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Abstract
This study examines the relationship between changes in precipitation and temperature
and the properties of low streamflow to estimate the potential impact of climate change
on design-period low flows and associated Total Maximum Daily Loads (TMDLs) of
primary pollutants. Stepwise linear regression is used for predicting the future low-flow
statistic 10,7Q using the physiographic and climatic characteristics of 160 watersheds in

the Mid-Atlantic region of the United States. Based on four general circulation models’
(GCMs’) climate predictions of future increases in temperature and variable changes in
precipitation, model results show a decrease in the 10,7Q over the 21st century. Using

Latin Hypercube sampling of parameter estimates, the fractional change in low flow and
the resulting change in TMDL of a point-source primary pollutant are estimated for GCM
climate predictions; for most predictions, a future reduction in contaminant load will be
necessary to meet current water quality standards. Once GCM predictions improve,
incorporating future climate scenarios in TMDL planning may preserve minimum water
quality standards while avoiding a TMDL reallocation in the future.

Introduction
Future climate change has the potential to impact many aspects of water use and
management. Five key water resource issues where impacts could occur include:
ecosystem vulnerability; heavy precipitation and droughts; groundwater quality and
quantity; competition for water supplies; and surface water quality (National Assessment
Synthesis Team, 2001). These issues are interrelated, and while this study focuses on
surface water quality, it also has implications for the other water resource issues.
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Surface water quality is impacted by climate change through a combination of physical
and biochemical processes involving changes in precipitation and air temperature. For
example, increases in air temperature may induce a shift in aquatic biota by increasing
surface water temperatures, resulting in decreased dissolved oxygen (DO) saturation
concentrations and increased biochemical oxygen demand (BOD) (Morill, 2005; NAST,
2001). In a second example, increased winter temperature and precipitation may increase
winter streamflow and reduce salinity levels in receiving estuaries (NAST, 2001). This
study examines a separate potential impact of climate change on surface water quality:
the impact of temperature and precipitation change on low streamflow (low flow) and the
resulting change in the in-stream waste concentration of a pollutant.

The formulation of water quality management plans in the United States is driven by US
EPA rules and guidance for the determination of Total Maximum Daily Loads (TMDLs)
(National Research Council, 2001). As required by section 303(d) of the Clean Water Act
(1987), each state must identify the waters which are not in attainment of water quality
standards, not protecting a balanced wildlife population, or not supporting their
designated use. For these impaired waters, each state must establish a TMDL which
specifies the point and nonpoint source loadings which will bring the waterbody into
compliance. For many primary pollutants, such as biochemical oxygen demand (BOD),
dissolved solids, microbial pathogens, and acute toxics, critical loads are determined for a
low-flow design period, during which the in-stream dilution provided by the waterway is
minimum. The low-flow index most widely used for issuing of waste permit loads and
considered in this study is the 10,7Q , or the 7-day annual minimum streamflow that is

exceeded nine out of every ten years on average (Kroll et al., 2004; Smakhtin, 2001;
National Research Council, 2001). Any change in future climate that results in a
significant reduction in low flows would invalidate assumptions made in TMDL
calculations, with negative consequences for in-stream water quality.

Low flow is part of the natural, seasonal variation of a stream’s flow when streamflow is
supplied mostly by groundwater discharges during periods of little or no precipitation.
Low flows are affected by changes in precipitation and temperature through ground water
recharge, which is dependant on precipitation and evapotranspiration rates (Smahkin
2001). Climate observations over the past century and climate projections indicate
possible significant shifts in temperature - and for some areas, precipitation - in this
century (NAST, 2001), that may alter future low flows.

Over the 20th century, the average annual air temperature increased by 1° F in the United
States and average national precipitation increased between 5 - 10%. Assuming that
anthropogenic emissions of greenhouse gases such as CO2 and methane are a discernable
cause of the past century’s climate change, and with continued gas emissions, climate
change is likely to be larger in the future. The principal tools used to estimate possible
future climate change, general circulation models (GCMs), generally agree that the
climate in the next century will be warmer and experience more precipitation overall
worldwide (NAST, 2001). However, there is disagreement regarding the specific
location, timing and magnitude of possible future temperature increases. Furthermore,
there is little agreement as to how precipitation will change on a regional level in the
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future. Since both temperature and precipitation are key factors affecting groundwater
recharge, it is uncertain how low flows might change in the future.

