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ABSTRACT

A method for data assimilation currently being developed is the ensemble Kalman filter. This method evolves
the statistics of the system by computing an empirical ensemble of sample realizations and incorporates mea-
surements by a linear interpolation between observations and predictions. However, such an interpolation is only
justified for linear dynamics and Gaussian statistics, and it is known to produce erroneous results for nonlinear
dynamics with far-from-Gaussian statistics. For example, the ensemble Kalman filter method, when used in
models with multimodal statistics, fails to track state transitions correctly.

Here alternative ensemble methods for data assimilation into nonlinear dynamical systems, in particular, those
with a large state space are studied. In these methods conditional probabilities at measurement times are calculated
by applying Bayes’s rule. These results show that the new methods accurately track the transitions between likely
states in a system with bimodal statistics, in which the ensemble Kalman filter method does not perform well.
The proposed new ensemble methods are conceptually simple and potentially applicable to large-scale problems.

1. Motivation and model

The problem of data assimilation is to determine the
best estimate of the solution history of a dynamical
system given some partial and inaccurate measurements.
The filtering problem is defined as that of estimating
the present state given prior observations. It is generally
accepted that the optimal solution is obtained by cal-
culating the conditional statistical distribution P[x,
t | R (t)] of the state vector x of the system given the set
R (t) of measurements up to the current time t [see Stra-
tonovich (1960) and Kushner (1962); also Lorenc and
Hammon (1988)]. Between measurements, the condi-
tional probability density solves the forward Kolmo-
gorov equation, a parabolic partial differential equation
for the state space. At measurement times, the proba-
bility density function is updated by Bayes’s rule:

Corresponding author address: Dr. Gregory L. Eyink, Dept. of
Mathematical Sciences, The Johns Hopkins University, Baltimore,
MD 21218.
E-mail: eyink@mts.jhu.edu

1
1 1 2 2P[x, t | R (t )] 5 P(y, t | x)P[x, t | R (t )], (1)m m m m mN m

where R ( ) is the set of measurements before and after7tm

the application of Bayes’s rule at time tm, P(y, tm | x) is
the probability of the outcome of the measurement given
the current state of the system, and N m is a normalization
factor. Such an optimal filtering scheme has been im-
plemented for simple models of stochastic ordinary dif-
ferential equations in Miller et al. (1999).

Solving the forward Kolmogorov equation for mul-
tidimensional, many-variable systems is not a practical
option. An effective way to circumvent this difficulty
is to evolve the statistics by computing an N-sample
ensemble of realizations xn(t) of the system for n 5 1,
. . . , N. The initial conditions for these realizations are
drawn independently from an assumed prior distribution
at the starting time and are assigned equal weights 1/N
for the calculation of ensemble averages. In the geo-
sciences, the best known Monte Carlo method of this
type is the ensemble Kalman filter [(EnKF); see Evensen
(1994); also Evensen and van Leeuwen (2000), and ref-
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FIG. 1. WEF method with (a) N 5 100 and (b) N 5 104. Data are
shown as circles, the WEF as solid lines, and the optimal solution
as dashed lines.

erences therein]. In this approach, a ‘‘Kalman gain ma-
trix’’ is calculated from ensemble-average statistics at
measurement times and employed to make a linear in-
terpolation between current ensemble states xn( ) and2tm

error-contaminated measurements. These generate a
new ensemble of realizations xn( ) for n 5 1, . . . , N,1tm

constructed each time measurements are taken. This is
traditionally called the ‘‘analysis step’’ in filtering ap-
plications. The new set of realizations are then evolved
forward under the model dynamics to the next mea-
surement time, and the procedure is repeated.

Unfortunately, the EnKF prescription for generating
the new samples xn( ), n 5 1, . . . , N does not, in1tm

general, produce an ensemble representative of the cor-
rect conditional distribution (1). Only for linear dynam-
ics with Gaussian error statistics does the interpolation
scheme with the Kalman gain matrix lead to such a
correct ensemble. The EnKF analysis step lacks any
fundamental justification for nonlinear dynamics with
non-Gaussian statistics.

