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Abstract

The Colorado River Basin experienced the worst drought on record from

2000-2004. Though this drought was unprecedented in the observed streamflow

record (1906-present) reconstructed streamflows dating back to 1490 generated from

tree-ring chronologies have shown droughts of greater magnitude and duration. Yet,

the decision to adopt the information from tree-rings is not without question.

Alternate techniques to reconstruct streamflows based on tree-rings can display

different magnitudes of past flow. Though the magnitudes are different these various

reconstructions do show similar system state, i.e., wet or dry state.

We present a technique to combine reconstructed streamflow state information

with the observed records flow magnitude. This a achieved using a nonhomogeneous

Markov chain model with kernel smoothing coupled with a K-nearest neighbor

sampling algorithm. The technique is demonstrated for the Lees Ferry stream gauge

on the Colorado River. The coupled models retain the ability to generate basic

statistics similar to the observed record while also capturing the state properties of the

reconstructed streamflows.
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Introduction

Water resource planners must consider streamflow variability to provide

effective long term planning and management. Incorporating this variability has

traditionally been achieved through generation of stochastic streamflows. Stochastic

streamflows represent plausible alternate streamflows comparable to observed data

available in a river basin. These observed data are typically limited in time, limiting

variability in the stochastic streamflows, particularly with the frequency of extremes.

This limitation was highlighted in the Colorado River Basin when an

unprecedented drought occurred from 2000-2004. Though this drought was

unprecedented in the observed record, streamflow reconstructions generated from

tree-ring chronologies have shown droughts of greater magnitude and duration. The

most recent streamflow reconstruction for the Colorado River was completed by

Woodhouse et al. (2006). The streamflow reconstruction (Figure 1) dates from water

year 1490 until 1997 while the observed flows only date from 1906-2003. To put the

recent (2000-2004) five-year drought in context the 5-year running means are

presented. It is evident the recent drought has not been seen in the observed period

while the reconstructed streamflows have seen similar or worse droughts of 5 year

duration four times over the approximate 500 year period indicating these droughts

are not unprecedented. Yet the decision to adopt the streamflow values from tree-ring

reconstructions is not without question.

Figure 1. Five-year running means for historic and reconstructed streamflow.

River basin planners have long understood the need to model a variety of
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possible streamflow scenarios. In the Colorado River Basin current stochastic

generation of streamflows models the possibility of drought or surplus under the

assumption that the worst that could be experienced has occurred in the observed

record, which extends from 1906 through present. Paleo-reconstructed streamflows

have been available for many decades but their regular use in planning and decision

making has been hampered by uncertainty in the magnitude of the flows generated

from the reconstructions. Hidalgo et al. (2000) demonstrated that alternate procedures

in tree-ring based reconstructions significantly impact the magnitudes exhibited in

streamflow reconstructions. This seed of doubt has made incorporating reconstructed

streamflow data into a planning model contentious and open to criticism. Though,

few argue streamflow reconstructions show duration and frequency of drought that

differs from the short observed record. Incorporating the duration and frequency of

drought and surplus exhibited by streamflow reconstructions is essential to generating

stochastic hydrology which is not limited to observed flows duration and frequency

for drought and surplus.

We propose a framework that combines the magnitudes of flow seen in the

observed record with the duration and frequencies observed from the reconstructed

streamflows. Excluding the magnitude information of the reconstructed streamflows

but retaining the duration and frequency of the system states allows the incorporation

of important information furnished through the reconstructions, which is remarkably

consistent irrelevant of the techniques and procedures used to generate the

reconstruction. Generating stochastic hydrology with these two characteristics from

the observed and reconstructed data eliminates barriers that have prevented the use of

important information provided though reconstructed hydrologies.

The proposed framework is introduced with a description of the data sets

(observed and reconstructed streamflow data) incorporated within. Next a brief

description of the framework introduces the two models incorporated in the
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framework. The section concludes with an algorithm describing the use of the

framework in generating simulations. Results are presented after application of the

framework in generation of streamflows for the Colorado River at Lee’s Ferry.

