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Abstract.

Flood damage functions are necessary to ensure comprehensive risk

management. This study attempts to establish a residential flood damage function

and explores residents living in the Keelung basin, where flood disasters occur

frequently in Taiwan. Ordinary least squares (OLS) method is used to construct a

flood damage function. Analytical results indicate that flood depth, is the significant

variable, but the residual is non-stationary with spatial. The Geographically

Weighted Regression (GWR) model is applied to modify the traditional regression

model, which cannot capture spatial variations, and to solve the spatial

non-stationary. Analytical results demonstrate significant spatial variation in the

local parameter estimates for the variable flood depth and intercept. Therefore, a

dummy variable, Zone, is added to the OLS model. The R-square value is found to

increase from 0.15 to 0.24, and the residual is spatially stationary. In conclusion, the

residential flood damage is determined by flood depth and zone, and the GWR model

not only captures the spatial variations of the affecting factors, but also helps to

discover the explanatory variable to modify the traditional regression model.

World Environmental and Water Resources Congress 2007:  Restoring Our Natural Habitat © 2007 ASCE



Key words：flood damage、flood depth、OLS、GWR、non- stationary

Introduction

Floods occur frequently in Taiwan because of its geographical location, climate

and topography. Statistical data from the Ministry of the Interior show that Taiwan

had an average of 4.47 typhoons and many storms annually from 1958 to 2004.

These events have caused serious damage to agriculture, fishery, hydrologic

engineering, houses, traffic facilities, electric power, telecommunications and

economical activities. Risk management plays a very important role in mitigating the

effects flood disasters, which cause damage to property and threaten lives. A

complete flood management and mitigation system comprises a hydrological module

for channel discharge calculation, an economic module for damage estimation, and a

risk analysis process (Grigg, 1985). Although many studies have been performed in

hydrology and hydraulics, few focus on flood damage in Taiwan (Chang, 2000).

Since the level flood damage varies regionally, studies relating to other parts of the

world cannot be applied directly to Taiwan. For those reasons, this study plans to

establish the residential flood damage functions, and the result can be considered as

the reference of regional risk management.

Flood damage function is traditionally estimated by an Empirical

Depth-Damage Curve. The curve can be constructed in two ways (Kang et al., 2005）,

from the investigation of damage after the disaster (TVA, 1969; FIA, 1970; Grigg

and Helweg, 1975; Smith et al., 1994；Su et al., 2005), and from Synthesis (Chang,

2000; Chang and Su, 2001; Kang et al., 2005). In the synthesis approach, data of the

property items, possessive rate, and the height of the arrangement of the furniture are

collected, and the possible damage of each item during flooding at each depth is

investigated. These two methods are different in the way of establishing the curve,

both assume that the flood depth is the only factor in the flood damage function.

Nevertheless, the flood depth may not be sufficient for consideration by a

household flood damage function. McBean et al. (1988) pointed out that there were

many factors besides flood depth could affect the flood damage, such as time of year

of flooding, velocity of floodwaters, duration of flooding, sediment load and warning

time, and therefore recommended adjusting the flood damage function should be

adjusted. Yang L. et al. (2005) also noted that some meteorological, physiographic
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and human factors such as rainfall, terrain and drainage could influence the actual

flood damage. Hence, the relationships between various factors and flood damage are

now widely examined. The most common factor being considered is the building

type （Grigg, 1974; FEMA, 1977; McBean et al., 1988; Smith, 1994; Taiwan Water

Resource Agency, 1997; Chang, 2000; Kang et al., 2005）. Other factors include area

of main floor, family income （McBean et al., 1988), flood warning system （Wind

et al. , 1999; David, 2000）, flood warning lead time（Penning-Rowsell et al., 2000),

experience of flooding （McPherson, 1977; McBean et al., 1988; Wind 1999;

Krasovskaia, 2001), the preparation before disaster（Penning-Rowsell et al ., 2000）,

duration of flooding (McBean et al., 1988 ; Torterotot et al. 1992; Hubert et al.,