These problems are of more than merely theoretical
concern. In fact, it has been shown in simple models
with multimodal distributions that the EnKF fails to
properly track transitions between probable states. In
Miller et al. (1999) and Evensen and van Leeuwen
(2000), the nonlinear stochastic differential equation in
one variable x(t) ∈ R1 was investigated:

dx(t)
5 f (x) 1 kh(t), t . 0 x(0) 5 x , (2)0dt

where h(t) is white noise with zero mean and covariance
^h(t)h(t9)& 5 d(t 2 t9). The function f (x) 5 2U9(x),
where the potential U(x) 5 22x2 1 x4, with minima at
x 5 61. The steady-state probability distribution Ps

giving the ‘‘climate statistics’’ of this model is propor-
tional to exp{2[2U(x)]/k2}. Hence it is bimodal, with
peaks at x 5 61, the two fixed points of the determin-
istic dynamics. Without the stochastic term in (2), the
value of x(t) will tend toward one of the stable steady
states for any initial condition. The stochastic forcing
term, however, can drive the state of the system from
one potential well to the other. An important test for a
data assimilation scheme is to see whether it can track
such transitions given measurements ym of the state of
the system at times tm,

y 5 x(t ) 1 r ,m m m

m 5 1, . . . , M, where rm are random observation errors.
For the case where the latter are assumed independent
and normally distributed, Miller et al. (1999) have cal-
culated the exact conditional statistics from the forward
Kolmogorov equation and Bayes’s rule. They found that
the EnKF lags in tracking the transition from one well
to the other in this model compared with the optimal
filter result (see also Eyink et al. 2002b). Evensen and
van Leeuwen (2000) acknowledged this problem with
the EnKF and further found that the inability of the
EnKF to track transitions accurately is rooted in the
linear analysis at measurement times.

We study in this same model some alternative en-
semble methods of data assimilation with a different
analysis step than the EnKF. As will be shown later,
these new methods successfully track the state transi-
tions for Eq. (2). In what follows it will also be clear
that these methods have important appealing character-
istics: they are very simple, efficient, and potentially
applicable to large-scale spatially extended systems.

2. Bayesian ensemble methods

The idea behind each of these methods is just to apply
Bayes’s rule (1) at measurement times tm appropriately.
Suppose that an F-dimensional vector hm(x) is measured
at time tm, where hm is an arbitrary function of the D-
dimensional state vector x. The outcome of the mea-
surement will be assumed to be of the form
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y 5 h [x(t )] 1 r ,m m m m

where rm is a normally distributed observation error
with mean zero and covariance matrix Rm. Then Bayes’s
rule (1) at the measurement time tm becomes

1P(x, t )m

1
T 21exp 2 [y 2 h (x)] R [y 2 h (x)]mm m m m5 62

25 P(x, t ),mN m

(3)

where we abbreviate, for simplicity, P(x, t) 5 P[x,
t | R (t)].

We now investigate several schemes for implement-

ing this formula when using ensemble methods to
evolve the statistics of a dynamical system.

a. Weighted ensemble filter

The first method that we study is referred to here as
the weighted ensemble filter (WEF); in the applied prob-
ability literature it is more commonly referred to as a
‘‘particle filter.’’ It was originally proposed by Ulam
and von Neumann (1949) but only became more widely
known after the work of Enachescu (1985). In this ap-
proach, one assigns to each sample xn(t) a variable
weight wn(t), n 5 1, . . . , N, which is altered according
to (3) at measurement times. Each of the realizations is
given initial weight 1/N at the starting time. At a mea-
surement time tm, Bayes’s rule is applied to recalculate
the weight for each realization as

1
2 T 221exp 2 {y 2 h [x (t )]} R {y 2 h [x (t )]}mm m n m m m n m1 22

1 2w (t ) 5 w (t ),n m n mN m

where N m is a normalization factor to ensure that
wn(t) 5 1 for all times t. Weights remain constantNSn51

between measurement times. In this scheme, averages
of a moment variable M(x) over the weighted ensemble
are given by

N

^M(t)& 5 w (t)M [x (t)].O n n
n51

Note that the calculation of the weights is very simple,
even when x has very high dimension D. The most
expensive operation, in fact, is the evaluation of the
nonlinear function, hm(x), N times.

