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Abstract

Hydrological processes at regional scales are known to be linked to global climate
patterns. State-of-the-art statistical models utilize indicators of atmospheric and
oceanic circulation for hydrologic prediction. Sea surface temperature (SST) that
controls the exchange of heat and momentum between the ocean and the atmosphere
is often used as a key input variable in these models. The accuracy of these models
depends largely on the selection of location and timing of SST observations from
several thousand possible combinations. Most of the studies to date have used linear
correlation between global SST observations and hydrological variables as a measure
for feature selection or have relied on principal component analysis for feature
extraction. The availability of new and reliable SST data from remote sensing and
other sources offers an opportunity to investigate the possibility of finding new
features in global SST data that can be used in hydrologic prediction models. To this
end, a two step approach to feature selection is proposed in this work. In the first step,
probabilistic principal component analysis (PPCA) is used to extract features, and in
the second step support vector machine-based recursive feature elimination algorithm
(SVM-RFE) is used to select best features form the extracted principal components
(PCs). The effectiveness of the proposed approach is illustrated through its
application to Indian summer monsoon rainfall (ISMR) data. The results indicate that
the proposed method can successfully obtain a small subset of SST patterns that can
correctly classify extreme states in ISMR. Some of the identified patterns have
resemblance with patterns that are well established in literature. Investigation on the
relationship between selected SST patterns and ISMR indicate that they have a
dynamical relationship. A static forecasting model, therefore, cannot achieve high
forecasting skills. Instead a dynamic forecasting model is needed to fully exploit the
potential of selected features in forecasting ISMR.

Keywords: Sea surface temperature, probabilistic principal components, Bayesian
model selection, feature selection, support vector machine
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Introduction

Long range seasonal forecast of Indian summer monsoon rainfall (ISMR) has been a
topic of scientific studies for more than a century. Research in this field is driven by
both scientific curiosity and economic necessity. In the last two decades, the most
significant contribution towards successful forecasting of ISMR has been the
identification of its link with El Niño-Southern Oscillation (ENSO) phenomenon.
Another development has been the creation of large archives of ocean, atmosphere
and land surface data that have greatly assisted in calibrating and validating models.
In spite of these achievements, the ability to forecast ISMR has remained more or less
unchanged (Gadgil et al., 2005). Empirical models that have been the mainstay for
long range forecasting of ISMR have failed to predict two major droughts of this
decade. Numerical models that have shown considerable prediction skill over
different regions of the world could not achieve the same level of performance for
Indian monsoon (Gadgil and Sajani, 1998). Thus, understanding and accurate
forecasting of Indian monsoon and understanding its fundamental processes remain
an open scientific problem.

Recent advances in remote sensing and satellite technology have laid put enormous
and sometimes bewildering, amounts of hydrologic data (more in space then in time)
at our disposal. Some of these hydrologic variables are suspected of being precursors
of ISMR. However the important predictors have not all been identified, nor has their
relationship to ISMR have been established. A key issue now is to search for patterns
and discover regularities in the data to further corroborate existing relationships, and
more importantly, to reveal hitherto unknown relationships between the predictors
and ISMR. Among the various datasets that are available, sea surface temperature
(SST) data are most commonly used in the literature. It is a primary variable that
governs the slow varying surface boundary conditions from which seasonal climate
estimation has a good chance of being accomplished. Further, it is the only variable
for which consistent records are available for relatively long periods of time.

The identification of SST patterns that can explain the variability in ISMR is of
fundamental and practical interest. The literature already abounds with such studies
(Pai and Rajeevan, 2006; Sahai at al., 2003). However, most of these studies have
used either linear correlation analysis or principal component analysis (PCA) as tools
for finding relevant SST patterns. These tools, although powerful in their own right,
have serious limitations when applied to this problem. PCA is perhaps the most
commonly used technique for feature extraction and dimensionality reduction in
hydro-meteorology. However, being unsupervised in nature, it is overly concerned
with faithful representation of data. The greatest emphasis is on preserving variability
rather than identifying patterns that can discriminate the signals in ISMR. Another
disadvantage is the subjectivity involved in deciding number of principal
components. Similarly, correlation analysis can identify individual patterns that can
explain variability in ISMR. However, it cannot yield a compact set of best patterns
because the patterns identified individually are often highly correlated amongst
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themselves. Moreover, a pattern deemed useless when judged alone can be very
useful in combination with other patterns.

