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ABSTRACT

Operational flood forecasting requires that accurate estimates of the uncertainty associated with model-
generated streamflow forecasts be provided along with the probable flow levels. This paper demonstrates
a stochastic ensemble implementation of the Sacramento model used routinely by the National Weather
Service for deterministic streamflow forecasting. The approach, the simultaneous optimization and data
assimilation method (SODA), uses an ensemble Kalman filter (EnKF) for recursive state estimation al-
lowing for treatment of streamflow data error, model structural error, and parameter uncertainty, while
enabling implementation of the Sacramento model without major modification to its current structural
form. Model parameters are estimated in batch using the shuffled complex evolution metropolis stochastic-
ensemble optimization approach (SCEM-UA). The SODA approach was implemented using parallel com-
puting to handle the increased computational requirements. Studies using data from the Leaf River, Mis-
sissippi, indicate that forecast performance improvements on the order of 30% to 50% can be realized even
with a suboptimal implementation of the filter. Further, the SODA parameter estimates appear to be less
biased, which may increase the prospects for finding useful regionalization relationships.

1. Introduction and scope

Since the early 1960s, considerable effort has been
devoted to the development and application of models
of the rainfall–runoff process. A class of these, often
called “conceptual watershed models” represents the
precipitation–soil moisture–streamflow water balance
dynamics using heuristic and/or empirical relationships
that represent a perceptual and conceptual hydrologic
understanding of watershed behavior at aggregate
scales (see, e.g., Kuczera 1997). Conceptual watershed

models used for operational streamflow forecasting
typically have 10 or more parameters that specify the
behavior of the transfer functions relating inputs to out-
puts via series and parallel pathways of interconnected
conceptual water storages (state variables) representing
soil moisture accumulations in the upper and lower soil
zones. It is tacitly assumed that these conceptual stor-
ages correspond to “real” control volumes in physical
space, even though the boundaries of these control vol-
umes cannot generally be explicitly delineated.

The Sacramento Soil Moisture Accounting concep-
tual watershed model (SAC-SMA; Burnash et al. 1973)
is used by the National Weather Service (NWS) for
operational streamflow forecasting and flood warning
throughout the United States. The model has 16 pa-
rameters whose values must be specified (Table 1).
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While the values of some of these parameters can be
estimated directly from knowledge of physical water-
shed characteristics, most represent “effective” water-
shed properties that cannot, in practice, be measured
via direct observation in the field. It is common prac-
tice, therefore to estimate values for the model param-
eters by calibrating the performance of the model
against a historically observed streamflow hydrograph,
using either a “manual expert” trial-and-error approach
or an automated search algorithm (e.g., Gupta et al.
1998; Boyle et al. 2000; Madsen 2000). Note that pa-
rameters estimated in this manner are spatially and
temporally lumped (i.e., effective) representations of
heterogeneous watershed properties.

While considerable progress has been made in the
development and application of automated procedures
for watershed model calibration, such methods have
received criticism for their lack of rigor in treating vari-
ous sources of uncertainty (e.g., Beven and Binley 1992;
Thiemann et al. 2001; Vrugt et al. 2005). In particular,
most procedures explicitly account only for uncertain-
ties in the streamflow measurement data (e.g., So-
rooshian and Dracup 1980; Sorooshian et al. 1993) and
in the parameter estimates (e.g., Kuczera 1983a,b;

Beven and Binley 1992; Gupta et al. 1998; Thiemann et
al. 2001; Vrugt et al. 2003b, 2006a). Most methods use
batch processing of the data to search for parameter
estimates that minimize a likelihood measure of the
overall (statistical) variance of the model residuals. Un-
certainties that stem from errors associated with the
measured system inputs (rainfall and potential evapo-
transpiration), initialization and propagation of state
variables (moisture storages), and model structural er-
rors arising from inadequate representation of physical
processes (including the aggregation of spatially distrib-
uted processes) have not been adequately handled in an
explicit manner.

Over the past decade, interesting methods for ad-
dressing such problems have appeared in the literature,
with attention given to the problem of estimating rea-
sonable uncertainty bounds on the model predictions.
Bayesian, pseudo-Bayesian, set-theoretic, multiple-
criteria, and recursive model identification strategies
that estimate model parameter and streamflow predic-
tion uncertainties can provide forecasts of the “most
probable” streamflow value along with estimates of the
ranges of possible outcomes (e.g., Kuczera 1983a,b;
Keesman 1990; van Straten and Keesman 1991; Beven

TABLE 1. Parameter and state variables in the SAC-SMA model.