Streamflows are generated using reconstructed flows (1490-1997) and observed flows

(1906-1997). The stochastic streamflows are analyzed through a suite of statistics to

illustrate the advantages of incorporating the reconstructed flow data. The summary

and conclusion, including steps required to extend this research for basin-wide

planning studies, close the paper.

Data Sets

Two data sets were combined in development of the proposed framework.

First are the natural flow data developed by the Bureau of Reclamation. Natural flows

are available annually from water year 1906-2003. Naturalized streamflows are

computed by removing anthropogenic impacts (i.e., reservoir regulation, consumptive

water use, etc.) from the recorded historic flows1. Prairie and Callejo (2005) present a

detailed description of methods and data used for the computation of natural flows in

the Colorado River Basin.

The second data set consists of streamflows reconstructed from tree-ring

information. Tree-ring widths are influence by available soil moisture and are shown

to correlate well with annual runoff. Tree-ring data are collected from a series of trees

at multiple locations where tree growth is moisture-limited. Two core samples are

taken from each tree. The core samples are first cross dated and the ring widths are

measured. A standard series of techniques (Stokes and Smiley, 1968; Swetnam et al.,

1985) are employed to process the ring width series. Typically, the series is first

detrended to remove the effects of reduced ring width with aging. Next the series of

1 The natural flow data and additional reports describing these data are available at
http://www.usbr.gov/lc/region/g4000/NaturalFlow/index.html.
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ring widths from various cores at a single location are combined with a weighted

mean to develop a site chronology (Cook et al., 1990).

The site chronology is related to observed streamflow with a reconstruction

model. The reconstruction models are developed by adding predictors in a forward

stepwise method (Weisberg, 1985) to a multiple linear regression that correlates the

chronologies with observed streamflow. For the Colorado River at Lees Ferry gauge

the chosen streamflow reconstruction from Woodhouse et al. (2006) describes

approximately 84% of the annual variance.

As with any proxy method to determine streamflow, tree-ring information is

not without fault. Correlation of tree-ring width and higher flows has shown ring

growth tends to be influenced by variables other than moisture at these higher flows

degrading the ability for tree-rings proxy data in representing high flows (Woodhouse

and Brown, 2001). Further, different datasets and techniques to process tree-ring

information result in difference in reconstructed flows at a single given location

(Hidalgo et al., 2000).

For instance, multiple data sets of tree-ring reconstructed streamflows are

available for the Colorado River Basin at Lees Ferry (Woodhouse et al. 2006). Each

reconstruction was developed with a different set of chronologies and processed with

different operational techniques in development of a final reconstructed streamflow.

Hidalgo et al. (2000) demonstrated that the choice of techniques can influence the

magnitudes of flow in the resulting reconstruction. The variability in streamflow

reconstruction resulting from alternate datasets and techniques at a single location are

shown in Figure 2. Four different reconstructions at Colorado River at Lees Ferry are

shown. The reconstructions include the original reconstruction performed by Stockton

and Jacoby (1976), one completed by Hidalgo et al. (2000), one completed by

Hirschboeck and Meko (2005) for the Salt River Project, and the recently completed

reconstruction by Woodhouse et al. (2006). Each reconstruction used a different set of
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chronologies and different methods to develop and process their chronologies. Of

particular interest is the increased severity of drought and reduced overall mean

displayed by the Hidalgo reconstruction. Unfortunately, these alternate streamflow

reconstructions have not helped instill confidence in using these data in decision

support systems because policy makers cannot decide which reconstruction best

represents the unobserved past. To date policy makers have been more comfortable

using the limited observed streamflows when setting policy in the Colorado River

Basin.

Figure 2. Five-year running means for recent and previous
streamflow reconstructions at Lees Ferry.