The next section of this paper describes the climate models used in this study, and how
the model predictions might impact average streamflow and low flow. A low-flow model,
previously fit by Kroll et al. (2004), is refit for 160 streamflow gauges in the Mid-
Atlantic region, and the key climate inputs (temperature and precipitation) to the model
are identified. The model is then applied using the predictions from four different GCMs
as changes in model inputs. The implications for low-flow water quality and allowable
primary pollutant TMDLs are subsequently derived.

Climate Models
The Mid-Atlantic region is expected to experience increases in both temperature and
precipitation in the future, though the various GCMs differ in both the direction and
magnitude of the predicted change for precipitation (IPCC, 2004). A further level of
uncertainty is introduced as a result of differences in predicted greenhouse gas emissions
for the next century. The Intergovernmental Panel on Climate Change, after grappling
with this problem, produced a set of emission scenarios in the Special Report on
Emission Scenarios (SRES) that the climate change community has reviewed. From that
report, we chose emission Scenarios A2 and B2, which are derived from two separate
storylines of the future. Scenario A2 has the underlying theme of strengthening regional
cultural identities with high population growth and less concern for rapid economic
development, and produces the highest emissions of 2CO of all scenarios. An alternative
Scenario B2 is based on a world where community initiative and social innovations find
local solutions for economic, social and environmental sustainability (IPCC, 2000).

To find an approximate range of changes in air temperature and precipitation under these
scenarios for the years 2010-2099, we used predictions from four coupled atmosphere-
ocean GCMs: CSIRO from Australia’s Commonwealth Scientific and Industrial Research
Organization; HADCM3 from the Hadley Center for Climate Prediction and Research;
CGCM2 from the Canadian Center for Climate Modeling and Analysis and; GFDL-R30
from the Geophysical Fluid Dynamics Laboratory. Together, the models give an idea of
the range of changes in temperature and precipitation that could result from alternative
future scenarios of economic activity and greenhouse gas emissions (IPCC, 2004).

The differences in climate predictions among models and scenarios are illustrated in
Tables 1 and 2. These tables compare example seasonal precipitation and temperature
change predictions for all four GCMs for both Scenarios A2 and B2 over the future time
periods, 2010-2039, 2040-2069, and 2070-2099. The predictions include an absolute
temperature change from baseline period 1961-1990 for average fall temperature; a
percent change from baseline in spring precipitation; and a percent change from baseline
in summer precipitation. In general, all models predict relatively large changes in climate
in time period 2070-2099, and Scenario B2 predicts less severe change than Scenario A2.
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Table.1. GCM Predictions for Future Seasonal Temperature and Precipitation Changes
and Derived Predictions for Model Explanatory Variables Tmaxfal, Pavgapr, and

Pminsum (Scenario A2)
Sep-Nov

∆Temperature
(K)

Mar-May
Precipitation
(% Change)

Jun-Aug
Precipitation
(% Change)

Tmaxfal Pavgapr Pminsum
(K) (% Change) (% Change)

Time Period: 2010-2039
CSIRO 1.3 8.31 2.37
HADCM3 1.5 4.5 0.71
CGCM2 1.0 0.09 -0.66
GFDL-R30 1.8 3.6 -5.44
Time Period: 2040-2069
CSIRO 2.7 9.24 3.74
HADCM3 3.0 4.41 4.5
CGCM2 2.4 1.41 -1.46
GFDL-R30 2.9 0.78 -6.43
Time Period: 2070-2099
CSIRO 4.9 17.79 4.5
HADCM3 4.9 19.3 1.63
CGCM2 3.8 6.02 -5.08
GFDL-R30 4.4 11.62 -17.95

Table.2. GCM Predictions for Future Seasonal Temperature and Precipitation Changes
and Derived Predictions for Model Explanatory Variables Tmaxfal, Pavgapr, and

Pminsum (Scenario B2)
Sep-Nov

∆Temperature
Mar-May

Precipitation
Jun-Aug

Precipitation
(K) (% Change) (% Change)

Tmaxfal Pavgapr Pminsum
(K) (% Change) (% Change)