In order to address these limitations, this study explores the potential of alternative
tools for identifying useful SST patterns. In particular, we propose a two step
procedure for identifying SST patterns that can discriminate extreme states (floods
and droughts) in ISMR data. In the first step, probabilistic principal component
analysis (PPCA) is used to extract features from SST data. The number of principal
components is obtained objectively using Bayesian model selection. In the second
step, support vector machine-based recursive feature elimination (SVM-RFE)
algorithm is implemented to select best features form among the principal
components (PCs) extracted in the first step. Further, to investigate the relationship
between ISMR and identified SST patterns, a forecasting model was developed and
tested.

The remainder of this paper is structured as follows: First, the mathematical
formulations of PPCA, Bayesian model selection, and SVM-RFE are presented.
Following this, data used in the study are described and the details of the
methodology proposed for selection of features is presented. Finally, a set of
conclusions is drawn following discussion of results obtained from the proposed
methodology.

Feature extraction by probabilistic principal component analysis (PPCA)

Principal component analysis is defined as an orthogonal projection of the data on to
a lower dimensional linear space such that variance of projected data is maximized.
Equivalently, it is also defined as a linear projection which has minimum squared
error in reconstructing original data. It is the second definition which is used to
develop the concept of PPCA. The algorithm of PPCA was independently proposed
by Roweis (1998) and Tipping and Bishop (1999).

Given p dimensional observed data vector x the goal of PPCA is to find a q
dimensional principal vector z such that the number of principal components q is less
than p. Assuming q is known, the reconstruction of data vector from principal vector
is given by

= + +x Wz µ ε (1) 
 
where ε is a p dimensional Gaussian noise with zero mean and covariance 2σ I , µ is
a p dimensional parameter vector that permits model to have non-zero mean and W
is a p q× transformation matrix. Due to the assumption of Gaussian noise the
distribution of observed variable x conditioned on z is given by

( ) ( )2p | ,σ= +x z Wz µ IN (2)  
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If we assign zero mean, unit covariance Gaussian prior distribution to the principal
vector z , i.e.

( ) ( )0p ,=z IN (3) 

 
then the marginal distribution of the observed variable ( )p x also becomes Gaussian.

The model parameters W , µ and σ can be estimated by maximizing the likelihood
corresponding to this marginal distribution.

The maximum likelihood estimate of µ is given by the mean of the data. The
parameters W and σ can be estimated explicitly by using analytical expressions
given in Tipping and Bishop (1999) or by using expectation maximization (EM)
algorithm. For very high dimensional datasets like SST, EM algorithm has significant
computational advantages and is therefore used in this study. Finally, the posterior
distribution of the principal vector z given observed data x can be calculated by
Bayes’ rule and is given by

( ) ( )( )1 T 2p | ,σ− −= −z x M W x µ MN (4) 

 
where T 2σ= +M W W I

Choosing number of principal components by Bayesian model selection

In the above discussion of PPCA we have assumed that the dimensionality q of the
principal vector z is known. In practice it is obtained by either observing eigen value
spectrum of the observed data or by using subjective criteria like retaining 95%
variance in the original data. However, these arbitrary thresholds cannot determine
the true dimensionality of the principal vector and may result in models that are
significantly different among different users.

An important advantage offered by the probabilistic interpretation of PCA is that an
objective approach of Bayesian model selection can be used to determine the number
of PCs. In Bayesian approach to model selection, the best model is the one which has
maximum marginal likelihood over all possible values of model parameters.