This scheme can be shown to be convergent to the
optimal filter estimate in the limit as N → ` [see Del
Moral (1996) and also the useful, recent review of Cri-
san and Doucet (2002)]. However, the rate of conver-
gence is rather slow, with the O(1/ ) errors typicalÏN
of all Monte Carlo methods. Furthermore, in practical
applications, an operational ensemble prediction can
deal with only moderate values of N, generally N K
100 [for a discussion of this point see Miller and Ehret
(2002), where extensive further references to the liter-
ature may be found]. For these reasons, the convergence
properties of the scheme as N → ` may be mostly of
academic interest. Instead, one must consider the per-
formance of the method with only a moderate number
of samples. Therefore, in our test of this method and
the other methods introduced below, we consider both
a large ensemble, with N 5 104, and a smaller one, with
N 5 100, to see the effect of a reduced number of
samples.

Results from the WEF method in the model system
(2) are shown in Fig. 1, with N 5 100 samples used in
obtaining Fig. 1a and N 5 104 in obtaining Fig. 1b. The
simulated measurements are represented by the open
circles. These were generated by adding independent
normal random errors of zero mean and standard de-
viation 0.2 to a particular solution x(t) of (2), sampled
at unit time intervals. The solution considered experi-
enced a state transition from x 5 11 to x 5 21 some-
time around t 5 4;5. For reference, we have plotted
in dashed lines the optimal filter mean and plus and
minus the standard deviation, which were all calculated
using the forward Kolmogorov equation, as in Miller
et al. (1999). As can be seen, the optimal filter estimate
clearly indicates the transition around t 5 4;5. The
WEF estimates of the same statistics are represented by
solid lines in Fig. 1.

As shown in Fig. 1b, the WEF method for N 5 104

also succeeds in tracking the transition at t 5 4;5,
whereas in Miller et al. (1999) and Eyink et al. (2002b),
it was shown that the EnKF lags by one time unit in
making the transition. Evensen and van Leeuwen (2000)
have traced this defect of the EnKF to the linear analysis,
using the Kalman gain matrix. We see here that an en-
semble method that employs an analysis scheme based
instead on an approximate implementation of Bayes’s
theorem correctly tracks the transition with no lag. The
WEF result for N 5 104 is, in fact, quite close to the
optimal filter result, except that after the transition the
fluctuation effects in the averages are rather large. Most
of the weight is given then to just a few samples that
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FIG. 2. WRF method with (a) N 5 100 and (b) N 5 104. Data are
shown as circles, the WRF as solid lines, and the optimal solution
as dashed lines.

made the transition from x 5 1 to x 5 21 at the correct
time. Therefore, the effective size of the ensemble is
much less than 104 and only a few fluctuating samples
dominate the averages. Nevertheless, the correspon-
dence of the WEF for N 5 104 with the optimal filter
averages is quite acceptable.

However, for N 5 100, the agreement is much worse.
As seen in Fig. 1a, the transition is now missed entirely,
even after three consecutive measurements in the well
at x 5 21. The only sign of the transition is a broadening
of the variance after the third measurement. The reason
is that, with only 100 realizations, no sample made the
transition from x 5 1 to x 5 21 at the correct time (or
even after the subsequent three measurements). There-
fore, the transition to x 5 21 occurred only very slowly
because of the gradual growth of the weights, after suc-
cessive measurements, of samples already residing in
the x 5 21 well. From this example we see that the
consequences of small sample size in the WEF method
may be severe for realistic applications, where N is at
most a few hundreds.