1996）, velocity of floodwaters（CH2M Hill, 1974; Black, 1975; Smith, 1994; Beck et

al., 2002）, number of people（McBean et al., 1988 ; Shaw, 2005） and the location

of household（Chang, 2000; Shaw, 2005）. Since the flood damage is affected by

many factors, some recently proposed multiple regression models for establishing the

flood damage function incorporate all such factors（Shaw, 2005）. Although this

approach can incorporate all factors as the predictors and raise the R-square value, it

also increases the difficulty of predictor’s data collection when predicting the

damage. This model is a global multiple regression method, and assumes that the

regression coefficient is constant across the study region (Platt, 2004). In other words,

it does not consider the spatial variation, so the residuals from the global model often

exhibit spatial autocorrelation (Fotheringham et al., 2002). It violates the assumption

of linear regression. Thus, the aim of this study is to establish the flood damage

function for one household by using the smallest possible numbers of explained

variables, while also considering the spatial variation and solving the residual with

spatial autocorrelation problems.
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This study first establishes the applied theoretical equations. Data sources are

then discussed, and the studied areas are introduced. Finally, results are discussed

and conclusions are drawn.

Method

The first step in establishing the flood damage function for one household by

using the smallest numbers of explained variables, considering the spatial variation

and then solving the residual with spatial autocorrelation problems, are to determine

the factors causing flood damage. Many flood damage factors exist as described

above, but the characteristics of flood damage vary among regions. Based on case

studies in Taiwan, Shaw (2005) incorporated factors including flood depth,

inundating time, building type, structure, the numbers of floors, presence of a

basement, area, number of people and region. He demonstrated that the flood depth

is the major factor affecting flood damage functions. Grigg (1996) noted that even

without considering other factors, the flood depth – damage curve was still

appropriate for estimating the flood damage. Therefore, this study determines the

flood damage factor according to the flood depth, which is the most commonly

considered factor in previous works.

This study first applies the OLS for global regression to establish the flood

damage function. The Moran’s I value is then used to proceed with the test of spatial

residuals to check whether the residuals have spatial autocorrelation. If the residuals

have spatial autocorrelation, then the GWR is applied and then test the significance

of the spatial variability in the region.

If the coefficient exhibits significant spatial variation, then spatial grouping is

performed; the dummy variable is added into the original global regression model,

and finally the result is modified. The theoretical models used in this study are

introduced as follows.

Global Regression Model

A global regression model, calculated using OLS, is adopted to establish the

flood damage function. Since flood damage increases with flood depth, the following

S-curve model was constructed:

ε+= + )x/ββ( 10ey （1）
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where, y is the damage（NT dollar）, x is the depth（cm）,

0β 、 1β are the regression coefficients, ε is the residual

Formula (2) is the natural logarithm of formula (1)

210 x

1ββyln ε+⋅+= （2）

where, y is the flood damage（NT dollar）

x is the flood depth（cm）

2ε is the residual

Then, β0、β1 can estimated by simple linear regression model.

A basic assumption in fitting such a model is that the observations are

independent of one another. A second assumption is that the structure of the model

remains constant over the study area. That is, the estimated parameters have no local

variations.

Residual spatial autocorrelation testing

After establishing the regression model, the spatial autocorrelation coefficient,

Moran’s I, is computed to detect spatial autocorrelation in the residuals. According to

the definition of the researchers (Bailey & Gatrell, 1995), Moran’s I value can be

indicated as
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where n is the number of points or cells, ym is the value in zone m, ybar is the

mean of attribute y, and wij is the spatial proximity of point i and j. We often use the

inverse of the distance between point i and j. This assumers that attribute values of

points follow the first law of geography. With the inverse of the distance, we give

smaller weights to points that are far apart and lager weights to points that are closer

together. For example, wij can defined as 1/dij, where dij is the distance between point

i and j. The expected value of Moran’s I (i.e. the value that would be obtained if there
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were no spatial pattern to data) is

( )
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1
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= （4）

with values of I larger than this indicating positive spatial autocorrelation

(similar values cluster together) and the values below this indicating native spatial

autocorrelation (similar values are dispersed ).

Under this assumption, the variance of I is given by
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The distribution of I is asymptotically normal under assumption randomization.

The standardized Z scores can be calculated as
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The null hypothesis is randomly distributed.

If Z(I) > 1.96 or Z(I) < −1.96, then the residual is statistically significant with a

statistical significance level of 5%. The residual pattern is clustered when Z(I) > 1.96.