Time Period: 2010-2039
CSIRO 1.8 5.16 5.31
HADCM3 1.5 2.21 4.21
CGCM2 1.3 -0.29 -1.5
GFDL-R30 1.2 5.55 -4.98
Time Period: 2040-2069
CSIRO 2.8 6.59 7.54
HADCM3 2.2 8.07 3.56
CGCM2 1.7 2.84 -0.13
GFDL-R30 2.5 2.76 -9.87
Time Period: 2070-2099
CSIRO 4.0 15.09 4.29
HADCM3 3.7 15.43 3.95
CGCM2 2.5 2.67 -0.41
GFDL-R30 3.4 2.68 -17.39
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Hydrologic Models for Low Flow
Previous hydrologic case studies of basin response to climate change focus on estimating
average streamflow response to changes in precipitation and temperature (Lettermaier et
al., 1999; Nijssen et al., 2001). These hydrologic case studies have similar conclusions.
In general, future streamflows tend to be less sensitive to temperature than to
precipitation, and changes in streamflow and runoff mostly follow changes in
precipitation without moderation from evapotranspiration (Lettenmaier et al., 1999). The
largest anticipated changes in streamflows are those of snow-dominated basins where the
temperature increases in winter months lead to higher winter streamflows and less spring
runoff (Nijssen et al., 2001).

Although there has been research on the effects of climate variability on runoff and mean
flows, there has been little research on the impacts of climate change on other flow
measures. Arnell (2003) addressed this research gap by investigating the impact of
climate change on multiple flow indices using a dynamic flow model for six catchments
in the United Kingdom. He concluded that climate change has a strong tendency to
decrease low flow with apparent change predicted to occur by the 2020s. Eheart et al.
(1999) also used climate scenarios to predict changes in low flow and found possible
significant changes for the Midwest.

Numerous studies have focused on improving 10,7Q regression models used at regional

levels in the United States to estimate low flow from watershed and climatic
characteristics ( Dingman and Lawlor, 1995; Kroll et al., 2004; Rifai et al., 2000; Wiley
and Curran, 2003; Zecharias and Brutsaert 1988). These studies focus on the selection of
explanatory variables to maximize the predictive power of low-flow regression models
for use on ungauged sites in a region (Smakhtin, 2001).

In our study, alternative models are fitted and compared for predicting the 10,7Q for 160

gauged streams in the Mid-Atlantic US, and a model is selected for subsequent use in
prediction. The model includes watershed physiographic features that are assumed to
remain constant, and climate input variables that are assumed to change in the future.
Although physiographic characteristics, such as landuse and landcover, are expected to
change along with climate change, these characteristics are not included in the model due
to the little land-use variation within the sample. The prediction thus uses differences in
watershed features and climate inputs that occur cross-sectionally among the different
streams in the region to predict changes expected to occur for each stream longitudinally,
with modified future climate inputs. Particular care is made to identify the extent to
which the predictions are interpolative, involving future climate conditions that are
currently experienced by at least a subset of the current watersheds, verses extrapolative,
projecting for conditions not currently experienced in the available dataset. Further
insight into this issue is obtained by obtaining prediction intervals for the individual
gauges’ low-flow estimates that consider the additional error introduced when using
values of predictor variables that are within, verses beyond, the range of the current data.
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Streamflow Data and Watershed Characteristics
Streamflow Data
The 10,7Q was calculated for each sample watershed by Kroll et al. (2004) using the

United States Geological Survey’s Hydro-Climatic Data Network (USGS HCDN)
streamflow records. The USGS HCDN was created to investigate the response of
surface-water to climatic variables; it contains streamflow records and physiographic
characteristics spanning the years 1874 -1988 for over 1,500 streams across the United
States. Streamflow records included in the HCDN database meet strict criteria, including
a minimum of 20 water years of record with 95% of the daily mean discharge values
assessed to be within 10% of the true value. In addition, HCDN stream gauges must have
no flow restrictions, ground-water pumping, or significant land-use change during the
period of record (Slack et al., 1993).

Although the 10,7Q is the most widely used low-flow index in the United States

(Smakhtin, 2001), there is no consensus on the best estimation method (Kroll et al., 2004).
Kroll reported the 10,7Q as the 10th percentile of the log-Pearson type III distribution of

the 7-day annual minimum streamflows at each gauge.

Watershed Characteristics
The explanatory variables used in this study to predict the 10,7Q include both watershed

physiographic features and historic climatic variables estimated from weather gauges
associated with or near the stream gauges. These characteristics are from a database
created by Kroll et al. (2004) available at http://www.esf.edu/erfeg/kroll/. This database
includes USGS HCDN characteristics as well as spatially processed digital information
on the topography, meteorology, geology, and geomorphology of each HCDN watershed
(Kroll et al., 2004). In addition, the database includes numerous baseflow recession
constants that are a function of the hydrogeologic characteristics of a catchment such as
the porosity and hydraulic conductivity (Tallaksen, 1995).

