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Abstract
For ungauged and gauged sites in Korea, the estimation of flood quantiles is a
difficult but important problem. The problem is particularly difficult because almost
all flood records are short (< 35 years). The index flood method is commonly used
because of the short record lengths, but its performance is compromised by the great
heterogeneity among Korean basins. Therefore, a regional flood frequency analysis
that addresses differences in the coefficients of variation and skewness using
physiographic characteristics of the basin is an attractive approach for constructing
the best possible quantile estimators at gauged sites, as well as providing estimates of
flood characteristics at ungauged locations.

This study presents a Bayesian Generalized Least Square (B-GLS) regression
analysis of regional flood frequency data from Korea. The GLS regression framework
reflects both the precision of available at-site estimators of flood characteristics and
the accuracy of regional models of those statistics. As a result it provides more
accurate estimators of model parameters than does ordinary and weighted least square
regression analyses, and a nearly unbiased estimator of the model error variance and
the precision of estimated parameters. Here B-GLS analyses relate descriptions of
scale (the L-CV) and of shape (the L-CS) of the distribution of annual floods to
physiographic watershed characteristics, which could include basin index, drainage
area, and main channel slope.

Introduction
Floods are a continuing problem in Korea, both in terms of reoccurring flash floods
that cause local floods effecting small communities, and the potential for large
catastrophic floods that would impact densely-populated urban areas which, because
of limited space, are often crowed in flood-prone alluvial plains and valley bottoms
(MOCT, 2001). Rainfall with very high intensity (> 80 mm/day) is common during
the 3-month flood season (July ~ September) when approximately one third of the
total annual precipitation (1283 mm) occurs. Such heavy rainfall is transformed to
severe floods by the physiographical characteristics of the small and mountainous
Korean peninsula.

Flood data are essential for studies addressing flood risk reduction; but,
unfortunately, flood record lengths are generally very short in Korea. Only 31
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gauging stations are available whose records are longer than 10 years, and their
average record length is just 22 years. Because of this data limitation, most Korean
flood studies have employed flood data generated with rainfall-runoff models based
upon more extensive rainfall data. Rainfall records in Korea are generally longer than
30 years. An alternative is to use regional flood frequency analysis that “substitutes
space for time” (National Research Council, 1988). A simple index flood method
(Hosking and Wallis, 1997) that allows only variation among station means within a
region may not be appropriate because of the potential heterogeneity in the second
and higher moments due to the wide variation in basin characteristics. Methods that
allow for variation in a shape parameter are often better than simple index flood
methods (Stedinger and Lu, 1995), though index flood methods can be improved by
regression of normalized quantiles on physiographic basin characteristics or by
weighting at-site and regional estimates of the CV (Fill and Stedinger, 1998).

Figure 1 shows the sample L-CV (L-moment Coefficient of Variation) and L-CS
(L-moment Coefficient of Skewness) of annual maximum flood data collected from
31 gauging stations in Korea. The data show great variability due to sampling errors
as well as the natural site-to-site variability. This study illustrates use of a new
Bayesian Generalized Least Square (B-GLS) analysis (Reis et al., 2005) applied to
the at-site estimators of L-CV and L-CS so as to partition the observed variation in
estimated L-moment ratios between sampling and site-to-site variabilities, as well as
to explore how much of the site-to-site variability can be explained by measured
physiographic basin characteristics.

Bayesian Generalized Least Square (B-GLS)
Regional regression models have often been used to estimate distribution parameters
(IACWD, 1982; Tasker and Stedinger, 1986; Madsen and Rosbjerg, 1997; Reis et al,
2005) as well as rainfall and flood quantiles for water resources planning and
floodplain management. Estimates of the distribution parameters such as L-CV and
L-CS at different gauged sites have different precision due to variations in record
lengths and station estimates are generally spatially correlated. However, OLS
(Ordinary Least Square) assumes the regression residuals to be homoscedastic and
independently distributed in space. Stedinger and Tasker (1985, 1986) developed a
GLS model that reflects both differences in record lengths and cross-correlations
among station estimators. They showed that GLS provides better estimates of the
model parameters and the model error variance in terms of mean square errors than
does OLS. The GLS procedure has been widely recommended (Stedinger et al., 1993;
World Meteorological Organization, 1994; Robson and Reed, 1999).

