1) drainage area expressed in sq mi; 2) main channel
slope expressed in ft/mi, 3) lake area expressed percentage of drainage area plus one;
4) forest cover expressed as percentage of drainage area plus one; 5) soil permeability
index which varies from 1 (low infiltration) to 6 (high infiltration). The logarithms of
the above five explanatory variables were taken and then centered by subtracting their
means. This enables the scale of five non-binary variables to match the scale of the
constant and binary variables, and thus, allows for easier computation of the regional
mean of each hydrologic region.

A sampling covariance matrix was developed for the Illinois Data using the
estimation procedure described in Reis et al. (2005). The inter-site correlation
coefficient between concurrent flows ρ(dij) for the Illinois Basin was modeled as a
function of the distances between two sites
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where dij is the distance between sites in kilometers, θ = 0.988, α = 0.002, and κ = 3.
Tables 2 and 3 along with Figure 1 present the results of the estimation of the

regional skew for the Illinois River basin based on B-GLS regression analyses. All
combinations of the seven explanatory variables were used to generate 128 possible
skew regression models. The B-GLS1 model with 1 explanatory variable, the
ln(channel slope), was chosen as the best model as measured by its minimum
variance of prediction for a new site and small model error variance. For comparison,
the regional constant model, without any covariates, B-GLS0, is also presented in
Table 2.

As shown in Table 2, the model error variance for the B-GLS1 model is 0.133
compared to the constant model’s, B-GLS0, model error variance of 0.151. The B-
GLS1 average variance of prediction (AVP) at a new site is 0.158, which corresponds
to an effective record of 49 years. This indicates that the regional skew would be
equivalent to an at-site skewness estimator based on 49 years of data. Still, 2

GLSR is

equal to only 0.12 which implies that ln(channel slope) explains only 12% of the
variability of the true station skews. In comparison, an OLS regression on the same
two parameter model yields an adjusted R2 of only 0.9%, which underestimates the
true power of the regional model.

Table 2: Skew Regression for the Illinois River Basin (62 sites).
Bayesian Plausibility (%) and Standard Errors are presented in parenthesis.

-0.419 - 0.151 0.015 0.166 0 49
(0.056)

-0.588 0.127 0.133 0.025 0.158 0.118 49
(3.3%) (0.052)

-0.533 0.105 0.120 0.024 0.144 0.071 53
(7.8%) (0.051)

-0.594 0.125 0.122 0.023 0.145 0.143 53
(2.5%) (0.049)

ln(slope)

Effective
Record
Length

B-GLS 0

B-GLS 1

B-GLS 1
w/o site 28

M odel
Error

Variance

Average
Sam pling
Variance

AVP (new
site) R2

GLSConstant

B-GLS 1
w/o site 48

Table 3 displays the pseudo ANOVA table, where for the B-GLS1 model the
sampling error is more than twice as large as the model error. The EVR equal to 2.3
clearly indicates that either a WLS or GLS analysis should be employed as opposed
to an OLS analysis. Moreover, because the MBV = 3 exceeds one, a GLS analysis is
clearly appropriate; a WLS analysis would overestimate the precision of b0.

Table 3: Pseudo ANOVA table for the Illinois River Basin (B-GLS 1)
Source Sum ofsquares

Case 1 Case 2 Case 3
(all sites) (w/o site 28) (w/o site 48)

M odel k = 1 k = 1 1.10 0.56 1.24
M odelError n-k-1 = 60 n-k-1 = 59 8.24 7.30 7.41

Sam pling Error n = 62 n = 61 19.04 18.81 18.29
Total 2n-1 = 123 2n-1 = 121 27.28 26.11 25.70
EVR = 2.31 2.58 2.47
M BV = 3.00 3.03 3.01
R2

GLS = 0.12 0.07 0.14

Degrees-of-Freedom

Case 1 Cases 2 & 3
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Figure 1 depicts the influence, leverage, and σ-influence statistics of the most
influential sites in the B-GLS1 regression analysis. The sites were ordered by
decreasing influence. It is clear that only site 28 with the highest influence also has
high leverage (i.e. leverage which surpasses the high leverage threshold).

Figure 1: Regression Diagnostics: leverage, influence, and σ-influence for Illinois River basin

As well as having the smallest channel slope in the study, 0.84, site 28 also
has a long record, 60 years, and large residual, -0.88. , This makes site 28 an outlier in
the regression resulting in large influence, leverage and σ-influence values. As a test,
site 28 was removed from the data set and the regression analysis for the B-GLS1
model was repeated. As shown in Table 2, the model error variance estimate
decreases from the B-GLS1 value of 0.133, when the entire dataset is included, to a
value of 0.120, when site 28 is removed, Table 3 provides the pseudo ANOVA table
for the B-GLS1 model w/o site 28.

As shown in Figure 1, site 48 has a high σ-influence value while also having
low influence and leverage values. The large residual of site 48, -1.53, is the third
largest residual in the Illinois Basin dataset. Site 48 has a short record length of 16
years and a large skew of -1.82. The B-GLS1 model predicts the skew at site 48 as
-0.282. As a test, site 48 was removed from the data set and the regression analysis
for the B-GLS1 model was repeated. As shown in Table 2, the model error variance
estimate is lowered from 0.133 when the entire dataset is included to a value of 0.122
when site 48 is removed. This decrease was expected because the data point with the
third highest σ-influence was removed. Even though site 48 has a low influence
value, it has a large impact on the model error variance due to its high σ-influence
value. This site was missed by the influence statistic but recognized by the σ-
influence statistic, thus illustrating the usefulness of the new σ-influence statistic.
Table 3 provides the pseudo ANOVA table for the B-GLS1 model w/o site 48.

Conclusions and Ongoing Work
This paper further develops a quasi-analytic Bayesian analysis of a GLS

regression model described by Reis et al. (2005) into an operational GLS regional
hydrologic regression methodology. Regression diagnostic statistics for B-GLS
models include a pseudo adjusted R2, pseudo ANOVA tables, Bayesian Plausibility

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

28 49 5 9 25 18 24 33 48 4 41 58 52
Site Num ber

Influence Leverage σ-Influence

High σ-influence threshold

High influence and high leverage threshold
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value, EVR, MBV, leverage, influence and σ-influence. The regional regression
procedure was illustrated with an example of regionalization of the skew parameter
for the Log-Pearson Type III distribution.

Currently, this B-GLS procedure is being applied to a dataset with over 800
sites from ten states from the southeast United States. This regionalization study is
applying the B-GLS procedure outlined in Reis et al. (2005) combined with the
diagnostic statistics outlined in this paper. Another important issue that the southeast
study has uncovered is the existence of several low-outliers resulting in anomalous
skew values, and thus, very large variance for the regional skew estimators.
Therefore, in order to censor the data set it is anticipated that the Bulletin 17B
(IACWD 1982) low-outlier detection threshold with a conditional probability
adjustment along with the expected moments algorithm (EMA) developed by Cohn
(1997) will be implemented to determine an appropriate regional skew estimator.
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