The baseflow recession constant is an estimator of the daily percentage decline in
streamflow during times of no surface runoff. Baseflow recession constants, which are
dimensionless, have a range of 0 - 1 with 1 indicating the slowest decline. The recession
constant used in this study was calculated using Method 5 outlined in Vogel and Kroll
(1996). This method uses streamflow records as input to a least-squares estimator
derived from the continuity equation when outflow from a watershed is linearly related to
basin groundwater storage (Kroll et al., 2004).

To create the spatially processed characteristics, Kroll (2004) used a 1 km digital
elevation model to delineate watershed boundaries for each HCDN watershed. The
watershed characteristics were based on summary statistics of digital grids within the
delineated boundaries. Those grids include the United States Geological Survey 30 arc
sec (~ 1 km) Hydro 1 K digital elevation model (DEM); the 1 km U.S. Department of
Agriculture (USDA) State Soil Geographic grids (STATSGO); a 40-year monthly time
series of the Spatial Climate Analysis Service (PRISM) 0.5° (~49km) orthographically

World Environmental and Water Resources Congress 2007:  Restoring Our Natural Habitat © 2007 ASCE



7

weighted precipitation and maximum and minimum temperature; and PRISM 2.5 arc min
(~4km) average monthly and annual precipitation grids (Kroll et al., 2004).

A total of 34 candidate variables were evaluated for inclusion in the model, including the
baseflow recession constant, nine watershed physiographic variables, and 24
meteorological variables involving monthly or seasonal temperature and precipitation.
Table 3 lists the 8 variables that were eventually included in the alternative models (the

10,7Q for each gauge and seven explanatory variables) using the stepwise regression

methods described in the following section. The explanatory variables include four
watershed physiographic features, the baseflow recession constant (Kb2); the drainage
area (DA); the mean basin elevation (Elev1); and the soil organic matter content (OMH),
and three climatic variables: the 10th percentile of summer monthly precipitation
(Pminsum), the average April precipitation (Pavgapr), and the 90th percentile of fall
monthly temperature (Tmaxfal). Table 3 also shows the range and mean value of each of
these variables for the 160 stream watersheds included in this study.

Table.3. Model Variables and Sample Characteristics (n=160)
Variable Description Units Minimum Mean Maximum

10,7Q 10th percentile of the
distribution of 7-day
annual minimum
streamflows

m3/s 0.00 0.93 42.9

Kb2 Baseflow recession
constant

0.903 0.947 0.976

DA Drainage area km2 6 827 17560

Elev1 Mean basin elevation m 50 1226 2810

Pminsum 10th percentile of
summer monthly
precipitation

mm/month 55 69 83

Pavgapr Average April
precipitation

mm/month 68 92 116

Tmaxfal 90th percentile of fall
monthly temperature

K 287.4 291.7 296.3

OMH Soil organic matter
content

% by
weight

1.49 5.40 19.55

Sample Characteristics

The 160 gauged watersheds comprising the sample represent a population of natural,
unimpaired streams in the Mid-Atlantic US. Locations of each gauge are depicted in
Figure 1. The gauges are scattered among 78 USGS Hydrologic Unit Codes (HUCs).
45% of the HUCs have only one gauge and 73% have two or fewer. Figure 1 shows a
concentration of 18 gauges on the boarder of New Jersey and New York. These gauges
are located in the linked watersheds: the East Branch Delaware, Upper Delaware, and
Middle Delaware-Monquap-Broadhead watersheds. With the occurrence of multiple
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gauges within the same HUC or in a series of linked HUCs, spatial correlation may exist;
therefore, there is potential for correlated streamflows in the sample.

Low-Flow Regression

To predict the 10,7Q of gauged sites, a regression equation can be used that represents the

relationships between the 10,7Q and a watershed’s physiographic and climate

characteristics. The typical form of this relationship is

i
i

n

i

Q βχα∏
=

=
1

10,7 (1)

where the 10,7Q is the low-flow statistic, iχ is the ith of n drainage basin characteristics,

and α and iβ are model parameters. Taking the log of both sides produces a linear

equation whose parameters can be fit using stepwise linear regression. Akaike’s
Information Criterion (AIC) (Burnham and Anderson, 2002) was then used to compare
alternative models with different numbers of explanatory variables. In addition, cross-
validation studies were conducted to assess the sensitivity of the final explanatory
variables to variations in the gauge site sample.