Though basin managers may not yet be ready to incorporate reconstructed

streamflows in DSS, a step towards incorporating limited information from

reconstructions is proposed. An alternate view of reconstructions is to use the

reconstructions to display the state of the streamflow. For example the streamflow

series can be divided into high and low flow states with the division occurring at the

median flow. The system state information for the previous four reconstructions is

shown in Figure 3. It is evident the magnitude of the various reconstructions varies,

for example the late 1500’s show low flows in all the reconstructions though the

severity of these low flows differs across the reconstructions. These differences

support the skepticism that basin planners hold toward incorporating reconstructions

as they are uncertain which reconstruction to implement. Though the magnitudes

differ the state of the system (i.e., dry or wet) does show similarity across the various
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reconstructions. In the late 1500’s all the reconstructions display a dry state followed

by a wet state. Though the states of the system are fairly consistent across the

reconstructions there are some differences. These arise from the different

chronologies and techniques used to generate the reconstructions. Of concern with the

various reconstructions is that they display a reduced long-term mean compared with

the observed record and the choice of reconstruction will influence the DSS. To many

a reduced long-term flow is appropriate, but it is difficult for basin planner to

implement these lower mean hydrologies; indicated by the lack of use of

reconstructions by Federal agencies. Much of this stems from the allocation of water

being a highly politicized process which is influence by these long-term DSS.

Figure 3. Five-year running means streamflow state
for historic and reconstructed.

We propose a method to combine strengths of the observed and reconstructed

data set. Basin planners have grown to the trust the magnitudes of the observed flow
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because these magnitudes result from a simple process that has gained wide

acceptance (natural flow computation). But the reconstructed streamflows contain

state information that can improve modeling the frequency and duration of drought as

a result of incorporating a data set that is five times longer.

We used the latest reconstructions completed in Woodhouse et al. (2006) and

chose the Lee’s Ferry reconstruction with the highest calibration period accuracy (84

percent). This calibration used the full-pool of available standard chronologies (30

predictors) for the Upper Colorado Basin. Further details of the data used and the

reconstruction procedures are detailed in Woodhouse et al. (2006). These data include

annual water year flows from 1490-1997.

Framework Description

The two data sets described in the previous section are combined by coupling

a nonhomogeneous Markov chain with kernel smoothing, which models system state,

with a K-nearest neighbor algorithm to resample observed flows conditioned on the

system state. The framework description is shown Figure 4.

Figure 4. Modeling framework description.

World Environmental and Water Resources Congress 2007:  Restoring Our Natural Habitat © 2007 ASCE



Nonhomogeneous Markov chain with kernal smoothing (NHMCKS)

Nonhomogeneous Markov chains were used by Rajagopalan et al. (1996) in

development of daily precipitation. The use of nonhomogeneous Markov chains

allows modeling of nonstationary transition probabilities. The transition probabilities

are directly estimated from the data. In a two state Markov chain the probabilities

found through a counting process estimate the probability of a dry year flowed by a

wet year, dwP , and the probability of a wet year followed by a dry year, wdP . The

probability of a dry year followed by a dry year can be found

as )(1)( tPtP dwdd −= likewise, the probability of a wet year followed by a wet year can

be found as )(1)( tPtP wdww −= .

The state occurrence process is presented in Figure 5. From this process 4

types of data can be extracted. These include (1) the year indices
ndddd ttt ,...,,

21
for

nd years; (2) the year indices
nwwww ttt ,...,,

21
for nw years; (3) the year indices

mdwdwdwdw ttt ,...,,
21

for ndw years on which the transition from dry to wet occurs; and (4)

the year indices
mwdwdwdwd ttt ,...,,

21
for nwd years on which the transition from wet to

dry occurs. The year index represents years available in the reconstructed

streamflows. The transition probabilities for a given year are estimated from the data

with a discrete nonparametric kernel estimator.

Figure 5. State occurrence process.

