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Abstract

Synthetic streamflow generation has been widely used in hydrology and water

resources since the 1960’s for a number of practical problems such as determining the

capacity of a reservoir and assessing the long-term behavior of an existing reservoir.

Synthetic streamflows can be obtained using parametric and non-parametric

approaches. The former assumes that a certain mathematical model describes the

stochastic behavior of the underlying process, e.g. streamflow. And the

mathematical model hinges on a number of parameters that must be estimated from

historical data. If the available historical data would be sufficiently long (e.g.

hundreds of years), the model parameters could be estimated with a good precision,

the synthetic samples produced from the model would reflect the expected variability

of the process under consideration, and consequently the expected variability of the

design variables obtained from them (e.g. the size of the needed storage capacity for a

reservoir). However, the usual lengths of historical streamflow records are short

which means that the model parameters are uncertain and consequently the variability

of the design variables may be uncertain beyond what is expected. A number of

approaches have been proposed in literature to tackle the problem of parameter

uncertainty in simple stochastic models. In the paper described herein we take an
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approach based on the asymptotic distribution of the parameter estimators of an

AR(1) model and investigate in some detail the effect of the uncertainty in one or

more parameters on the design variables such as the reservoir size and reliability.

Our analysis has been conducted based on simulation studies of an AR(1) model for a

wide range of parameters. The paper includes an example to illustrate the

applicability of the concepts obtained in the study.

Introduction

Uncertainties in water resources commonly arise from the random nature of

hydrological process and from the limited information (data) that is available

regarding true nature of the underlying process. Since the parameters of stochastic

models are estimated using the limited historical records, these estimates are

uncertain quantities. These uncertainties in the paprame6ers of stochastic models

are translated into the uncertainty of decision variables of planning and management

of water resources. Perhaps the simplest example may be case of designing a flood

related structure for the 100-yr flood. The flood frequency distribution is an

expression of the natural uncertainty of the underlying extreme floods but the

magnitude of a specific flood quantile, e.g. the 100-yr flood quantile, is uncertain. It

is well known that such uncertainty is commonly expressed by determining the

confidence limits of the population quantile (e.g. Stedinger et. al., 1993).

Likewise, conventional approaches for designing the capacity of a reservoir

generally consider the effect of the natural uncertainty of streamflows. For example

this is done by building a stochastic model and simulating synthetic flow records

from which the frequency distribution of the needed reservoir storage capacity can be

obtained. However, as is the case for the flood protection design problem illustrated

above, the stochastic model of streamflows has a parameter set that is uncertain

because of the limited data available and as a result the distribution of decision

variables related to them, e.g. reservoir capacity, is also uncertain. Although this

issue has been recognized in the past and some procedures have been suggested (e.g.

Vicens et al., 1975; Wood, 1978; Valdes et al., 1977; McLeod and Hipel, 1978; Salas

et al., 1980; Klemes et al., 1981; Grygier and Stedinger, 1990) unfortunately the

problem remains perhaps because of its complexity and the lack of understanding of

the many factors involved.

In this paper we report results of a systematic study of the effect of parameter

uncertainty of a lag-1 autoregressive model, which is a commonly used stochastic

model for generating synthetic streamflow data, on the size of the storage capacity of

a reservoir.
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Stochastic Model and Parameter Uncertainty

We assume that the underlying annual streamflows, denoted by tX , is

lognormal distributed such that )(log tet XY = is normally distributed. The mean

Yµ and variance 2
Yσ of tY may be expressed as a function of the mean Xµ and

coefficient of variation Xη of tX as (e.g. Yevjevich, 1972);
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Then assuming a lag-1 autoregressive model, AR(1), the variable tY may be written

as

( ) tYtYt YY εµφµ +−+= −1 (3)

where Yφ is the autoregressive coefficient that satisfies the causal condition in the

range of 11 <<− Yφ and corresponds to the lag-1 serial correlation of tY and tε is

the time independent innovation term with mean 0 and variance 2
εσ . The relationship

between Xφ and Yφ is given by (Matalas, 1967)
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and the variance of the innovation term is given by

)1( 222
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The asymptotic distribution of the maximum likelihood (ML) estimators of the

parameters of an autoregressive moving average (ARMA) model is available (e.g.