b. Weight resampling filter

One idea to overcome the problem with effective re-
duced sample size in the WEF method is to redistribute
the large weights. This leads us to a simple modification
of WEF, already considered in other contexts by several
authors (see Kitagawa and Gersch (1996); Kitagawa
1996, 1998; Gordon et al. 1993), which we call here
the weight resampling filter (WRF). Its potential appli-
cation to data assimilation for atmospheric predictability
has already been studied by Anderson and Anderson
(1999) and Pham (2001) in the context of the chaotic
three-dimensional model of Lorenz (1963). This method
is almost the same as that of the WEF save for an ad-
ditional resampling at measurement times. That is, after
we have new weights wn( ) the same as in the WEF1tm

method above, we select a new N-sample ensemble of
realizations, each with the same weight 1/N. The new
ensemble is generated by selecting from the N values
xn( ), n 5 1, . . . N of the old ensemble, with proba-2tm

bilities determined by the weights wn( ). After this1tm

resampling, some of the realizations may disappear, and
some of them may be replicated several times. The re-
sult, however, is that large weights are redistributed over
samples of equal weight. Note that for deterministic
dynamics, replicated samples will evolve in unison in
the future and, hence, shall effectively represent still a
single sample with a large weight. This is not a problem
in our stochastic system (2), or in other systems with
random model error, because identical initial conditions
that experience different realizations of the system noise
have distinct future evolutions. However, for determin-
istic dynamics, the replicated samples in the WRF meth-
od must be variously perturbed to show different future
behaviors. Such perturbations may be generated by the
singular vector or bred vector methods discussed in

Miller and Ehret (2002), by density kernel methods,
discussed in Hürzeler and Künsch (1998), Anderson and
Anderson (1999), and Pham (2001), or by an effective
combination of these.

In Fig. 2, we plot the results of our experiment with
the WRF estimator in the model system (2) for N 5
100 and for N 5 104. Notations are the same as in Fig.
1. Just as in the WEF method, the WRF scheme pro-
duces an estimate that converges to the optimal filter
estimate as N → ` (see Crisan and Doucet 2002). In-
deed, in Fig. 2b we see that the WRF with N 5 104 is
nearly indistinguishable from the optimal filter for the
statistics considered. As expected, the result is better
than that of the WEF with the same number of samples
and, in particular, the fluctuations due to small effective
sample size are reduced. Furthermore, the WRF estimate
for N 5 100, shown in Fig. 2a, now succeeds in tracking
the transition, where the WEF failed to do so at all.
However, there is still a lag, just as in the EnKF. The
reason for this is easy to understand. Since a sequence
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of accurate measurements was taken at times t 5 1 to
3 in the well at x 5 11, all realizations ‘‘died out’’ in
the other well at x 5 21. That is, those realizations
acquired small weights under Bayes’s rule (1) and, con-
sequently, were selected to survive with small proba-
bility upon resampling. After several such resamplings,
the entire population of N 5 100 samples resided in the
well at x 5 11. Then, despite the measurements indi-
cating a transition at t 5 4;5, there were simply no
ensemble members in the opposite well at x 5 21 to
receive the higher weights under the Bayes’s rule cal-
culation. Consequently the WRF method required a few
of the samples in the well at x 5 11 to dynamically
make the transition to the opposite side, and this re-
quired additional time. The time was shorter than with
the WEF because the samples most likely to make the
transition were preferentially resampled. As soon as a
few samples moved to the 21 well, they received most
of the weight at the next measurement and then repop-
ulated that well. However, in making the transition, a
lag time still resulted. This type of problem is likely to
be generic when the WRF method is applied for mod-
erate sample size N to nonlinear systems with multi-
modal statistics.

c. Parametric resampling filter

It is desirable to have a resampling method that can
keep uniform weights, as does the WRF, but avoids the
difficulty of the complete disappearance of realizations
with small weights. A solution is to parametrically mod-
el the probability density so that small probability events
are preserved, even for small values of N. In other
words, the idea is to employ a parametric density func-
tion P(x; l) to approximate the real probability density
function at measurement times tm. We outline here a
particular example of such a method, which we call the
parametric resampling filter (PRF), that uses an expo-
nential family of probability density functions (pdfs).
Full details of the method are outlined here in the ap-
pendix. In this section we simply describe the method
in its application to the model equation (2).