Capacity thresholds
Initial
ranges

SCEM-UA
ranges

SODA
ranges

UZTWM Upper-zone tension water maximum storage (mm) 1.0–150.0 90.2–91.1 85.8–129.3
UZFWM Upper-zone free water maximum storage (mm) 1.0–150.0 16.3–16.8 66.5–93.6
LZTWM Lower-zone tension water maximum storage (mm) 1.0–500.0 267.6–270.2 121.2–155.3
LZFPM Lower-zone free water primary maximum storage (mm) 1.0–1000.0 141.8–148.2 384.6–730.4
LZFSM Lower-zone free water supplemental maximum storage (mm) 1.0–1000.0 51.0–53.9 180.0–557.4
ADIMP Additional impervious area (�) 0.0–0.40 0.08–0.10 0.38–0.40

Recession parameters
UZK Upper-zone free water lateral depletion rate (day�1) 0.1–0.5 0.50–0.50 0.32–0.46
LZPK Lower-zone primary free water depletion rate (day�1) 0.0001–0.025 0.001–0.001 0.0006–0.004
LZSK Lower-zone supplemental free water depletion rate (day�1) 0.01–0.25 0.06–0.07 0.18–0.19

Percolation and other
ZPERC Maximum percolation rate (�) 1.0–250.0 248.9–250.0 4.5–94.8
REXP Exponent of the percolation equation (�) 1.0–5.0 2.6–2.7 1.2–2.1
PCTIM Impervious fraction of the watershed area (�) 0.0–0.1 0.007–0.007 0.04–0.05
PFREE Fraction percolating from upper- to lower-zone free

water storage
(�) 0.0–0.6 0.13–0.13 0.37–0.44

Not optimized
RIVA Riparian vegetation area (�) 0.0
SIDE Ratio of deep recharge to channel base flow (�) 0.0
RSERV Fraction of lower zone free water not transferable to

tension water
(�) 0.3

States Description
UZTWC Upper-zone tension water storage content (mm)
UZFWC Upper-zone free water storage content (mm)
LZTWC Lower-zone tension water storage content (mm)
LZFPC Lower-zone free primary water storage content (mm)
LZFSC Lower-zone free secondary water storage content (mm)
ADIMC Additional impervious area content (mm)
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and Binley 1992; Klepper et al. 1991; Freer et al. 1996;
Gupta et al. 1998; Thiemann et al. 2001; Young 2001;
Vrugt et al. 2003b, 2006a). Such methods typically sum-
marize the model uncertainty primarily in terms of un-
certainty in the parameter estimates.

Since the early 1980s, state-space filtering methods
have been proposed as having the potential for explic-
itly handling uncertainties in hydrological models. In
contrast to classical model calibration strategies, state-
space filtering methods continuously update the states
in the model when new measurements become avail-
able, to improve the model forecast and estimate fore-
cast accuracy. Variations of the Kalman filter approach
(Kalman 1960) have been applied to real-time stream-
flow forecasting by Todini et al. (1976), Kitanidis and
Bras (1980a,b), Bras and Restrepo-Posada (1980), Bras
and Rodriguez-Iturbe (1985), Wood and O’Connell
(1985), Awwad and Valdés (1992), Awwad et al. (1994),
and Young (2002), among others. Of particular rel-
evance to this paper is the pioneering work of Kitanidis
and Bras (1980a,b) in which an extended Kalman filter
(EKF) was implemented using a state-space reformu-
lation of the nonlinear SAC-SMA model to track
probabilistic estimates of the state variables and to de-
tect impulse-type rainfall errors. However, the recur-
sive KF approach did not achieve practical operational
status for a variety of practical reasons, an important
one being that the implementation requires the highly
nonlinear original model to be rendered into a continu-
ously differentiable state-space form, involving various
modifications and/or approximations (Kitanidis and
Bras 1980a,b; Georgakakos et al. 1988; Georgakakos
and Sperflage 1995; Refsgaard 1998; Seo et al. 2003).
Besides the fact that the input-state-output behavior of
the reformulated state-space model can deviate signifi-
cantly from the original model—the EKF is notoriously
unstable if the model nonlinearities are strong (Even-
sen 1992; Miller et al. 1994)—the model reformulation
and the computation of model derivative equations can
require a considerable amount of experience and ex-
pertise (Seo et al. 2003). Further, the computational
costs of state-space filtering methods (e.g., KF and
EKF) are significant (especially for high-dimensional
state-vector problems, such as spatially distributed
models) and have, so far, restricted their widespread
implementation for operational use.