In PPCA, for a given value of q, the marginal likelihood ( )p | qx can be calculated

by integrating out the model parameters, W , µ , and σ . To do this, suitable prior
probabilities are assigned to model parameters. Minka (2000) proposed non
informative prior distribution for µ and conjugate priors for W and σ . Using these

priors he derived an analytical expression for ( )p | qx . The optimal number of

principal component q̂ can then be obtained by using Bayesian model selection rule
as
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( )argmax 1qq̂ p | q , q p= < <  x (5) 

 
Feature selection by support vector machine

SVM based feature selection was used in this work to select the best features from
PCs extracted in the foregoing analysis. The SVM is a constructive learning
procedure based on statistical learning theory. Unlike other learning procedures that
emphasize only on minimizing training error, SVM implements structural risk
minimization principle that attempts to minimize an upper bound on the training
error.

Consider finite training samples of N patterns ( ){ }1 2i i, y ,i , , ,N=z K , where iz

denotes the ith pattern in q dimensional space (i.e. q
i ∈ℜz ) and iy { }( )1 1iy ,∈ − +

represents the class label of that pattern. SVM algorithm learns a linear hyper-plane

( ) Tf b= +z w z (6) 

such that
T 1 1 2i i iy b i , , ,Nξ + ≥ − = w z K (7) 

 
0iξ ≥ (8) 

 
where iξ is positive slack variable, q∈ℜw and b∈ℜ are adjustable model

parameters. Among all possible linear hyper-planes that satisfy Eqs. (6), (7) and (8),
SVM finds the one that maximizes the margin, i.e. the minimum distance between the
hyper-plane and the closest data points. Results from statistical learning theory states
that the hyper-plane that maximizes the margin also minimizes the generalization
error (Scholkopf and Smola, 2002). In SVM construct, this is done by minimizing the
following cost function

( ) T

1

1

2

N

i i
i

, Cξ ξ
=

Ψ = +∑w w w (9) 

 
subject to constraints given by Eqs. (7) and (8). The first term in Eq. (9) is the
reciprocal of the margin and it controls the model complexity, while the second term
is the penalty term that penalizes misclassification in the training data. The parameter

iC is a positive real constant that controls the trade-off between these two terms of

the cost function: model complexity (variance) and training error (bias). It is also the
only free parameter to be chosen while developing an SVM. The procedure used for
selecting iC in this study is described later in the paper.
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The constrained quadratic optimization problem given by Eqs. (7), (8) and (9) can be
solved by the method of Lagrange multipliers, from which model parameters w and
b are obtained as

( ) ( )T

1 1

1
and

N N

i i i i i
i i

y b y
N

α
= =

= = −∑ ∑w x w x (10)

where, iα is Lagrange multiplier.

SVM is used in the work as a tool to select best features from the features extracted
by PPCA. This is done by using the SVM recursive feature elimination (SVM-RFE)
algorithm proposed by Guyon et al. (2002). The algorithm is based on the argument
that the magnitude of the weights multiplying input features of a trained SVM can be
used to rank those features. The feature that is weighted by the largest value has the
maximum influence on the classification decision by SVM. Therefore, if the SVM
performs well, the features corresponding to largest weights are also the most
informative features.

SVM-RFE is an iterative algorithm. In each iteration, an SVM is trained and a feature
corresponding to the smallest magnitude of weight is eliminated from the training set.
During this process individual features get ranked. The features that are eliminated in
the start get low ranks while features that are removed in the last get top ranks.
However, it should be emphasized that the top rank features (eliminated in the last)
are not necessarily the best ones individually. Only when taken together as a subset
are they optimal. In this study, the size of subset was determined using leave-one-out
cross-validation. Readers are refereed to Guyon et al. (2002) for implementation
details of SVM-RFE algorithm.

It is to be mentioned that SVM can handle non-linear hyper-planes using kernel
functions. However, this study was restricted to linear SVMs because of the nature of
data sets under investigation.