A convenient form for the parametric representation
of the pdf in this case is

2P(x; l) 5 exp(l x 1 l x ) · Q(x),1 2

where l 5 (l1, l2). Chosen here to be an equally
weighted mixture of two Gaussians, Q(x) is an appro-
priate reference pdf:

1 1 1
2Q(x) 5 exp 2 (x 1 1)

25 2 [ ]2 2sÏ2ps

1 1
21 exp 2 (x 2 1) .

2 62 [ ]2sÏ2ps

where s2 5 k2/16. This already gives a reasonable rep-
resentation of the bimodal conditional pdfs of the model.

Eyink et al. (2002a,b,c) use such a representation to
carry out data assimilation for the model by moment
closure methods. In principle, convergence to the exact
pdfs can be obtained by taking more Gaussians in the
weighted sum for Q(x), approaching the invariant mea-
sure Ps(x). The basic idea is then (i) to fit such a dis-
tribution P(x; ) to the empirical ensemble of samples2l m

xn( ), n 5 1, . . . , N before the measurement, (ii) to2tm

apply Bayes’s rule to generate a new parametric model
distribution P(x; ) subsequent to the measurement,1lm

and (iii) to sample this distribution to generate a new
ensemble of samples xn( ), n 5 1, . . . N after the mea-1tm

surement.
Step (i) is achieved by determining the moments mi

5 ^xi&, i 5 1, 2 empirically from the N-sample ensemble

N1
2 2 im (t ) 5 [x (t )] , i 5 1, 2.Oi m n mN n51

To fit the statistics by the parametric model, we must
determine corresponding values of l1, l2. This is accom-
plished by carrying out the following maximization:

2 T 2l 5 argmax {l m 2 F(l)},m m
l

where 5 [m1( ), m2( )], and F(l) is the cumulant2 2 2m t tm m m

generating function F(l) 5 ln[# exp(l1x 1 l2x2)Q(x)
dx] given explicitly below.

Step (ii) is carried out simply by setting l1( ) 51tm

l1( ) 1 ym/Rm, l2( ) 5 l2( ) 2 1/(2Rm), because of2 1 2t t tm m m

the exponential form of the parametric representation.
Step (iii) is made simpler by completing squares in

the parametric model to write

1
P(x; l) 5

2Ï2ps (l)

1
23 w (l) exp 2 [x 2 j (l)]2 225 61 2s (l)

1
21 w (l) exp 2 [x 2 j (l)] ,1 125 622s (l)

(4)

where w6(l), j6(l), and s(l) are elementary functions
of the parameters l:

2 26l s (l)/s1e
w (l) 5 ,6 2 22 cosh[l s (l)/s ]1

1
2j (l) 5 s (l) l 6 , and6 1 21 2s

2s
2s (l) 5 .

21 2 2l s2

The convex ‘‘free energy’’ F(l) is found from the same
calculation to be
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FIG. 3. PRF method with (a) N 5 100 and (b) N 5 104. Data are
shown as circles, the PRF as solid lines, and the optimal solution as
dashed lines.

2s (l) s(l)
2 2F(l) 5 (s l 1 2l ) 1 ln1 22 [ ]2s s

2l s (l)11 ln cosh .
2[ ]s

Now the N samples can be generated for n 5 1, . . . ,
N by first making a random selection of one of the
Gaussians with probabilities w6(l) and then, for the 6
term selected, taking xn 5 j6(l) 1 s(l)nn. Here nn, n
5 1, . . . , N is a sequence of independent, normally dis-
tributed random variables with mean 0 and variance 1.

These formulas all have relatively simple generaliza-
tions to multidimensional systems, when the reference
pdf is taken to be a weighted sum of Gaussians. See
the appendix for those formulas and computational de-
tails in the general case.