Box and Jenkins, 1976; McLeod and Hipel, 1978) and the uncertainty of the

parameters can be quantified in terms of their variances. Asymptotic theory might

be applicable when the sample size is at least greater than 50 (e.g. Haugh, 1976).

For the AR(1) model, the asymptotic distributions of the estimators of the parameters

Yφ̂ , Yµ̂ , and 2ˆεσ are given by (Box and Jenkins, 1976)
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where, Yµ̂ , Yφ̂ , 2ˆεσ are ML estimators of Yµ , Yφ , 2
εσ and N represents sample

size.

Effect of Parameter Uncertainty on Synthetic Flow Statistics

To evaluate the effect of parameter uncertainty we examined six cases: (a) no

uncertainty is considered, i.e. all parameters are assumed as constant values, (b) only

uncertainty of Yµ is considered, (c) only uncertainty of Yφ is considered, (d) only

uncertainty of 2
εσ is considered, (e) the uncertainties of Yφ and 2

εσ are considered,

and (f) the uncertainties of all parameters Yµ , Yφ , and 2
εσ are considered. Also,

we evaluate the effect of uncertainty in terms of the coefficient of variation Xη and

lag-1 serial correlation Xφ of the original (non-transformed) series and different

values of Xη and Xφ are employed; Xη =0.1- 2.0, Xφ = 0 - 0.9, with increment of

0.02, respectively.

We conduct simulation experiments assuming Xµ = 10 and the AR(1) model

parameters of tY are estimated using Eqs. (1)-(2) and (4)-(5) for the assumed values

of Xη and Xφ . Four sample sizes are considered: =N 25, 50, 75, and 100, and

the uncertainty of the parameters Yµ , Yφ , and 2
εσ are determined from (6)-(8) and

the4 parameters are sampled fro the respective distribution according to the cases (a)
– (f). Thus for a given parameter set 10,000 samples of synthetic streamflow series
are generated and for each set the storage capacity is calculated. The storage capacity
is calculated using the sequent peak algorithm (SPA) as (Loucks et al., 1981)

NtXDSS tttt .,..,.1,),0max( 1 =−+= − (10a)

where tD = water demand, tX = reservoir inflow, and 00 =S . Then the storage

capacity becomes
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).,...,,max( 10 Nc SSSS = (10b)

For the purpose of this study we assumed that the demand level tD is equal to the

mean. However, we considered three options: (i) the historical sample mean, which
is assumed to be fixed for all generated samples, this option is labeled FM; (ii) the
sample means obtained from each generated sample is utilized as the demands (SM);
and (iii) the sample mean is obtained (sampled) from the asymptotic distribution (7)
and remains fixed for all the generated samples, this option is labeled as PM.
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Figure 1: Expected value of storage capacity computed from 10,000 generated traces for each

combination of the coefficient of variation
Xη and autoregression coefficient

Xφ . The storage

capacity was calculated with demand Dt as option (ii), i.e. Dt equal to the sample mean (SM) obtained

from each generate sample. The cases (a) – (f) correspond to the various alternatives of uncertainty

considered and the value Smax shown in each case is the maximum value of the storage capacity

obtained from all combinations of
Xη and

Xφ utilized.
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Figure 1 illustrates the expected value of storage capacity obtained over the

specified ranges of values of Xη and Xφ for a sample size of N=100 and demand

option SM. For Xη ≤0.5, about similar patterns are observed for the various cases

analyzed. Overall, the expected value of storage capacity increases as Xφ
increases or Xη increases; also the effect of Xη on the expected storage capacity is

larger than that of Xφ . Figure 1 (a)-(f) shows that the effect of the uncertainty of
2
εσ seems to be less important that the effect of the uncertainty of Yµ or Yφ .