Data used in this study

Monthly 5° resolution global SST data from 1850 onwards was obtained from the
Second Hadley Centre Sea Surface Temperature dataset (HadSST2) (Rayner et al.,
2006). This data set is updated on the 10th day of every month and can be obtained
from Hadley Centre’s website http://hadobs.metoffice.com/hadsst2/. The data is
based on recently created International Comprehensive Ocean Atmosphere Data Set
(ICOADS) database. Prior to 1950, ICOADS data is mostly based on observations
from ships at sea. Due to lack of standard measurement techniques at that time, the
SST data for that period is less coherent. However from 1950s onward, ICOADS
contains data from the World Ocean database which was collected from ocean
profilers and ocean stations using standard methods. Therefore SST data after 1950s
is more reliable.
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The area weighted rainfall data for homogenous regions in India as well as for all
India (Parthasarathy et al., 1994), was extracted from Indian Institute of Tropical
Meteorology, Pune, web site http://www.tropmet.res.in. The data extends from
January 1948 to December 2004. Primary source of the data is India Meteorological
Department. The time series of summer monsoon rainfall for each region was derived
by adding monthly rainfall values for monsoon months (JJAS). The geographic
location of homogeneous regions in India is shown in Figure 1.

70°E 75°E 80°E 85°E 90°E 95°E

10°N

15°N

20°N

25°N

30°N

35°N

Core Indian monsoon region

Homogeneous Indian monsoon region

Peninsular

West Central

Northwest

Central Northeast

Northeast

Hilly regionsData Source : IITM Pune

µ
0 500 1,000250 Kilometers

Figure 1. Homogeneous regions in India

Following India Meteorological Department definition, a year in each region was
classified as a drought year if the rainfall in that year is less than 90% of the long term
mean and as a flood (excess) year if it exceeds 110% of the long term mean.

Methodology

This section outlines the procedure involved in processing SST data to identify SST
patterns that explain the variability associated with ISMR data.

As a first step, SST data were screened, to remove those grid points that have less
than 50 years of record. The screened data were then centered and standardized. After
that they were segregated into a training set (1971-1980) and a test set (1980-2004).
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Further, following Lau et al. (2002), the screened data were partitioned into five non-
overlapping sectors - Tropical Pacific sector (30°S - 30°N), North Pacific sector
(north of 30°N), Tropical Atlantic sector (30°S - 30°N), North Atlantic sector (north
of 30°N), and the Indian Ocean sector (north of 30°S). This was done because
intrinsic ocean variability outside of the tropical Pacific Ocean is known to be
frequently obscured by strong ENSO signal. Partitioning of data allows studying SST
variability in all sectors separately. SST data in the training set of each sector were
then processed using PPCA to extract PCs. The number of PCs was determined using
Bayesian model selection.

SVM-RFE algorithm was then applied on the extracted PCs to find most relevant
features. The application of the algorithm involves selection of model parameter C.
Since the SST data prior to 1950 is less reliable a small value (C=40) was assigned to
those years while a larger value (C=80) was used for the years after 1950.

Finally, to study the nature of relationship between the features selected by SVM-
RFE algorithm and ISMR, an SVM based forecasting model was developed. The
selected features form the input to the forecasting model, while the rainfall series
classified as drought/non-drought or flood/non-flood year forms the output. The
generalization performance of the developed model was measured on the independent
test set.

Results and Discussion

The number of grid points over different sectors that remained after screening
analysis and were used further in the study are listed in Table 1. Typical results of
PPCA are provided in Figure 2. It is evident form the figure that Bayesian model
selection can reasonably determine the number of principal components. The second
row in Table 1 gives the number of principal components extracted for different
sectors for January month. It is evident from the table that the dimensionality of
principal vector space is substantially smaller than the original dimensionality of the
SST data. This reduction in dimensionality helps in making feature selection
algorithm (SVM-RFE) more stable while reducing the computational burden at the
same time.

Table 1. First row gives the spatial distribution of SST data over different sectors.
Second row presents the number of PCs identified by the Bayesian model selection
for January month.

South
Pacific

North
Pacific

South
Atlantic

North
Atlantic

Indian
Ocean

Number of grid
points

320 112 161 143 165

Number of PCs 21 28 19 23 16
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Figure 2. Identification of number of principal components using Bayesian model
selection for (a) South Pacific sector (b) North Pacific sector for January month.