Reis et al. (2005) introduced a Bayesian analysis of the GLS model which
provides both an exact measure of precision of the model error variance and a more
reasonable description of the possible values of the model error variance in cases
where the maximum-likelihood and method-of-moments model error variance
estimators are zero or nearly zero. Our GLS analysis assumes that the actual value of
the quantity of interest denoted yi (i.e. L-CV or L-CS) for a given site i can be
described by a function of physiographic characteristics with an additive error
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wherein Xij (j = 1…, k) is a matrix with explanatory variables describing the physical
characteristics of each site i, and δi are the model errors which are assumed to be
normal and independently distributed with model error variance σδ2. Unfortunately,
only an at-site estimate of yi, denoted as iŷ , is generally available. To described such
data, a sampling error, denoted ηi, needs to be included in the model, so that

iii yy η+=ˆ i = 1, 2, …, n stations (2)

The variance of ηi depends upon the length of record available at each site; they
are also cross-correlated. Thus, the observed regression-model errors are a
combination of: (i) time-sampling-error ηi in the sample estimators of yi and (ii)
underlying model error δi. The value of σδ2 can be viewed as a heterogeneity measure
(Madsen and Rosbjerg, 1997; Madsen et al., 2002).

Reis et al. (2005) computed the posterior moments of the parameters and the full
posterior distribution of the model error variance σδ2. The examples showed that the
Bayesian procedure provides a more reasonable description of the possible values of
the model error variance, especially in cases where the sampling error variances are
larger than the model error variance. The Bayesian approach requires the
specification of prior distributions for both the regression parameters b and model
error variance σδ2. A multivariate normal distribution with a mean of zero and a large
variance was used for the prior for the parameters. This almost non-informative prior
produces a pdf that is relatively flat in the region of interest. The prior information for
the model error variance σδ2 was represented by an informative exponential
distribution. As Reis et al. (2005) explain, this is a situation where a non-informative
prior has problems because it will not be overwhelmed by the likelihood function.

Model Diagnostic Measures
Various diagnostic measures can be used to evaluate candidate models and select

an appropriate model that fits the data and provides an accurate prediction, while
keeping the model as simple as possible. When an interest is to make predictions at
gauged and ungauged sites, the AVP (Average Variance of Prediction) can be used as
the primary measure to evaluate likely model performance.

Given a site with basin characteristics x0, AVP describes how well a regional
regression model estimates the true value of the quantity of interest, y0, on average
across sites such as those used in the regression analysis (Tasker and Stedinger, 1989). 
The AVP is computed as

( )-1
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1
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(3)

Here the xi’s are the row vectors containing the physiographic characteristics of
each site. When comparing regional regression models, a smaller AVP is preferred.
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Within the Bayesian GLS framework, Reis et al. (2005) provides an expression for
the posterior mean of the average variance of prediction for a new site.

Reis et al. (2006) also proposed a pseudo coefficient of determination (RGLS²)
appropriate for use with GLS. The traditional adjusted-R² uses SSE and SST which
both include the sampling and model error variances, and thus this statistic
misrepresents the true power of GLS models to explain the actual variation in the yi.
A more appropriate pseudo coefficient-of-determination is -

RGLS
2 =

n[σ̂δ
2 (0) − σ̂δ

2 (k)]

nσ̂δ
2 (0)

= 1−
σ̂δ

2 (k)

σ̂δ
2 (0)

(4)

where σ̂ δ
2 (k) and σ̂ δ

2 (0) are the model error variance estimates when k and no

explanatory variables are employed, respectively. RGLS
2 measures the improvement of

a GLS regression model with k explanatory variables against the estimated error
varianice for a model without explanatory variables. If σ̂ δ

2 (k) = 0, then RGLS
2 = 1 as it

should, even though the model is not perfect because Var[ηi + δi] is still not zero
because Var[ηi] > 0.