Other data assimilation approaches have been re-
cently explored. Seo et al. (2003) investigated varia-
tional assimilation (VAR) as a tool for assimilating cli-
matological estimates of potential evaporation and
real-time observations of streamflow and precipitation
to improve SAC-SMA model streamflow forecasts. The
VAR method has achieved widespread application to

hydrometeorological and oceanographic models and
does not depend on a state-space model formulation,
but does require availability of an adjoint code that can
be difficult to derive. Hydrological investigations of
VAR include the work of Reichle et al. (2001) for es-
timating spatial soil-moisture distributions by assimila-
tion of remotely sensed microwave brightness tempera-
tures into a land surface model. Madsen and Skotner
(2005) investigated the suboptimal steady Kalman filter
approximation of Cañizares et al. (2001) for adaptive
state updating using the Mike-11 model and reported
that the reduced computational costs make the method
better suited than the full Kalman filter for operational
use.

In the past few years, ensemble forecasting tech-
niques based on sequential data assimilation (SDA)
methods have become increasingly popular due to their
potential ability to explicitly handle the various sources
of uncertainty in operational hydrological models.
Early techniques reported in the literature include the
dynamic identifiability analysis approach for recursive
identifiability and detection of time variation in model
parameters (DYNIA; Wagener et al. 2003), the param-
eter identification method based on localization of in-
formation (PIMLI; Vrugt et al. 2002), and the Bayesian
recursive estimation approach (BaRE; Thiemann et al.
2001; Misirli 2003; Gupta et al. 2003). Most recently,
techniques based on the ensemble Kalman filter
(EnKF; Evensen 1994) have been suggested as having
the power and flexibility required for data assimilation
using conceptual watershed models. Vrugt et al. (2005)
presented the simultaneous optimization and data as-
similation method (SODA), which uses EnKF to recur-
sively update model states while estimating time-inva-
riant values for the model parameters using the shuffled
complex evolution metropolis stochastic-ensemble op-
timization approach (SCEM-UA; Vrugt et al. 2003b).
A novel feature of SODA is its explicit treatment of
errors due to parameter uncertainty, state variables’
uncertainty, model structural error, and streamflow
measurement error. Moradkhani et al. (2005a,b) pre-
sented two different dual state-parameter estimation
(DSPE) methods based on EnKF and sequential Monte
Carlo techniques [SMC; also known as particle filtering
(e.g., Gordon et al. 1993; Arulampalam et al. 2002)],
respectively, for simultaneous recursive time-variable
estimation of model states and parameters. Both EnKF
and SMC allow accurate tracking of second-order mo-
ments of the probability distribution functions for mod-
els having nonlinear dynamics, but SMC can also track
higher moments and therefore incurs increased compu-
tational costs. The EnKF achieves better computational
efficiency by using linear rules for state updating but
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may give suboptimal performance in the presence of
strong model nonlinearities.

The objective of this paper is to investigate the ap-
plicability and advantages of using SODA for joint pa-
rameter-state estimation and ensemble streamflow
forecasting using the operational SAC-SMA concep-
tual watershed model. Our motivation is that the
SODA method has the potential for ready assimilation
into NWS operational forecasting procedures, thereby
providing stochastic streamflow forecasts without re-
quiring significant modifications to operational model
codes or software. The paper is organized as follows.
Section 2 presents a brief description of the SAC-SMA
model. Sections 3 and 4 discuss the rationale and archi-
tecture of SODA and its implementation using parallel
computing. Sections 5 and 6 present the experimental
design and data used in this study and discuss the find-
ings and results. In particular, we compare the per-
formance of the stochastic SODA method with the
conventional deterministic approach in current opera-
tional usage. Finally, section 7 summarizes the results
and conclusions and explores implications for future
work.

2. Sacramento Soil Moisture Accounting model

The SAC-SMA model (Fig. 1) is a lumped concep-
tual watershed model consisting of six state variable
reservoirs representing the accumulation of water in
two soil zones (upper and lower), in the forms of both
“tension” and “free” water (Burnash et al. 1973; Brazil
and Hudlow 1981). The upper zone represents surface
soil processes and interception storage, while the lower
zone represents deeper soil processes and groundwater
storage. Nonlinear equations relate the absolute and
relative quantities of water within the state variable
reservoirs and control the partitioning of precipitation
into overland flow, infiltration to the upper zone, inter-
flow, percolation to the lower zone, and fast and slow
components of groundwater recession baseflow. Satu-
ration excess overland flow occurs when rainfall ex-
ceeds the interflow and percolation capacities and the
upper zone storage is full. Percolation from the upper
to the lower layer is controlled by a complex nonlinear
process dependent on the storages in both soil zones.