In Fig. 3 we plot the results of the PRF method for
our model system (2), with the double-Gaussian para-

metric pdf for N 5 100 and N 5 104. As for the WRF
method, fluctuations are reduced by the resampling, rel-
ative to the WEF statistics at the same value of N. The
results are not as good as those for the WRF in the large
ensemble with N 5 104, but they could be improved
by a parametric model with a mixture of more than two
Gaussians. Even for the double-Gaussian pdf, the agree-
ment is quite satisfactory. Furthermore, for N 5 100 the
results are the best of all the approximation methods
considered, successfully tracking the transition, with rel-
atively small fluctuations. The key to success in follow-
ing the measurements without a time lag is the presence
of both Gaussians in the model, even when the weights
w6(l) of one or the other become small. As soon as
measurements indicate a transition back to that side,
Bayes’s rule makes the corresponding weight large, and
resampling repopulates that well with many samples.
Note in this one-dimensional model that EOFs, singular
vectors (SVs), bred vectors, etc. all coincide, and that
simply generating samples in the wrong well by a su-
perposition of ‘‘optimal growth’’ modes would not solve
the problem. In that case, as for the WRF, there would
be a time lag in tracking the transition, required for some
samples to make the excursion to the correct well on
the opposite side.

There is an additional advantage of the PRF method,
involving the quantity called relative entropy of a prob-
ability density P. With respect to the longtime ‘‘climate
state’’ Ps, relative entropy is defined by

P(x)
H(P | P ) 5 dx P(x) ln (5)s E [ ]P (x)s

(e.g., see Kleeman 2002). Consider the entropy of a time
sequence of PDFs P(t) obtained by exactly solving the
filtering problem for measurements at a discrete set of
times tm, m 5 1, . . . , M. Assuming climate statistics
hold initially, then H(t) 5 0 at t 5 0, and it does not
change until there is a difference of P(t) from Ps due
to information acquired from observations. When a
measurement occurs, there is an upward jump in entropy
whose size is a numerical measure of the information
gain from, or ‘‘utility’’ of, the observations (see Klee-
man 2002). Between measurements, H(t) decreases back
to zero because the pdf’s P(t) at large t . 0 converge
again to Ps. This is an exact H theorem for Markov
stochastic processes like our model (2). Parametric mod-
els give an approximation to the entropy, as H[P̃(t) | P̃s],
where P̃(t) 5 P[l(t)] and P̃s 5 P(ls). Here, the param-
eters ls should be chosen so that moments of P(ls)
match those of the exact Ps. It is straightforward to show
that for exponential families of parametric pdfs, as con-
sidered in the PRF method,

T˜ ˜H [P(t) | P ] 5 [l(t) 2 l ] m(t) 2 {F [l(t)] 2 F(l )}.s s s

Hence, it is easy to calculate this approximation H̃(t) in
the PRF method, along with statistics such as the con-
ditional mean and variance.
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FIG. 4. Relative entropy for (a) the optimal solution, and com-
puted from the PRF method outcome with (b) N 5 100 and (c) N
5 104.

In Fig. 4 we show results for the relative entropy in
our model (2). Fig. 4a depicts the exact entropy H(t)
calculated by formula (5), using the optimal filter PDF’s
P(t) from the forward Kolmogorov equation and Bayes’s
rule. We see that there is a large information gain from
the measurement at time t 5 4, with a rapid loss im-
mediately thereafter. In fact, if there were no subsequent
measurements, then the entropy would drop close to
zero by about time t 5 6. Thus, with just one mea-
surement indicating a transition from 11 to 21, one
would lose predictability very quickly. However, with
the additional measurements at times t 5 5, 6, 7 indi-
cating continuing residence in the 21 well, a different
behavior is observed. In this case, there is a very slow
relaxation back to zero at long times after the last mea-
surement at time t 5 7. The value of those final mea-
surements is high, and the loss of prediction utility is
very slow afterward. Figures 4b and 4c show the ap-
proximate entropy H̃(t) calculated from the PRF method,
with N 5 100 and N 5 104 in Figs. 4b and 4c, respec-

tively. They are quite similar to each other, except that
the N 5 100 result is rougher, as expected. Their mag-
nitudes are also similar to the true entropy H(t), although
not exactly equal numerically. Most importantly, we see
that H̃(t) captures the large gain of information at time
t 5 4, followed by a rapid loss and the slow decay at
long times after the last measurement at time t 5 7.
These results indicate that the PRF method, even for
moderate values of N, may yield a useful approximation
to the relative entropy in cases where the statistics are
far from Gaussian.