Estimating transition probabilities with a discrete nonparametric kernel

function differs from traditional Markov chain methods. Traditional methods estimate

the transition probabilities from the available record as the ratio of transitions from

dry to wet (wet to dry) over the number of dry (wet) years in the available record. The

kernel estimator localizes the estimation around each year. The assumption is years
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close to the current year influence that year more the years further away. The kernel

weights years closer more while years further way are given less weight. The kernel

estimators for transition probabilities )(tPdw and )(tPwd are given as:
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where ndw = the number of transitions from dry to wet in the reconstructed record;

nwd = the number of transitions from wet to dry in the reconstructed record; nd = the

number of dry days in the reconstructed record; nw = the number of wet days in the

reconstructed record; )(K = the kernel function; )(h = the kernel bandwidth; t = water

year of interest; and the )(t s are as described earlier for Figure 5. The local neighbors

included in the kernel function range from )(ht − to )(ht + . The weight for each

neighbor around t is determined by a discrete Kernel function developed by

Rajagopalan and Lall (1995) given as:

1for)1(
)41(

3
)( 2

2
≤−

−
= xx

h

h
xK (3)

where )()( httx −= measures the distance for event )(t from the year of interest t

within the bandwidth )(h , where )(h is an integer. The Kernel function presented in

(3) weights the values within )(h such that the sum of the weights equal 1, are always

positive, and are symmetric are the point of interest t .

The transition probability estimators (1) and (2) are fully defined once the

bandwidth )(h is determined for each. An objective method based on a least square

cross validation (LSCV) procedure (Scott, 1992) is used to choose the bandwidth. A
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bandwidth is chosen such that it minimizes the LSCV function given as:

∑
=

−−=
n

i
it tP

n
h

i
1

2)](ˆ1[
1

)(LSCV (4)

where n = the number of observations ( ndw or nwd ); )(ˆ
it tP

i− = the estimate of the

transition probability ( dwP̂ or wdP̂ ) at year t dropping the information on year t . The

1 in (4) results from an assumption that the prior probability of transition is 1 for the

years on which a transition has occurred. Values from 1 to 25 years are applied for h

when searching for the function (4) minimum.

Once dwh and wdh are objectively determined this formulation is fully defined

and applied to generate a transition probability matrix (TPM) for each year in the

record. These TPM’s are used in a Markov model to generate a time series of system

states.

The order of the Markov model is determined through AIC criteria as

presented by Gates and Tong (1976) for Markov models. Two state and three state

systems were both explored. A two state system better represented the characteristics

of the reconstructed streamflow and was therefore used. This results from the fact that

the limited observed streamflows provide increased variability during K-NN

resampling (described next) for flow magnitudes when distributed across 9

categories, which is required for a 3 state system, rather than only the 4 categories

required for a 2 state system.

Flow magnitudes

Once a time series of system states are generated from the Markov chain model a K-

NN (Lall and Sharma, 1996) scheme is used to resample an observed flow = tx

conditioned on the current system state = tS , previous system state = 1−tS , and

previous flow = tx .Where t represents the year of interest. This conditional

probability is defined as:
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),,( 11 −− tttt xSSxf (5)

This is accomplished by first splitting the observed data into S states. In a two state

system S = 2 and represents a wet or dry state. The choice of S can be determined in

various ways. The observed data can be broken up based on equally spaced categories

by using the data median as the breakpoint. To determine if the observed data

displays natural breakpoints the empirical cumulative density function (CDF) can be

plotted. A CDF of the observed data at the Colorado River at Lees Ferry did not

indicate any obvious breakpoints in the observed data therefore the data was divided

into equal lengths using the median as the breakpoint. Based on the TPM for a 2 state

system the observed data are divided into four categories representing the four

transition states, dry-dry, dry-wet, wet-dry, and wet-wet.

The K-NN are sampled from the appropriate category; where once the

category is identified all the values in the category are weighted based on their

Euclidian distance from the previous years flow. The flow values closest to the

pervious flow are given a higher weight and those farthest are given a lower weight.

A weighted flow value is randomly resampled and the flow for the next year in the

observed record from the resampled flow is assigned as the current flow, thereby

incorporating a portion of the lag 1 correlation present in the observed data.

We next present the full algorithm combining these two models.

Algorithm

Combining the NHMCKS model with the K-NN algorithm for simulation of annual

flow proceeds as follows.

1. Determine the planning horizon for the simulations. For example a simulation

may simulate future flows from 2008-2038 indicating a 30 yr planning

horizon.