Conversely, the residual pattern is dispersed when Z(I) < −1.96. Alternatively, if

−1.96 < Z(I) < 1.96, then the residual patterns not statistically significantly different

from a random pattern, even if it looks somewhat clustered or visually dispersed.
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GWR Model

If the residual has spatial autocorrelation, then GWR can be utilized to modify

and solve the problem (Brunsdon et al., 1996、1998a,b、Fotheringham et al., 1996、

1997a,b、1998、2000、2002、Platt, 2004). The modification of Formula (2) is

i
i

ii1ii0i x

1
)v,u(β)v,u(βyln ε+⋅+= （8）

Where

iy is the flood damage of point i

ix is the flood depth of point i

)v,u( ii denotes the coordinates of the ith point in space

)v,u(β ii0 , )v,u(β ii1 is a realization of the continuous function at point I

iε is the residual of point )v,u( ii

In simple linear regression model, a parameter is estimated for the relationship

between each independent variable and dependent by OLS and the relationship is

assumed to be constant across the study area. The estimator for it is

YX)XX(β T1T −= （9）

The GWR model recognizes that spatial variations in relationships might exist.

The GWR estimator is

WYX)WXX(β T1T −= （10）

Where X is the matrix of the independent variable’s observation value, which is

the matrix of 1n×
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β is the matrix of the regression coefficient, which is the matrix of 2n ×
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W is an nn × matrix whose off-diagonal elements are zero and whose diagonal

elements denote the geographical weighting of observed data for point i. That is
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The weighting of each observed data is

2
ijiiij )h/dexp()v,u(w −= （11）

ijd is the Euclidean distance between observed data i and j

h is the constant value of bandwidth

*The bandwidth may be either supplied by the user, or estimated using a technique

such as crossvalidation.

The parameter estimated with GWR is then plotted onto the map to determine

the parameter variation within the region. Similarly, the standard error can be plotted

onto the map to derive its variation over space. Finally, the Monte Carlo test is

employed to determine whether any of the local parameter estimates are significantly

non-stationary. If the test result is insignificant, then the parameter variations are due

to chance.

Modified global regression model

GWR analysis can not only modify the residuals of traditional regression with

spatial autocorrelation, but also consider the spatial variation. Nevertheless, the result

of GWR can obtain nth regressions more complicated than traditional global

regression.

Therefore, the result of the GWR model is adopted to modify the traditional
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regression model in three steps. First, plot the histogram of parameters with

significant variation over space, and observe the distribution of each parameter. Next,

perform spatial grouping based on the spatial distribution of each parameter. Finally,

incorporate dummy variables into the original regression model. Determine the main

variable by stepwise regression, and eliminate the insignificant variable. The model

is thus modified as follows:

ε+





 ⋅⋅+⋅+⋅+= ∑

+

=
+

1m

2i
1ii10 iGP

x

1βiGPβ
x

1ββyln （12）

where

y is the flood damage（NT dollar）

x is the flood depth (cm)

GP is the dummy variable

m is the numbers of spatial grouping

0β 、 1β 、 iβ are the regression coefficients, ε is the residual.

The modified regression model can not only consider the spatial variation of

each parameter, but can also avoid residuals with spatial autocorrelation and too

many regression equations.

Data Collection and Studied Area

To establish the flood damage function for one household in a residential area,

the basin of the Keelung River, where flood disasters occur frequently, was selected

as the studied area. The data of questionnaires from the flood damage caused by

Nari Typhoon in 2001 were collected. Households with previous flood experience

were explored. The investigated areas included Xizhi City, Qidu District, Nangang

District, Neihu District, SongShan District, Sinyi District and Da-an District (as

shown in Figure 1).

The questionnaire included questions on disaster scale (the flood depth and

inundated time), level of damage (the damage of household furniture, decoration,

and vehicles etc.), basic household information (the characteristics of the building

like numbers of floors and area) and the risk perception factors (the flood

experience, risk information, scale of the risk, influence of mass media, whether

one is willing to take the risk or not, whether the risk is controllable or not, fear of
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the risk). A total of 302 completed questionnaires were received. All data were

geocoded to the map.