3. Conclusions and remarks

In this paper we have discussed three ensemble fil-
tering schemes, the weighted ensemble filter (WEF), the
weight resampling filter (WRF), and the parametric re-
sampling filter (PRF). The latter, in particular, appears
to be new. They differ from the well-known ensemble
Kalman filter (EnKF) in that the analysis step at the
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measurement times is carried out by an approximate
implementation of Bayes’s theorem, not by a linear in-
terpolation via a Kalman gain matrix. For a large enough
number of samples, the Bayesian ensemble methods can
all successfully track transitions in multimodal systems,
where the EnKF performs less well. For smaller num-
bers of samples, the PRF performs the best of all the
Bayesian methods in a simple test problem with bimodal
statistics. This is an important consideration in practical
applications since the number of samples that can be
employed at operational forecast centers is restricted.
The PRF method also provides a convenient approxi-
mation of relative entropy, which measures the infor-
mation made available from observations on the system.

All three of these Bayesian methods are potentially
applicable to large-scale, spatially extended systems. In
addition to filtering and prediction, it is possible to per-
form smoothing as well, using the same methods. Applied
to a system with dynamics close to linear and statistics
near-Gaussian, these new methods will yield results
equivalent to those obtained with the ensemble Kalman
filter. They should be most useful when applied instead
to geophysical systems with multiple attractors and mul-
timodal statistics, or with otherwise highly non-Gaussian
distributions. Miller and Ehret (2002) give many ex-
amples of geophysical systems with multimodal statis-
tical distributions, for instance, the Kuroshio Current
south of Japan. Other examples, such as the El Niño–
Southern Oscillation (see Burgers and Stephenson 1999),
may have unimodal statistics but still exhibit other symp-
toms of non-Gaussianity, such as nonzero skewness or
kurtosis. Nonnormal distributions are to be expected for
the nonlinear dynamical systems that govern most geo-
physical systems. Therefore, we believe that there will
be important applications of the methods developed here
to prediction of atmospheric and oceanographic systems.
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APPENDIX

A Parametric Resampling Method

In this appendix we briefly outline the parametric
resampling method in the general case. Complete details
will appear in a forthcoming article (G. L. Eyink and
S. Kim 2003, unpublished manuscript, hereafter EyKi).

The method is based upon modeling the system sta-
tistics by an exponential family of PDFs:

T TP(x, t ; l) 5 exp[l h (x) 1 h (x)l h (x)] · Q(x),m 1 m m 2 m

where hm(x) is the measured F vector at time tm, and

l 5 (l1, l2), where l1 is an F vector, and l2 is a
symmetric F 3 F matrix. An appropriate reference PDF,
Q(x), may be chosen, for example, to be a weighted
sum of Gaussians. Most of the method does not depend
upon any particular choice of Q(x). As discussed in
section 2c, the analysis at the measurement times tm, m
5 1, . . . , M is carried out in three steps.

• Step (i). In order to determine , we choose P(x; l)2lm

to match the empirical ensemble xn( ), n 5 1, . . . , N2tm

for the average of a moment vector M 5 (M1, M2):
N1

2 2dx M(x)P(x; l ) 5 M[x (t )],OE m n mN n51

where M1(x) 5 hm(x), and M2(x) 5 hm(x) (x). Giv-Thm

en the value on the rhs—call it —we can determine2m m

the corresponding value by the maximization2l m

2 T 2l 5 argmax {l m 2 F(l)}, (A1)m m
l

where F(l) 5 ln{# dx exp[lTM(x)]Q(x)}, and lTm 5
l1 · m1 1 l2:m2.