World Environmental and Water Resources Congress 2007:  Restoring Our Natural Habitat © 2007 ASCE



2. Randomly resample blocks of data equal to the planning horizon from the

reconstructed streamflows.

3. Generate flow states )(tS where 30,...,2,1=t for each resampled block using

the TPM that were generated from the NHMCKS.

4. Generate flow magnitudes )(tx for each t by resampling an observed flow

using the conditional K-NN method. Where the conditional probability is

defined as ),,( 11 −− tttt xSSxf

5. Repeat steps 2 through 4 to obtain as many simulations are required.

Performance evaluation

The performance of the proposed framework is evaluated at the Colorado

River at Lees Ferry, Arizona with the data sets described earlier, i.e., the

reconstructed flows from Woodhouse et al. (2006) extending annually from 1490-

1997 and the natural flows provided by Reclamation extending annually from 1906-

2003.

A suite of basic statistics were viewed including annual (i) mean, (ii) standard

deviation, (iii) coefficient of skew, (iv) maximum, (v) minimum, and (vi) lag-1

autocorrelation. Drought and surplus statistics include the longest surplus (LS),

longest drought (LD), maximum surplus (MS) volume, maximum deficit (MD)

volume, average length surplus (avgLS), average length drought (avgLD), average

surplus (avgS), and deficit (avgD) volume. Droughts are defined as values below the

median of the observed record, while surpluses are values above the median of the

observed record. Figure 6 graphically depicts the drought and surplus statistics

definition.

The results are displayed as boxplots where the box represents the interquartile

range and whiskers extend to the 5th and 95th percentile of the simulations (note this is

different from the standard boxplot definition). Outliers are shown as points beyond

World Environmental and Water Resources Congress 2007:  Restoring Our Natural Habitat © 2007 ASCE



the whiskers and include values beyond the 5th and 95th percentiles. The statistics of

the observed data are represented as a triangle. Performance on a given statistic is

judged as good when the observed statistic falls within the interquartile range of the

boxplots, while increased variability is indicated by a wider boxplot.

Figure 6. Definition of surplus and drought statistics.

Results

We applied the framework presented and generated 500 simulations. The basic

statistics in Figure 7 are preserved well as all are captured within the interquartile

range. The maximum and minimum are bounded by the observed record as expected

since the resampling scheme only resamples the observed data.

To demonstrate the influence of incorporating the reconstructed streamflows

with the Markov chain model we additionally generated 500 simulations using only

the observed natural flows and a traditional K-NN model (Lall and Sharma, 1996).

The generation of hydrologic state information to condition the generation of

streamflows was excluded. Figure 8 presents the drought statistics when resampling

with only a traditional K-NN. The observed record (1906-2003) statistic is

represented as a triangle and the subset of reconstructed record (1907-1997) is

represented as a circle. The LS and LD capture the observed statistics within the

Threshold
(e.g., median)

Drought
Length (LD)

Surplus
Length (LS)

TimeDrought Deficit (MD)

Surplus
volume (MS)F

lo
w
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interquartile range as expected, but not the longer drought and surpluses seen in the

reconstructed streamflows. These extend beyond or at the whiskers indicating these

longer droughts are not well represented. The MS tends to slightly under represent the

observed statistic while the MD tends to over represent this statistic. Again, the

reconstructed streamflow is under represented for both. The average statistics all

capture the observed within the interquartile range while the reconstructed flows are

under represented for all the average statistics except avgS.

Figure 7. Basic statistics for Lees Ferry on the Colorado River, AZ.

Using the proposed framework, conditioning with the reconstructed flows

while resampling with the traditional K-NN, the drought and surplus statistics (Figure

9) better represent the properties of the reconstructed streamflows. Incorporation of

the reconstruction state information generates droughts and surplus lengths that are

longer than the lengths seem when using only the traditional K-NN to resample the

observed streamflows. The average drought and surplus statistics all show a shift

towards higher average statistics as seen in the reconstructed streamflow statistics.
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Figure 8. Drought statistics with only traditional K-NN resampling.

Figure 9. Drought statistics with proposed framework combining
the Markov chain model with traditional K-NN resampling.