The model has 13 user-specifiable (and 3 fixed) pa-
rameters and an evapotranspiration demand curve (or

FIG. 1. Schematic representation of the SAC-SMA model as implemented in this study. The rectangles refer to the various model
states, while arrows indicate fluxes between compartments; Z1, Z2, and Z3 refer to the three main channel components, which sum
together to become the streamflow Z at the watershed outlet.
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adjustment curve). Inputs to the model include mean
areal precipitation (MAP) and potential evapotranspi-
ration (PET) while the outputs are estimated evapo-
transpiration and channel inflow. A unit hydrograph or
kinematic wave routing model is commonly used to
rout channel inflow downstream to the gauging point.
In this work, we instead use a simple Nash cascade
(NC) of three linear reservoirs to rout the upper zone
(quick response) channel inflow (Z1) while the lower
zone recession components Z2 and Z3 are passed di-
rectly to the gauging point. This configuration adds one
parameter and three state variables to the model, but
facilitates inclusion of the NC routing model parameter
and states in the data assimilation process. Moreover,
NC routing considerably improves computational time
as it avoids the need for computationally expensive
convolution. Our formulation of the model therefore
has 14 time-invariant parameters and 9 time-varying
state variables to be estimated.

The SAC-SMA model has been used extensively in
previous studies to study automatic model calibration
issues (e.g., Brazil and Hudlow 1981; Sorooshian and
Gupta 1983; Gupta and Sorooshian 1985; Sorooshian et
al. 1993; Gupta et al. 1998; Boyle et al. 2000, 2001;
Hogue et al. 2000, 2005; Thiemann et al. 2001; Vrugt et
al. 2003a, 2006a; among others) and to explore state
estimation for improved streamflow forecasting (e.g.,
Kitanidis and Bras 1980a,b; Seo et al. 2003).

3. Simultaneous optimization and data assimilation

Conventional methods for automated calibration of
nonlinear watershed models treat the underlying uncer-
tainty in the input-state-output representation of the
model as arising primarily from uncertainty in the pa-
rameter estimates and output measurements. That ap-
proach essentially neglects measurement errors associ-
ated with the system input (forcing), state variables,
and model structure leading to model simulations and
associated prediction uncertainty bounds that do not
consistently and accurately simulate the observed un-
certainty in system behavior (Vrugt et al. 2005). This is
easily seen by examination of the model residuals,
which typically exhibit considerable variation in bias
(nonstationarity), variance (heteroscedasticity), and
correlation structure under different hydrologic condi-
tions. Several contributions to the hydrologic literature
have brought into question the continued usefulness of
the classical paradigm for estimating model parameters
(see, e.g., Beven and Binley 1992; Gupta et al. 1998;
Kavetski et al. 2003).

In a separate line of research considerable progress
has been made in the development and application of

SDA techniques, which provide a general and explicit
framework for dealing with input, output, and model
structural uncertainties but assume the optimal model
parameters to be known a priori. The latter assumption
is particularly inappropriate for conceptual watershed
models, in which the parameters represent lumped and
aggregated processes in space and time that cannot be
measured directly and are therefore poorly specified. It
has been our experience that considerable uncertainty
in the state values and associated model output predic-
tion can arise due to uncertainty in the choice of pa-
rameter values.

Vrugt et al. (2005) recently proposed the combined
use of parameter optimization and sequential data as-
similation to facilitate improved treatment of input,
output, parameter, and model structural errors in hy-
drologic modeling using an algorithm named SODA.
The algorithm merges the strengths of the SCEM-UA
stochastic parameter optimization method with the
power and computational efficiency of EnKF to simul-
taneously estimate both state variables and parameters.
For detailed descriptions of EnKF and SODA see
Evensen (1994) and Vrugt et al. (2005), respectively. In
brief, SODA implements an inner EnKF loop for re-
cursive state estimation (conditioned on an assumed
parameter set) within an outer stochastic global opti-
mization loop for batch estimation of the posterior den-
sity of the parameters. The EnKF uses a Monte Carlo–
based randomly sampled ensemble of state trajectories
to propagate and update approximate estimates of the
mean and covariance of the uncertain state variables �t

from one time step to the next. See Fig. 2 for a con-
densed outline of the method. A key point is that the
EnKF propagates an ensemble of state-vector trajecto-
ries in parallel such that each trajectory represents one
realization of generated model replicates. When an out-
put measurement is available, each forecasted en-
semble state vector � f

t is updated to �u
t by means of a

linear updating rule (in a manner analogous to the Kal-
man filter):