Figure 1. Geographic distribution of study area in Taiwan

Result

Global regression model

The regression result of Formula (2) is shown in Table 1. The coefficient of

determination R2=0.15, the regression coefficient of intercept and flood depth were

significantly different from zero (at 0.05 level). Figure 2 plots the residuals versus

the predictor values. Because the points appear to scatter randomly about the line the

mean of the residuals, all fundamental assumptions are correct. Initially, the residual

was mapped to determine whether the residuals had spatial autocorrelation (as

shown in Figure 3). The figure reveals that the residual spatial pattern was visually

clustered, so Moran’s I test was employed to test whether the residuals had spatial

autocorrelation. The testing result demonstrates that the Moran’s I = 0.6118, and

（Z(I) = 4.936>1.96）, implying that the residuals had spatial autocorrelation,

violating the assumption of linear regression. Therefore, GWR was applied to

modify the model.
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Table 1. Global regression parameter estimates（n=302）

Parameter Estimate Std Estimate Std Err T P-Value

Intercept 10.825 0.092 118.041 0.000

1/X -4.288 -0.386 0.591 -7.259 0.000

Figure 2. Global model residual plot

GWR Model

The GWR model result indicates that R2 increased from 0.15 (OLS) to 0.26

(GWR), demonstrating that GWR provides a better explanatory ability than OLS.

Figure 4 and 5 show the histogram and map of the intercept term from the GWR

model. Figure 4 reveals that the values of the intercept can be divided into three

groups, high, medium and low. Figure 5 depicts the spatial distribution of these three

groups. The groups with high values were located on the northeast area. The groups

with medium values were located on the middle area. The groups with low values

were located on the western area. These findings indicate that the spatial pattern was

clustered significantly. The intercept term indicates that flooding leads to

fundamental flood damage. Fundamental flood damage is rising gradually from

West to Northeast, according to the spatial distribution of the intercept.

Figure 6 displays the histogram of the inverse of flood depth variable-form

GWR model, indicating that the coefficients can be divided into high and low.

Figure 7 depicts the regression coefficients of the inverse flood depth variable. The

figure shows that the groups with high values were located on the medium and

western areas, and the groups with low values were located on the northeast area.

These findings indicate that the spatial pattern was also clustered significantly.
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Figure 3. Global model residual surface

Figure 4. Histogram of the Intercept term from GWR model

Moran’s I = 0.6118
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Figure 5. Map of the Intercept term from GWR model

Figure 6: Histogram of the regression coefficients of the inverse of flood depth

variable from GWR model
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Figure 7. Map of the Inverse of Flood Depth term form GWR model

The regression coefficients of the inverse of flood depth variable indicate the

change of the flood damage per flood depth. A greater value indicates a greater

change in flood damage with increasing flood depth. The spatial distribution of the

coefficients reveals that the value increased gradually from Northeast to West.

The residual of the GWR was mapped to identify any relationship between

residual and spatial autocorrelation (as shown in Figure 8). The spatial pattern of

residual is not clustered over space in visual. Further Moran’s I was calculated to

test whether the residuals had spatial autocorrelation. According to the test result, I =

0.0214 （ Z(I) = 0.216<1.96 ） , demonstrating that the residual with spatial

autocorrelation was already modified.

Monte Carlo simulation was then used to determine whether each regression

coefficient was spatially non-stationary (Table 2). Simulation results show that the

regression coefficients of Intercept and 1/X had significant spatial variation at the

1% level, meaning the two variables, Intercept and 1/X, spatially affect the flood

damage. This finding implies that the regression coefficients were not constant in the

study region. Therefore, the GWR model is well suited to modifying the traditional

regression model.

Modified global regression model

The constant values in Fig. 5 were split into high, medium and low, and the
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inverse flood depth’s regression coefficients in Fig. 7 were divided into high and low

respectively. In Table 3, 「*」 denotes data, and 「N/A」represents non-data.

Analytical results show that all of the data could be divided into three groups. These

three groups were then mapped, revealing that these three groups were spatially

clustered (as shown in Figure 9). Therefore, spatial grouping was utilized to modify

the original traditional model (OLS).

Figure 8. Residuals from GWR model

Table 2. Results of Monte Carlo test for spatial non-stationary a (n=302）

P-Value

Intercept 0.000***

1/X 0.000***
a Tests if regression coefficients change

over space in a way that is unlikely to occur

at random

*** = significant at .1% level

** = significant at 1% level

* = significant at 5% level

Moran’s I = 0.0214
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Table 3. The Distribution of GWR’s Regression Coefficient Values

Low Middle High

Low N/A N/A *Group3

High *Group1 *Group2 N/A

「*」denotes data and 「N/A」denotes non-data

Figure 9. The Spatial Clustering

The original traditional model (OLS) was modified according to the grouping

result by adding two dummy variables, GP1 and GP2. The dummy variable GP1 = 1

when the location of household was within the Zone 1, and GP1 = 0 otherwise. The

dummy variable GP2 = 1 when the household was within Zone 2, and GP2 = 0

otherwise.