Typical results from the SVM-RFE based feature selection algorithm are presented in
Figures 3 and 4. These figures show the spatial pattern of selected features using
shaded contour plots. Spatial pattern of a selected feature used for discriminating
drought year from a non-drought year in all India summer monsoon rainfall series is
illustrated in Figure 3. It corresponds to SST values over Indian Ocean region in the
month of March i.e. two months prior to the start of Monsoon season. The pattern
indicates that the SST anomalies over Arabian Sea have a significant role in deciding
whether the forthcoming all India summer monsoon will be a drought or a non-
drought year. It is interesting to note that similar patterns were also deemed relevant
for other homogenous regions of India. Apart from Indian Ocean sector, the features
from North Atlantic sector in winter months were also frequently selected by the
algorithm for identifying drought years.
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Figure 3. Spatial pattern of a selected feature used for discriminating drought year
from a non-drought year, in all India summer monsoon rainfall series (AISMR). The
pattern corresponds to the month of March.
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For discriminating the flood years from the non-flood years, the proposed method
invariably gave top ranks to the features from Pacific Ocean. This was true for all
homogenous regions in India. A typical spatial pattern for the selected features is
shown in Figure 4. The pattern in the figure indicates that a see-saw type behavior
occurring in South Pacific Ocean during April can be useful to separate flood years
from a non-flood years. Another commonly selected feature for this case was from
North Atlantic sector.

To investigate the potential of selected features in forecasting ISMR, an SVM based
classification model was developed for each homogeneous region in India. The model
was trained using 109 years (1872-1980) of historical record and was tested on 24
years (1981-2004). The results from the analysis are given in Table 2. The results
show that although the model performs very well in training phase, it performs poorly
during testing phase. There can be two possible reasons for it. Either, the model is
over-trained or the relationship between the identified features and ISMR is
dynamical. The number of support vectors is a good indicator of the generalization
performance of an SVM model (Scholkopf and Smola 2002). Smaller the number of
support vectors, better the generalization performance. For the SVMs trained in this
study, the number support vectors were around 10% of the total training vectors. This
indicates that the SVMs are not over-trained, but it would appear that the relationship
between ISMR and SST patterns is changing with time.
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Figure 4. Spatial pattern of a selected feature used for discriminating flood year from
a non-flood year, in all India summer monsoon rainfall series. The pattern
corresponds to the month of April.
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Table 2. SVM forecasting results for all India summer monsoon rainfall (AISMR)
along with seven homogeneous regions of India. nPC denotes the number of principal
components selected by feature selection algorithm. In Drought cell, column pos
refers to drought years while neg represents non-drought years. Similarly in Flood
cell, columns pos and neg means flood years and non-flood years, respectively.
Quantity a/b indicate that out of b events SVM can classify a events correctly.

Drought Flood
Training Testing Training Testing

Homogeneous
Regions

nPC pos neg pos neg nPC pos neg pos neg
AISMR 7 16/17 86/92 3/6 16/18 4 16/16 80/93 1/3 18/21
Homogeneous
Monsoon

8 20/20 86/89 4/10 11/14 7 28/35 64/74 3/4 15/20

Core Monsoon 7 23/24 74/85 2/10 13/14 6 27/34 61/75 3/4 11/20
North West 5 29/37 56/72 5/9 9/15 12 42/42 67/67 5/7 12/17
West Central 6 19/21 76/88 2/10 8/14 7 29/32 65/77 3/4 11/20
Central
Northeast

6 18/19 70/90 3/4 13/20 9 15/15 94/94 2/4 16/20

Northeast 3 13/14 72/95 3/7 14/17 4 11/11 88/98 2/4 14/20
Peninsular 13 26/26 83/83 4/9 11/15 6 22/25 63/84 4/7 11/17

Conclusions

In this paper a two step approach was adopted to identify SST patterns that can
discriminate extreme states in hydrologic time series. The effectiveness of the
approach is illustrated through its application to ISMR data. The proposed method
can select a small subset of SST patterns that can distinguish drought from a non-
drought and flood from a non-flood year. Some of the features selected by the method
closely resemble patterns well established in literature while others do not. Future
studies will be directed towards exploring physical interpretation for the selected
patterns.

A preliminary investigation into the relationship between selected features and ISMR
indicate that the relationship between them is dynamical in nature. Therefore dynamic
forecasting model is needed to harness the potential of selected features in forecasting
ISMR. Extended research work in this direction is underway
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