The surplus and drought statistics are based on a pre-selected threshold that

determines whether a value represents a drought or surplus year. The choice of this

threshold (median for the analysis shown here) will impact representation of both the

drought and surplus statistics. In the Colorado River Basin a critical sequence of
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flows used in basin operations is a series of droughts connected over 12 years with

years between each drought that are above the median. These multiple droughts with

a surplus year interspersed are not represented with the previous drought statistics.

To address this, we can instead determine required basin storage for a given

streamflow sequence and specified basin yield without requiring a subjective

threshold. The required basin storage is found with the sequent peak algorithm

(Loucks et al. 1981) defined as:



 −+

= −

0

'
1' ii

i

ydS
S (6)

[ ]'' ,...,max Nic SSS = (7)

Where iS is the storage at time step i , d is the demand or yield, iy is the

streamflow from a sequence at time i , and cS is the storage capacity. The algorithm

is run for all values in the inflow sequence from 1 to N , where N is the number of

years in the inflow sequence. The algorithm is run for various demand (yield) levels

and plotted (Figure 10), with the historic flow shown as a triangle and results from

each trace of the 500 simulations shown as boxplots. Figure 10 indicates that at a

demand of 16.5 MAF the historic inflow sequence requires 325 MAF of storage

capacity to reliably meet the demand. The simulations display a range of storage

capacities required to meet the given demand based on the 500 paleo-conditioned

streamflow sequences generated with our proposed method. On average the

simulations require the same storage capacity as the observed flows. The inter

quartile range spans from a required storage of 250 MAF to 375 MAF.
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Figure 10. Sequent peak algorithm results.

A reliability estimate of meeting a demand for a given storage can be

determined from the boxplots. The boxplot, plotted as a probability density function

(PDF) (Figure 11a) or a cumulative density function (CDF) (Figure 11b), can easily

be used to find the reliability. For example, a demand of 16.5 cannot reliability be met

99% of the time for a storage capacity of 60 MAF (the approximate current storage

capacity of the Colorado River basin). The reliability probability is 1-area under the

PDF curve (cross hatched area) or 1-0.99 = 0.01. The reliability of alternate storage

capacities can be found from Figure 11a or 11b in a similar manner.

It is important to note that the sequent peak method assumes that the demand

is unchanging through time and the demand must be meet in all years. These

assumptions limit the ability to read policy decisions from these Figures. These

Figures are primarily for screening of simulated flows and comparison with the

observed flows. To fully appreciate the actual operations of a river basin a decision

support system that incorporates variable demand schedules, proper topographic

layout for river system reservoir, diversion points, and operating policy must be used.
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In the next steps of this research the paleo-conditioned flows are used in a decision

support system, which accounts for the aforementioned requirements, to better

understand the implication to output variables when alternate hydrologies, such as

these paleo-conditioned flows, are used.

Figure 11. a) PDF and b) CDF for 16.5 MAF demand boxplot from Figure 10.

Summary and Discussion

A technique is presented to incorporate state information derived from

reconstructed streamflows while preserving the distributional properties of an

observed record. A nonhomogeneous Markov chain with kernel smoothing is used to

compute transition probability matrices over a planning horizon based on

reconstructed flows. System states are computed from the transition probability

matrices. Lastly, a value from the observed record is conditionally resampled on the

previous simulated flow, the previous simulated state and the current simulated state

with a K-NN algorithm.

This technique was demonstrated for the Colorado River at Lees Ferry and

was able to preserve the distributional properties of the observed record while also

simulating drought and surplus sequences similar to those observed in the

reconstructed streamflows.

The incorporation of hydrologic state information from the reconstructed

a) b)
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streamflows, which extend 500 years into the past, greatly enhances risk and

reliability estimates and allows consideration of climate variability in river basin

modeling.

The annual streamflows generated with the proposed framework can be

spatially and temporally disaggregated (Prairie, et al. 2006) to represent ensembles at

multiple gauges in a river basin. These ensembles can then be applied in a decision

support system (Prairie, 2006), allowing decision makers to consider the impact of

climate variability.
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