The null hypothesis is that the regression coefficients of the constant and

inverse of the flood depth will not change with different areas

The alternative hypothesis is that the regression coefficients of the constant and

Group1
Group2

Group3

Zone 1

Zone 2

Zone 3

Intercept
Parameter1
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inverse of the flood depth will change with different areas

Therefore, the equation can be modified as the follows.

ε+⋅⋅+⋅⋅+⋅+⋅+⋅+= 2GP
x

1β1GP
x

1β2GPβ1GPβ
x

1ββyln 543210 （13）

Where

y is the flood damage

x is the flood depth

1GP =1 when the location of household was within the Zone 1

1GP =0 otherwise

2GP =1 when the household was within Zone 2

2GP =0 otherwise

0β 、 1β 、 2β 、 3β 、 4β 、 5β are the regression coefficients, ε is the

residual.

Stepwise regression was first adopted to determine the main variable. The

calculation result reveals that only
x

1
and GP1 were significant, meaning that the

equation could be changed as

ε+⋅+⋅+= 1GPβ
x

1ββyln 210 （14）

Equation (14) indicates that if the household was located in Zone 1, where GP1

= 1, then the equation could be presented as

ε+⋅++=
x

1β)ββ(yln 120 （15）

When the household was not located in Zone 1, where GP1 = 0, then the equation

could be presented as

ε+⋅+=
x

1ββyln 10 （16）

Table 4 presents the result of the modified regression model Then focusing on

the main variables and proceeds with regression analysis. The regression coefficients

were statistically significant at a statistical significance level of 5%. The coefficient

of determination R2 of the modified model increased from 0.15 (OLS) to 0.26

(modified OLS). This result was similar to that of the GWR model.
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Table 4. Result of modified global a regression model (n=302)

Parameter Estimate Std Estimate Std Err T P-Value

Intercept 1.327 0.113 100.457 0.000

1/X -3.353 -3.302 0.567 -5.910 0.000

GP1 -1.161 -3.348 0.170 -6.819 0.000
a The average regression result of the whole studied area

To test if for spatial autocorrelation, the residual of the modified OLS was

mapped to the map, and the Moran’s I value was obtained (as shown in Fig. 10). Test

results demonstrate that the Moran’s I = 0.0313, and （Z(I) = 0.231<1.96）,

indicating that the spatial pattern of residual was random. Therefore, the modified

OLS did not violate the assumption of linear regression.

Figure 10. Residual spatial distribution from modified regression model

Discussion

Figure 11 illustrates the result of the global regression equation, which

demonstrates that the damage variation was greatest at low depths. The average total

damage was $50,000 per household.

Substituting the analytical result of modified global regression into Equations

Moran’s I = 0.0313
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(15) (16) yields then the flood damage functions for households is located in and

outside Zone 1, respectively.

When the household is located in Zone 1, the flood damage function is:

ε+⋅−=
x

1
353.3166.0yln � （17）

When the household is outside Zone 1, the flood damage function is:

ε+⋅−=
x

1
353.3327.1yln （18）

Where

y is the flood damage

x is the flood depth

ε is the residual

Equations (17) and (18) indicate that the flood damage function constant of a

household located in Zone 1 is lower than that of a household located in the other

Zones. This result shows the houses located outside Zone 1 would suffer greater

fundamental sanitary damage than houses in Zone 1 when flood occurs.

Mapping the results of Equations (15) and (16) to the plot of flood damage

versus flood depth (as displayed in Fig. 12) indicates that the flood damage in Zone

1 would be smaller than that in the other areas. The low water depth’s tangent slopes

outside Zone 1 would be greater than those within Zone 1, meaning the damage is

most variable outside Zone 1.
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Figure 11. The Curve of Flood Depth Damage
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Figure 12 demonstrates that the total flood damage with flood depths in other

areas of 100cm–330cm would be approximately $80,000. Since Zone 1 did not have

high water depth’s data in this torrential rain, the total flood damage at a flood depth

of 50–200cm would be approximately $26,000. The results of this global regression

were represented as a chart of flood damage versus flood depth, and then compared

with those of Fig. 11 The result of the global regression’s average total household

damage was approximately $50,000, which is in between the $26,000–80,000

estimated by the modified regression model, because the global regression model

did not consider the spatial variation, making the differences between areas

undetectable.