Stepwise Regression
The forward stepwise regression procedure, with a 5% significance level for entering
variables, was used to model the 10,7Q from the entire sample. This procedure can result

in multi-collinearity problems. To address this, the variance inflation factor (VIF) was
used to identify individual explanatory variables with multi-collinearity problems, as
indicated by a VIF greater than ten (Rawlings et al., 1998). Explanatory variables with
high VIFs and physical explanations for possible collinearity problems were grouped as
pairs. Two pairs of climate variables displayed possible muli-tcollinearity problems: the
90th percentile for fall maximum temperature (Tmaxfal) with the 90th percentile for spring
minimum temperature and the average July precipitation with the 10th percentile for
average monthly summer precipitation (Pminsum). Finally, to achieve smaller VIF
values, one pair was removed from the regression, and the explanatory variables from
that pair were added individually. The variable contributing to the highest coefficient of
determination from each pair was selected; Tmaxfal and Pminsum contributed to the
highest coefficients of determination and were included in the fitted model.

The resulting fitted model is given by:

21.029.086.3430.274.125.4987.071
10,7 2210*73.3 ElevOMHTmaxfalPavgaprPminsumKbDAQ −= (2) 

 
The log-linear form of Equation 2 has an adjusted coefficient of determination of 0.936
and a mean square error of 0.175, with all parameters significant at p <0.001. Drainage
area (DA) and Kb2 account for the majority of the incremental explained variation, 65%
and 21%. The climatic variables Pavgapr and Tmaxfal account for 5% and 2%, whereas
the remaining variables account for less then 1%. Although Equation 2 has a relatively
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high adjusted coefficient of determination, a model with fewer explanatory variables and
high explanatory power is preferred. To select the smallest number of explanatory
variables necessary to represent the data, additional models with fewer variables were
created and tested using the AIC. The AIC quantifies the extra explanatory power of a
model gained by an extra variable (Burnham and Anderson, 2002) and is equal to

knAIC 2)ln( 2 += σ (3)

where n is the number of observations, 2σ is the mean square error, and k is the number
of parameters including the intercept. The best three candidate models are described in
Table 4, which lists the explanatory variable parameter estimates, standard errors,
adjusted coefficients of variation, mean square errors, and the associated AICs. Set I are
the variables in Equation 2 with subsequent sets consisting of subsets of I. Variables
were removed in reverse order of F statistic value from the stepwise procedure. Models
with low AICs are preferred, and those with an AIC within 2 units of the full model given
by Equation 2 (as indicated in Table 4 by ∆AIC) are candidate models (Burnham and
Anderson, 2002). 
 

Table.4. Comparison of Variable Set Coefficients and Characteristics
Parameter Estimates of Explanatory Variables

Explanatory Variables Variable Set
I II III

DA 0.87 0.98 0.98
Kb2 49.25 49.95 50.42

Pavgapr 1.74 2.24 2.55
Tmaxfal -34.86 -35.71 -29.65

Pminsum 1.74 1.57 1.65
OMH 0.29 0.27 X
Elev2 0.21 X X

Standard Errors of Parameter Estimates
Explanatory Variables Variable Set

I II III
DA 0.06 0.03 0.03
Kb2 2.22 2.22 2.35

Pavgapr 0.31 0.31 0.32
Tmaxfal 5.87 5.93 6.1

Pminsum 0.45 0.44 0.47
OMH 0.06 0.06 X
Elev2 0.09 X X

Model Characteristics
Variable Set

I II III
Adj R2 0.936 0.935 0.927
MSE 0.175 0.18 0.202
AIC -260.4 -258.5 -242.2
∆AIC 0 1.9 18.2
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Variable set II was selected as the final model and takes the form

27.071.3524.257.195.4998.074
10,7 210*80.1 OMHTmaxfalPavgaprPminsumKbDAQ −= (4)

The log linear form of the model in Equation 4 has a high adjusted coefficient of
determination of 0.935, a mean square error of 0.18, an AIC within 2 units of Equation 2,
with all parameters significant at p <0.001.