Other diagnostic statistics for GLS models are the EVR (Error Variance Ratio)
and MBV (Misrepresentation of the Beta Variance), whose definitions are included in
Table 3. (See also Reis et al. 2006; Griffis and Stedinger, 2006.) EVR is the ratio of
the average sampling error variance to the model error variance. Thus large EVR
values provide an indication of the need for a WLS or GLS analysis. When EVR is
greater than 20%, one should employ a WLS or GLS as opposed to OLS analysis
(Reis, 2005). MVB is the ratio of the variance GLS would compute for the constant
term to the variance a WLS analysis would compute for the constant term in a WLS
regression analysis (Griffis, 2006). MVB can be used to indicate whether a WLS
analysis is sufficient, or if a full GLS analysis is needed. If MVB is substantially
larger than 1, then the GLS estimate of the variance of the constant term will be that
much larger than would be obtained with WLS.

Leverage and influence are also important tools in regression analyses because
they help to identify rogue observations and lack of fit, and to select new sample
locations. Tasker and Stedinger (1989) generalize measures of influence and leverage
from the OLS case to WLS and GLS. They suggested influence is large when their
influence statistic Di is greater than 4/n where n is the number of sites, whereas
leverage is large if greater than 2(k+1)/n. In a Bayesian analysis, one needs to use the
expected value of these quantities (Reis, 2005).

Application
B-GLS analyses developed models of the L-CV and L-CS across the entire southern
Korean peninsula. The regional estimators of the L-CV and L-CS can be used to
develop a parametric flood frequency distribution using the GEV (Generalized
Extreme Value) distribution (Stedinger et al., 1993). Index variables for the three
different major river basins (Han, Nakdong, and Geum & Seomjin basins), plus the
logarithms of the drainage area (DA) and the channel slope (S) were considered as
possible explanatory variables. This study tested all possible combinations of the
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explanatory variables. The prior distribution for the model error variance was
exponential distribution with a mean of 1/100. Reis et al. (2005) discusses the choice
of a prior for the model error variance.

The B-GLS analysis also requires estimating correlations among the annual
maximum flows. Figure 2 shows sample correlations among concurrent annual
maximum flows as a function of distance between stations in Korea. Only stations
whose record lengths are greater than 22 years are included due to the high sampling
variability for shorter periods of record. A line characterized by the following
equation was fitted to approximate the sample correlation in Figure 2, 
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where θ = 0.953, α = 0.019, and dxy represents the distance between two stations.
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Tables 1 and 2 compare the results of OLS, B-WLS, and B-GLS analyses of
candidate models for L-CV and L-CS, respectively. The constant in the Tables
essentially represents the regional mean for L-CV or L-CS because the explanatory
variables were centered by subtracting their average value.

In both Tables, OLS produces larger model error variances and larger AVPs than
WLS and GLS because OLS does not distinguish the modeling and the sampling
errors. B-WLS results are very similar to the corresponding B-GLS results with
respect to AVP and RGLS², but here the model error variances are underestimated,

Figure 1. The sample L-CV and L-CS
estimates of annual maximum flood
data collected from 31 gauging stations
in Korea. The number next to each dot
reports the corresponding record length.

Figure 2. Correlations among concurrent
annual maximum flows as a function of
distance between stations in Korea. Only
stations whose record length is greater
than 22 years are considered.
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especially for L-CS (for example, for B-WLS1 σδ2 = 0.0059 whereas for B-GLS1 σδ2
= 0.0073) because WLS does not account for the cross-correlations between sites.
This concern is documented by the large value of MBV in Table 3.