Remarkably, the effect of the uncertainty of Yφ seems very significant.

Figure 1 (c), (e), and (f) illustrate the cases where the effect of Yφ is included.

The figure suggests that the effect of the uncertainty of Yφ dominates over the effect

of the other two. Also in all three cases for a combination of high value of Xη (say

in the range 1-2) and high value of Xφ (say bigger than 0.5) very large values of the

storage capacity may occur. This could occur for example if Yφ̂ and N=50 so that

~Yφ
)

)0963.0,7321.0( 2Nor . Sampling from this distribution may lead to values of

Yφ close to 1, which in turn may produce very large values of streamflows, a large

value of the sample mean, and consequently a very large value of the storage capacity.

Note the very large values of the storage capacity obtained for cases (c), (e), and (f).

On the other hand, this possibility of very large values of the storage capacity are not

found for the other cases, i.e. (b) and (d), where the uncertainties of Yµ or 2
εσ are

considered. The foregoing results correspond to the demand option SM. On the

other hand, for the demand options FM and PM no extremely large storage capacities

are obtained regardless of the number of generated traces. For all cases considered,

PM gives larger storage capacities than FM. Storage capacities are shown to

increase with larger variation and larger serial correlation. It shows consistency with

the serial correlation when the variation is small; i.e. Xη ≤0.5. PM produces larger

storage capacities over the whole ranges of Xη and Xφ when compared with FM.

As expected, the case (f), which includes the effect of the uncertainties in all

parameters gives the larger storage capacities as compared with other cases.

Uncertainty analysis using real streamflow data

Two annual streamflow series one with high lag-1 serial correlation and another

with low serial correlation are chosen to further study the effect of parameter

uncertainty on synthetic streamflows. The annual flows of the St. Lawrence River at

Cornwall, Ontario near Massena, NY is selected, it has the following characteristics:

Xη =0.11, Xφ =0.75, skewness coefficient equal to -0.06, and kurtosis coefficient

equal to 2.29. Additionally, the annual flows of the Colorado River at Lee’s Ferry

site is analyzed where Xη =0.28, Xφ =0.22, skewness coefficient equal to 0.16, and
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kurtosis coefficient 2.36. Log-transformation without location parameter has been

employed as needed to transform the original data to the normal domain. Six cases of

parameter uncertainty are considered (as discussed above), and 30,000 synthetic

traces were generated using the AR(1) model. The results have been compared in

terms of basic statistics and storage capacity.

(a) Colorado River at Lee’s Ferry

(b) St. Lawrence River

Figure 2. Box plots for the mean, standard deviation, skewness, and lag-1 serial correlation coefficients
obtained from 30,000 generated annual streamflow series for (a) Lee’s Ferry and (b) St. Lawrence
River. The cases (a)-(f) in each plot refer to the 6 cases of parameter uncertainty considered. The
symbols ‘�’ and ‘x’ denote historical value and averaged value from the 30,000 synthetic traces.

Parameter uncertainty effects on simulated streamflows are shown in Figure 2

based on generated mean, standard deviation, skewness, and lag-1 serial correlation

coefficient. For low correlated streamflows, the uncertainty of the mean parameter

has a great effect on the mean variability. And, the uncertainty of the lag-1
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correlation coefficient produces a considerable dispersion of the generated lag-1

correlation coefficients as well. For the highly correlated streamflows the effect of

the uncertainty of the serial correlation is quite significant on the mean and standard

deviation. As expected the case (f) which includes the uncertainties in all parameters

is shows the major effects in the variability of the mean, standard deviation, skewness,

and lag-1 correlation coefficients.