The explanatory variables in Equation 4 represent relationships with physical
interpretations. For example, the 10,7Q increases with increasing drainage area due to the

larger area for precipitation recharge. The 10,7Q also increases as summer and April

precipitation increases, as the recession coefficient increases due to steadier baseflow,
and as % organic matter increases due to increased holding capacity and conductivity.
The 10,7Q decreases as fall temperature increases due to evapotranspiration.

To confirm the selection of variables, separate stepwise regressions on eight randomly
generated half samples were compared to the whole sample results. The explanatory
variables from the whole-sample regression model appeared most frequently of all half-
sample variables. Variables DA and KB2 were statistically significant explanatory
variables in all eight half samples, OMH in seven, and variables of summer precipitation,
spring precipitation, and fall temperature in more than half. In addition, the final model
in Equation 4 was used to model each half sample; all samples displaying adjusted
coefficients of determination greater than 0.92.

Future Low-Flow Predictions
The model in Equation 4 is used in two forms to predict possible future changes in the

10,7Q . First, individual 10,7Q predictions and prediction intervals were estimated for each

gauge using watershed specific values except for the three climate variables: Tmaxfal,
Pavgapr, and Pminsum. Inputs for these climate variables were estimated from the
changes predicted by the GCMs from the IPCC Regional Scatter Diagrams (2004).
Although topographical characteristics of individual watersheds modify the regional
predictions (Giorgi et al., 2003), uniform, regional climatic changes were applied to all
gauges without downscaling in this study.

The three climatic variables in Equation 4 don’t match exactly the available IPCC data.
Therefore, the changes in the average April precipitation (Pavgapr), 10th percentile for
precipitation for period June-August (Pminsum), and 90th percentile maximum
temperature for September-November (Tmaxfal) are assumed to be the same as the IPCC
changes in average seasonal precipitation and temperature in Tables 1 and 2. This is
equivalent to assuming that the monthly and seasonal precipitation variables are
multiplied by a constant factor, e.g., 1.1 for a 10 percent increase, while the entire
distribution of monthly and seasonal temperatures is shifted (generally upward) by a
fixed amount.
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Equation 4 is used to predict both current and future values of the 10,7Q , and can be used

to predict the ratio of the 10,7Q at some future time 10,7
2Q and the current 10,7

1Q

(assuming the watershed physiographic variables and the baseflow recession constant
remain the same):

71.35

1

2
24.2

1

2
57.1

1

2

10,7
1

10,7
2

)()()( −=
Tmaxfal

Tmaxfal

Pavgapr

Pavgapr

Pminsum

Pminsum

Q

Q (5)

Equation 5 translates relative changes in climate variables to relative changes in the 10,7Q .

Low-Flow Prediction Results

Using Equation 4, future 10,7Q predictions were estimated for each gauge based on the

climate predictions described in Tables 1 and 2. A summary of the average percentage
change in the 10,7Q from baseline for each model is presented in Table 5 for Scenario A2

and Table 6 for Scenario B2. For all scenarios, GCMs, and time periods, except CSIRO
in time period 2010-2039 for Scenario A2, the 10,7Q is estimated to decrease, even with

increasing precipitation. The GFDL model generally predicts the most severe change due
to large decreases in precipitation; conversely, CSIRO anticipates less change in the 10,7Q

in A2, due to the model’s large increases in precipitation.

Table.5. Average Predicted % Change in Q710 for Each Climate Model (Scenario A2)
Time Period

Model
2010-
2039

2040-
2069

2070-
2099

CSIRO 5.40% -7.20% -14.60%
HADC -7.80% -18.40% -16.50%
CGCM -12.70% -25.80% -34.00%
GFDL -20.00% -35.90% -45.20%

Table.6. Average Predicted % Change in Q710 for Each Climate Model (Scenario B2)
Scenario B2

Time Period

Model 2010-2039 2040-2069 2070-2099

CSIRO -2.30% -7.90% -10.60%
HADC -7.00% -3.70% -6.60%
CGCM -18.00% -14.00% -21.90%
GFDL -10.10% -33.20% -47.90%

To see if future climate predictions are extrapolative, Figure 2 compares the range within
the sample of climatic variables used for future prediction with the baseline climate
conditions. As shown, there is still a significant degree of overlap for these variable
ranges, even for the cases where the variables are shifted maximally among the models
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considered. For this reason, the streamflow predictions generated by this model are (at
least considering each variable individually) for the most part interpolative, and the
climate predictions do not represent radically different or new climatic regimes.