As shown in Tables 1 and 2, B-GLS found that model 1 (denoted B-GLS1) that
uses the drainage area as the only explanatory variable performs the best among the
models consider; AVPnew values for L-CV and L-CS are 0.007 and 0.010, respectively.
Note that the modeling error represents 84% and 73% of AVPnew for L-CV and L-CV,
respectively. For L-CV, a B-WLS analysis would have selected model 3 as having the
smaller AVPnew, as well as misrepresenting the value of AVPnew as 0.0054 instead of
the correct estimate of 0.0075. 

The values of AVP imply that predicted L-CV and L-CS are equivalent in
precision to at-site estimators calculated from approximately 16 and 44 years of
record, respectively. These results indicate that the best regional model for L-CS (B-
GLS1) is very useful because the effective record length of 44 years is twice the
Korean average record length of 22 years; for L-CV the at-site estimator should be
combined with the regional estimator whose effective record length of 16 years is
shorter than the average sample record length, though longer than some records.

Table 1. Comparison of Best Candidate Models for L-CV

Model
Name

Const.
Z1

Han
Z2

Nakdong
Ln(Area)

Model
Error

Variance

Average
Sampling
Variance

AVPnew
Pseudo R2

(%)
ERL

(years)

OLS0 0.4314 0.0127 0.0004 0.0131 0 8
(0.0203)

B-WLS0 0.4332 0.0088 0.0004 0.0092 0 12
(0.0210) (0.0036)

B-GLS0 0.4153 0.0076 0.0008 0.0084 0 13
(0.0279) (0.0031)

OLS1 0.4314 -0.0360 0.0101 0.0007 0.0108 20 10
(0.0181) (0.0123)

(0.3 % )

B-WLS1 0.4327 -0.0379 0.0058 0.0007 0.0065 33 17
(0.0186) (0.0125) (0.0028)

(0.4 %)
B-GLS1 0.4194 -0.0357 0.0059 0.0011 0.0070 22 16

(0.0268) (0.0130) (0.0025)
(0.8 %)

OLS3 0.3484 0.1071 0.1192 -0.0446 0.0083 0.0011 0.0094 35 12
(0.0334) (0.0435) (0.0445) (0.0121)

(1.4 %) (0.7 %) (0.0 %)

B-WLS3 0.3544 0.1013 0.1149 -0.0453 0.0043 0.0012 0.0054 51 20

(0.0340) (0.0449) (0.0456) (0.0125) (0.0025)

(2.6 %) (1.4 %) (0.1 %)
B-GLS3 0.3384 0.1146 0.1101 -0.0439 0.0054 0.0020 0.0075 28 15

(0.0452) (0.0569) (0.0602) (0.0136) (0.0023)

(4.5 %) (6.7 %) (0.2 %)
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Table 2. Comparison of Best Candidate Models for L-CS

Model
Name

Const.
Z1

Han
Ln(Area)

Model
Error

Variance

Average
Sampling
Variance

AVPnew
Pseudo R2

(%)
ERL

(years)

OLS0 0.3679 0.0264 0.0009 0.0272 0 16

(0.0292)

B-WLS0 0.3716 0.0085 0.0009 0.0094 0 47

(0.0299) (0.0057)

B-GLS0 0.3402 0.0082 0.0018 0.0100 0 44

0.0426 (0.0050)

OLS1 0.3679 -0.0472 0.0221 0.0014 0.0235 16 19

(0.0267) (0.0181)

(0.9 %)

B-WLS1 0.3705 -0.0492 0.0059 0.0016 0.0075 30 59

(0.0284) (0.0204) (0.0016)

(2.0 %)

B-GLS1 0.3504 -0.0441 0.0073 0.0027 0.0100 11 44
(0.0423) (0.0204) (0.0027)

(2.0 %)

OLS2 0.3107 0.1267 -0.0638 0.0191 0.0019 0.0210 27 21

(0.0349) (0.0541) (0.0183)

(1.9 %) (< 0.01 %)