• Step (ii). After choosing l2, we apply Bayes’s rule
to get the updated l1 5 ( , ), namely,1 1l l1 2

1
1 2 1 221 21l 5 l 1 R y l 5 l 2 R .1 1 2 2 2

• Step (iii). Draw N independent samples xn( ), n 51tm

1, . . . N from the new distribution P(x; ). This is1lm

the only step that depends upon a particular choice
for the reference pdf. Various possibilities are dis-
cussed in a forthcoming article (EyKi). The simplest
case arises when the measured variables are linear in
the state vector:

h (x) 5 d 1 H x,mm m

where dm is an F vector, and Hm is an F 3 D matrix.
It is then very convenient to take Q as a sum of Gaus-
sians:

1
21exp 2 C : (x 2 j )(x 2 j )s s s

S [ ]2
Q(x) 5 w ,O s

Ds51 Ï(2p) det(C )s

where ws 5 1, and js, Cs are the mean and co-SSs51

variance, respectively, of the sth Gaussian. The terms
in the sum should be selected so that Q(x) is a rea-
sonable approximation to the steady-state measure
Ps(x), at least in applications to climate forecasting.
Such a representation can be obtained empirically
from conditional averaging over a long time series of
the dynamics, given some identified set of ‘‘statistical
states’’ or ‘‘regimes’’ s 5 1, . . . , S of the system.
Otherwise, for more short-range forecasting, the ref-
erence PDF should be chosen as Q(x, t) to be explicitly
time dependent and to reflect the phase-space diver-
gence of sample solutions on those time scales. We
do not further consider that problem here.
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To resample from the PDF after conditioning upon
measurements, we note that (4) can be generalized, un-
der our stated assumptions, to

P(x; l)

1
21exp 2 C (l) : [x 2 j (l)][x 2 j (l)]s s s5 6S 2

5 w (l) ,O s
Ds51 Ï(2p) det[C (l)]s

where ws(l), js(l), and Cs(l) will be given explicitly
in EyKi. The N samples can be generated, for example,
by first making a random selection of one of the Gaus-
sians with probabilities ws(l) and then, for the ‘‘re-
gime’’ sn selected, taking

D

x 5 j (l) 1 n s (l)e (l)On s n,d s ,d s ,dn n n
d51

for n 5 1, . . . , N. Here (l) are the eigenvalues of2ss,d

Cs(l), and es,d(l) are the corresponding eigenvectors for
s 5 1, . . . , S, d 5 1, . . . , D, and nn,d, n 5 1, . . . , N, d
5 1, . . . , D is a sequence of independent, normally dis-
tributed random variables with mean 0 and variance 1.

In general, the resampling step (iii) is the most com-
putationally intensive part of the analysis. Carried out
as above, it requires diagonalizing the D 3 D matrices
Cs(l) for any required l. This will be too expensive to
carry out in general. Instead, the forthcoming article
(EyKi) will detail alternative procedures based upon
Monte Carlo–Markov chain sampling methods, which
require only diagonalizing the fixed set of l-indepen-
dent matrices Cs, s 5 1, . . . , S. The corresponding
eigenvectors es,d, s 5 1, . . . , S, d 5 1, . . . , D are the
conditional empirical orthogonal functions (CEOFs) of
the system, corresponding to each of its ‘‘statistical
states’’ or ‘‘regimes.’’ Alternatively, knowing Cs, the
corresponding SVs may be constructed by the procedure
discussed in Ehrendorfer and Tribbia (1997) (see also
Miller and Ehret 2002). For small sample sizes N, the
generated ensemble may better represent the pdf a finite
time later if the expansion is given in terms of SVs
rather than EOFs.

Except for step (iii) the entire procedure is carried
out in a space of lower dimension than D. The mini-
mization in step (i) is over F 1 F(F 1 1)/2 5 F(F 1
3)/2 parameters. The Bayesian update in step (ii) and
the calculation of ws(l), js(l), and Cs(l) in step (iii)
are accomplished by linear algebra operations in the
space of dimension F. Of course, these steps may also
be nontrivial when the number of measurements F is
large.
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