There is considerable uncertainty associated with the GCMs’ predictions. Equation 5
was used to perform a parametric sensitivity analysis of the 10,7% Q∆ to changes in the

climate variables. In Figure 3, contour lines represent estimates of the 10,7% Q∆ over a

range of Pminsum∆% and Pavgapr∆% changes, as indicated by the x and y axis in each
panel. The extremes on the x and y axes are the largest changes predicted for any single
weather station in the region using statistical downscaling of the GCM predictions
(Graham, 2004). The six panels represent different increases in Tmaxfal from baseline.

As Equation 5 indicates, the 10,7% Q∆ becomes increasingly negative as temperature

increases. The shift of the 0 contour line for 10,7% Q∆ up and to the right as temperature

increases exemplifies this relationship. With the largest temperature change, indicated by
the 5 K temperature panel, the 0 contour line for 10,7% Q∆ is shifted the farthest to the

right, where almost all possible future precipitation changes result in a decrease in the

10,7Q . Without considering individual GCM climate predictions, the model predicts

future decreases in the 10,7Q for both increases and decreases in future precipitation when

future fall temperature increases.

The GCM Scenario A2 prediction results also support the finding that the 10,7% Q∆
becomes increasingly negative as temperature increases. For example, the CSIRO model
in time period 2010-2039, as indicated by a white star in Figure 3, predicts approximately
a 1 K change in summer temperature; therefore, the symbol for this model and time
combination lies in the 1 K temperature panel. For this nearest time period, the symbol
falls near the 0 contour line for the 10,7% Q∆ . CSIRO’s prediction in the 2040-2069 time

period, as indicated by the gray star, lies in the 3 K temperature panel. With this increase
in temperature, the star now falls below the 0 contour line for the 10,7% Q∆ , indicating a

decrease in the 10,7Q . Similarly, in time period 2070-2099, the CSIRO prediction for

temperature increases and the model lies in the 5 K temperature panel with the star falling
near the -25% contour line for the 10,7% Q∆ . For models with temperature change

predictions falling between the temperature panel changes, such as HADCM3 in period
2010-2039 with a 1.5 K change, the symbol is depicted on the two panels that bound the
predicted temperature change. The remaining three models show trends similar to
CSIRO’s of decreased 10,7Q as time period and temperature increase.

Low-Flow Water Quality Ratios

A mass-balance model allows evaluation of the impact of multiple climate change
scenarios on the TMDL allocation of a primary constituent through changes in the 10,7Q .
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Based on this mass balance model, the ratio of future TMDL to current TMDL to meet a
specified in-stream waste concentration is given by the ratio of future to baseline 10,7Q :

1
100

% 10,7

10,7

10,7 +
∆

==
Q

Q

Q

TMDL

TMDL
baseline

future

current

future (6) 

 
where the 10,7Q is predicted by the statistical model. For cases where the futureQ 10,7 is less

than baselineQ 10,7 (as in most predictions from our model), TMDL’s designed to meet current

water quality standards may fail to do so in the future.

Low-Flow Water Quality Prediction Results

Low-flow percent change predictions for climate change Scenario A2 were calculated
using Equation 5 and applied to Equation 6 to determine the fraction of current TMDL
allowed in the future to meet water quality criteria when considering the influence of
climate change on low flow. Figure 4 shows the ratio of future TMDL to current TMDL,
which can also be interpreted as the ratio of the future to baseline 10,7Q . Figure 4 also

shows the 5th and 95th percentile estimates for each climate model and time period.

The 5th and 95th percentile values were estimated using a Latin hypercube simulation
(Neter et al., 1996) of the three climate parameter estimates iβ in Equation 4 using the

standard errors from Variable Set II in Table 4 as well as accounting for the covariance of
the estimated iβ . A comparison of the estimated (calculated when fitting the model in

Equation 4) and simulated correlation coefficients of the iβ pairs is presented in Table 7. 