B-WLS2 0.3166 0.1228 -0.0646 0.0046 0.0022 0.0068 46 65

(0.0376) (0.0619) (0.0199) (0.0041)

(3.6 %) (0.2 %)

B-GLS2 0.2863 0.1464 -0.0563 0.0066 0.0039 0.0105 20 42

(0.0539) (0.0777) (0.0212) (0.0042)

(6.0 %) (0.8 %)

The performance of the best model identified by B-GLS (B-GLS1) for both L-CV
and L-CS is further explored in Table 3 and Figures 3 and 4. The EVRs in Table 3 are
0.93 and 3.02 for L-CV and L-CS, respectively; clearly WLS or GLS should be
employed instead of OLS, especially for L-CS for which the sampling error is three
times as large as the model error.

MBVs in Table 3 are greater than 2 for both L-CV and L-CS, indicating cross-
correlations among the L-CV and L-CS estimators should not be neglected; otherwise
the estimated error of the constant in the model would be over a factor of two too
small. This is critical when deciding whether to include indicator variables for
different basin. Moreover, AVP would be underestimated as Tables 1 and 2 illustrate.

Figures 3 and 4 show the results of leverages and influences of the most influence
sites sorted from largest influence. Among 31 sites, the site 16 has the largest
influence for L-CV while the site 31 has the largest value for L-CS and the second
largest for L-CV. Those two sites are included in both of Figures 3 & 4. Note the site
16 has the largest sample L-CV (0.73) and contains an extraordinary flood (1296 cms
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in 1987 whereas the median flood was just 21 cms). In the future site 31 may receive
special treatment due to potential measurement error. Historical information may also
help put such a value in content (Martin and Stedinger, 2001).

Table 3. Pseudo ANOVA table of B-GLS Model 1 for L-CV and for L-CS

Sum of squares
Source

Degrees-of-
freedom Equations L-CV L-CS

Model k = 1 n[σδ2(0) - σδ2(k)] 0.051 0.029

Model error δ n - k - 1 = 29 nσδ2(k) 0.184 0.226

Sampling error η n = 31 Var(ŷi )
i=1

n

∑ 0.171 0.682

Total 2n - 1 = 61 nσδ
2(0) + Var(ŷi )

i=1

n

∑ 0.406 0.937

EVR =
1

n
Var(ŷi )

i=1

n

∑ /σδ
2 (k) 0.93 3.02

ww )(
1 2

δσΛ= T

n
MBV , where w is the vector (1 / Λii

) 2.15 2.30
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Conclusion
Flood series in Korea are generally short and relatively sparse, and thus available data
should be analyzed with care and with statistical efficient procedures. This study
developed regression models for L-CV and L-CS for Korean annual maximum flood
series using a Bayesian GLS analysis. The examples also illustrated the differences
among OLS, B-WLS, and B-GLS analyses. Several useful diagnostic measures

Figure 3. Leverage and influence in

B-GLS Model 1 for L-CV

Figure 4. Leverage and influence in

B-GLS Model 1 for L-CS
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applied to the candidate models indicated that OLS overestimates the modeling error
variance and the average sampling variance while B-WLS underestimates those
variances. Using B-GLS, among the tested models for both L-CV and L-CS, the
model that employs only the drainage basin as an explanatory variable had the
smallest prediction error as measured by the expected average variance of prediction
for a new site. Given the precision of these regional estimators and available record
lengths in Korea, this study suggests that a regional estimator for L-CV (effective
record length 16 years) should be combined with its at-site estimator, while the
regional estimator for L-CS (effective record length 44 years) is relatively precise and
can serve as the a good estimator of shape in a flood frequency studies. These
numbers are of course just estimates based on the available data at 31 sites.

Overall the Bayesian Generalized Least Squares framework allowed for a careful
and statistically efficient analysis of the data that demonstrated the need for a GLS
analysis, that found the best predictive model and its precision, and which identified
rogue observations in the dataset.
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