(i) Colorado River at Lee’s Ferry

(ii) St. Lawrence River
Figure 3. Box plots of generated storage capacities for (i) Lee’s Ferry data and (ii) St. Lawrence River.
The symbols ‘�’ and ‘x’ denote historical value and averaged value from the 30,000 synthetic traces,
respectively. (unit: acre-feet).
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(a) Colorado River at Lee’s Ferry (b) St.Lawrence River
Figure 4. Frequency distribution of storage capacities plotted on Gumbel probability paper for the
demand option FM for (i) Colorado River at Lee’s Ferry and (ii) St. Lawrance River.

Table 1. Storage capacities calculated from the generated data using the demand option FM and 30,000
synthetic traces for (i) Colorado River at Lee’s Ferry and (ii) St. Lawrance River. The % column
(shaded) next to the estimated storage capacity column represents the percentage difference with
respect to storage capacity of Case(a) in each nonexceedance probability section.

Nonexceedance probabilities
Case

0.9 % 0.95 % 0.99 % 0.995 % 0.999 %

Lee’s Ferry (unit: 108 acre-feet)
(a) 1.60 100 1.95 100 2.6 100 2.82 100 3.28 100

(b) 2.13 133 2.59 133 3.49 134 3.79 135 4.49 137

(c) 1.62 101 1.99 102 2.69 103 2.97 105 3.58 109

(d) 1.60 100 1.95 100 2.59 99 2.86 102 3.30 101

(e) 1.62 101 1.97 101 2.72 105 2.94 105 3.47 106

(f) 2.12 132 2.61 134 3.55 137 3.89 138 4.59 140

St. Lawrence River (unit: 109 acre-feet)
(a) 1.40 100 1.70 100 2.28 100 2.47 100 2.95 100

(b) 1.87 133 2.33 137 3.20 140 3.54 143 4.30 146

(c) 1.52 108 1.97 116 3.11 136 3.81 154 5.96 202

(d) 1.39 99 1.70 100 2.34 102 2.55 103 3.00 102

(e) 1.50 107 1.95 114 3.20 140 3.93 159 6.27 212

(f) 1.97 141 2.51 148 3.75 164 4.49 182 6.99 237

Figure 3 shows the frequency distribution of the storage capacity obtained from

the 30,000 synthetic flow traces for both the Colorado River at Lee’s Ferry and the St.

Lawrence River, with demand options FM, SM, and PM. As discussed previously

the effect of the uncertainties of the serial correlation are significant for the highly
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correlated streamflows for all demand options FM, SM and PM. For the options SM

and PM the effects of the uncertainty of the mean are found to be negligible. The

frequency distributions of the storage capacities calculated from the 30,000 synthetic

traces are plotted on a Gumbel probability paper in Figure 4. It is found that the

uncertainty of the mean parameter causes the larger storage capacity for given

nonexceedance probability for the case of low serial correlated streamflow series

(Colorado River at Lee’s Ferry) while the uncertainty of the lag-1 correlation

coefficient makes a significant effect on the amount of storage capacities for highly

correlated series (St. Lawrence River). Table 1 illustrates the estimated storage

capacities for nonexceedance probabilities q =0.9, 0.95, 0.99, 0.995, 0.999 (risk of

0.1, 0.02, 0.01, 0.005, 0.001, respectively) which correspond to return period of 10,

20, 100, 200, and 1000 years. The shaded columns next to estimated storage

capacity columns represent the percentage difference with respect to storage capacity

of case (a). For example, based on 0.05 risk over the next design life of 95 years,

the same as the sample size of Lee’s Ferry, storage capacities can be determined as

1.95 810× , 2.59 810× , 1.99 810× , 1.95 810× , 1.97 810× , and 2.61 810× acre-feet for

each parameter uncertainty consideration case, respectively. That is, 33% and 34%

increased storage capacities are expected when uncertainties of mean parameter are

incorporated in the simulation of annual streamflows based on Lee’s Ferry

streamflow data with consideration of 5% risk in the future.
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