Table.7. Estimated Correlation Matrix for Coefficients of Model Explanatory Variables
with Original Sample Correlations in Parenthesis

Correlation Matrix
Pavgapr Pminsum Tmaxfal

Pavgapr 1.000
Pminsum -0.114 1.000

(-0.103)
Tmaxfal 0.248 0.240 1.000

(0.249) (0.234)

In Figure 4, a value of 1.0 represents a future TMDL equivalent to the current allocation,
where values less than one indicate a required decrease in future TMDL. All predicted
ratios are smaller than 1.0 in the figure, except for model CSIRO in 2010-2039. Only
CSIRO and HADC results have 95th percentile values greater than 1.0. In the earliest
future time period, the predictions of the four models indicate that the ratio of future to
current TMDL could range from 0.8 to above 1.0.
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Discussion
This study presents a first estimate of future changes in low flows and the resulting effect
on water quality for a range of possible climatic changes. Under Scenarios A2 and B2,
the regression model predicts a decrease in the future 10,7Q for the Mid-Atlantic region;

still, despite improvements in spatial datasets as emphasized by Kroll et al. (2004) and
Smahtktin (2001), future 10,7Q predictions from the regression model are highly uncertain.

Future predictions are additionally complicated by uncertainty in climate predictions.

The GCM predictions differ in the direction and severity of predicted climate change for
this region. The IPCC (2004) advises that no single model is preferable for a particular
region, leaving a wide range of possible future climate predictions. To further complicate
GCM applications, the predictions are not probabilistic, but based on possible storylines
or scenarios. In this study, Scenarios A2 and B2 are presented; other scenarios could
result in smaller 10,7Q changes. Without probabilistic scenarios, future climate

predictions are difficult to incorporate into quantitative water quality planning analysis.

Despite uncertainty in predictions of low flow, the potential decrease in low flow has
implications for the TMDL allocation process. Change in low flow could affect both the
identification of impaired waterbodies as well as the TMDL allocation.

Identifying Impaired Waterbodies
Future decrease in low flow could increase the number of waterbodies that fail to meet
ambient water quality criteria. In particular, decreases in low flow, in combination with
the increases in temperature as evaluated by Morrill et al. (2005), could increase the
number of violations for no-exeedance criteria, criteria that must be met at all times
(NRC, 2001). This would result in additional streams requiring TMDL assessment. In
states with standards that specify that criteria do not apply during low streamflows, the
acute effects of pollution could become more severe.

TMDL Planning
Future changes in low flow also have implications for TMDL planning. Once a
waterbody is categorized as impaired, TMDLs are set based on empirical or mechanistic
modeling. Federal regulation requires each state to determine a schedule for TMDL
development; these schedules should plan for all TMDLs to be established in no more
than 8 to 13 years (40 CFR 130.7(d)(1)). This TMDL development time is comparable to
the near-future climate change time period. Therefore, in the time between identifying a
water as impaired and TMDL development, climate change could invalidate the
meteorological assumptions in the TMDL model and require a reassessment. However,
water quality modeling is costly and time-consuming, and the cost of adding climate
scenarios may outweigh the benefit of preventing reassessment, especially given the
uncertainty in the GCM predictions. When GCM climate predictions improve, climate
scenarios may be most effective at locations where severe climate change is anticipated.

Overall, GCMs predict the least change in climate for the US in the Mid-Atlantic region
(NAST, 2001). In addition, this region experiences the least streamflow variability of all
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the U.S. regions (Hurd et al., 1999). Climate scenarios are most important for watersheds
in regions such as the Great Plains, where the most severe climate change is anticipated
and baseflow is relatively low (Hurd, 1999; NAST, 2001). Considering future climate
scenarios in the Great Plains region –through a dynamic, site-specific model that
combines dilution effects with possible changes in temperature, kinetic reaction rates, and
nonpoint-source loading - may prevent TMDL reassessments.

Conclusions
The principal conclusions from this study include:

• Model predictions indicate decreases in low flow as a result of climate change for
the Mid-Atlantic region, even with predicted increases in precipitation,.

• A simple low-flow water quality model for a primary pollutant predicts required
decreases for future point-source TMDLs under most future climate scenarios.

• Future improvements in both climate and streamflow models could allow
consideration of future climate change scenarios in the TMDL development
process.
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Figure 1. Location of USGS Stream Gauges Used in Study

Figure 2. Comparison of Baseline Climate to Future Predicted Climate
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Figure 3. Percentage Change in Predicted Low Flow for Different Combinations of
Changes in Future Temperatures and Precipitation with Associated GCM Prediction
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Figure 4. Predicted Average, 5th, and 95th Percentiles of Ratio of Future TMDL to
Current TMDL or Future 7Q10 to Baseline 7Q10 Ratio
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