Figure 12. Flood Depth-Damage Curve of Zone 1 and Other region

Furthermore, the damage function results of this study were compared with

those estimated by Shaw et al.（2005）, who utilized the following damage function:

ln(TLOSS)= 1.541+ 0.389 ln(DEPTH)+ 0.739(PRE)– 6.510(INS) – 0.270 (OWN) + 0.442

(BUILD)

(1.63) (10.39)*** (1.64) (-3.29)*** (-0.39) (0.97)

+ 0.737 (EXP1) + 0.845(EXP2)+ 0.069(EXP3)– 0.025(LIVY) + 0.001 (IC) + 0.380 (PEO)

(1.66)* (1.22) (0.12) (-1.86)* (0.50) (0.97)

Where
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TLOSS is Total losses of physical property incurred by a household

DEPTH is Inundation from the flood (cm)

PRE Dummy=1 if adopting preparedness against floods

INS Dummy=1 if purchasing flood insurance for the house or car

OWN Dummy=1 if having the ownership of the house

BUILD Dummy=1 if a single house; Dummy=0 if an apartment

IC Household income (thousands of NT dollars)

PEO The number of people in the household

EXP1 Dummy=1 if having one flooding experience in the past

EXP2 Dummy=1 if having two flooding experiences in the past

EXP3 Dummy=1 if having three or more flooding experiences in the past

LIVY Years of living in the area

The total flood damage of one floor estimated by Shaw et al. （2005）, was

approximately $43,400, which is also between $26,000 and $80,000 as estimated by

the proposed modified regression model.

For comparison, Kang et al. (2005) calculated the total flood damage for one

household as approximately $200,000, and Chang （2000） which the total flood

damage for one household was approximately $208,000. The present study produced

lower a estimate than the above studies, probably because it defined flood damage

differently from the others, and also considered the residents’ preparedness and the

actions immediately after flooding. Damage can be classified into three main types:

capital restoration of affected households; replacement, in which new capital is

utilized to replace the damaged capital, and directly providing the affected capital

with the original services. This study adopts the flood damage definition of Kang et

al. (2005):

d = w + min( x, y, z )

where d denotes the Flood damage to capital; w denotes the value of services

that cannot be provided after damage to capital from the day of flood to the day of

restoration; x denotes the value of services that cannot be provided after damage to

capital from the day of restoration; y denotes the cost of restoration or replacement

following this restoration, and z denotes the value of services provided after damage.

Kang et al. (2005) and Chang (2000) assumed that all damaged capital was

replaced with new capital. Additionally, both adopted the Synthesis approach, which
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does not consider the residents’ preparedness and the immediate actions to against

the flood damage. Both factors can cause the over-estimation of damage values.

Conclusion

The proposed approach not only uses the smallest numbers of explained

variables to establish the flood damage functions for one household, but also solves

the problem in traditional regression models, which cannot consider spatial variation.

Additionally, the proposed method modifies the residual with spatial autocorrelation.

In the coefficient of determination equation, R2= 0.15 in the original OLS. The

GWR equation not only considers the spatial variation, but also can increases the

coefficient of determination 0.26. However, the proposed method has some

limitations: because the characteristic of GWR equation is its nth data points have

nth regressions, only flood damage of those nth coordinates can be forecast, and the

use of space is irrational. Consequently, this study applies the result of GWR

considering the spatial variation to proceed with the spatial clustering, and adopts

dummy variables to modify the original OLS equation. This approach not only

modifies the problem of the original OLS, which cannot consider the spatial

variation, but also raises the modified coefficient of determination to 0.26.

This study not only finds a quantitative equation to describe the dependent

variable, flood damage, as a function of the independent variable, flood depth, but

also considers the spatial variation. The final analyzing results indicate that the flood

damage to a household unit is mainly a factor of the flood depth and its located Zone.

That is, the region should be considered with respect to the effect of the function

coefficient.
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