� t
u � � t

f � Kt��z̃t � H�� t
f ��, �1�

where z̃t denotes a streamflow observation from dataset
Z̃ � {z̃1, . . . , z̃n}, H(•) represents the operator relating
the model states to the model output, and the strength
of the gain Kt depends on the strength of the cross
covariance between the state variables of interest and
the model outputs for which measurements are avail-
able. The cross covariance is approximated using the
information contained in the ensembles. It should be
noted, therefore, that the EnKF updating strategy fa-
vors situations for which the state to output transition
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equations are weakly nonlinear or almost linear over
the range of conditions spanned by the ensembles, and
for cases where the state–output relationships are
strongly nonlinear, the EnKF may not be useable for
state updating.

For parameter estimation, a Bayesian criterion is
specified (Box and Tiao 1973) that measures the “close-
ness” between the (EnKF derived) mean ensemble
model forecast and the corresponding measurement,
resulting in the posterior density function:

p��|Z̃� � 

t�1

n

�et�����n, �2�

where n denotes the total number of streamflow obser-
vations, and et(�) represents the mean ensemble
streamflow forecast error computed at each measure-
ment time t as

et��� � z̃t � H�� t
f����. �3�

To generate parameter samples corresponding to the
distribution indicated by the posterior parameter prob-
ability density function [Eq. (2)], we use an implemen-
tation of the general purpose SCEM-UA global opti-
mization algorithm, which provides an efficient esti-
mate of the posterior distribution and its mode (the

FIG. 2. Flowchart of the EnKF used in SODA to recursively estimate the state variables; N
denotes the ensemble size, n the number of time steps, � is the SCEM-UA generated param-
eter combination, and �o represents the error covariance of the observations.
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most likely parameter set) within a single optimization
run (Vrugt et al. 2003b). The algorithm, a modifica-
tion of the successful SCE-UA global optimiza-
tion method (Duan et al. 1992, 1994), belongs to the
family of Markov chain Monte Carlo (MCMC) sam-
plers, and generates multiple sequences of parameter
sets {�(1), �(2), . . . , �(k�1)} that converge to the station-
ary posterior distribution. Studies using a parsimonious
five-parameter conceptual watershed model have
shown that SODA leads to improved estimates of pa-
rameter and model output prediction uncertainty
(Vrugt et al. 2005).

4. Implementation using parallel computing

Implementation of the SODA methodology requires
the EnKF solution of a sequential state estimation
problem (over the calibration period) for each SCEM-
UA generated parameter set. Approximation of the
stochastic evolution of the state error covariance matrix
therefore involves large numbers of deterministic wa-
tershed model simulation runs. Fortunately, there has
been considerable progress in the development of dis-
tributed computer systems using the power of multiple
processors to efficiently solve large computational
problems. In hydrology, many computational problems
related to the flow and storage of water are admirably
suited for implementation on distributed computer sys-
tems.

In this study, we implemented the SODA methodol-
ogy using a local area multi-computer (LAM)/message
passing interface (MPI) distributed computing interface
for the Octave programming environment (Vrugt et al.
2006b). LAM/MPI is a high-quality open-source imple-
mentation of the message passing interface specifica-
tion, including all of MPI-1.2 and much of MPI-2. In-
tended for production as well as research use, LAM/
MPI includes a rich set of features for parallel
computing. GNU Octave (Eaton 1998, 2001) is a high-
level language intended primarily for numerical com-
putation. It provides a convenient command line inter-
face for numerical solution of linear and nonlinear
problems, and for performing numerical experi-
ments, using a language that is highly compatible with
MATLAB. A detailed description and explanation of
the software appear in Fernández et al. (2003, 2004).

Our parallel computing implementation of SODA in-
corporates some minor modifications to the sequential
nature in which the samples are generated within each
Markov chain of the SCEM-UA algorithm. A flowchart
of our parallel implementation is given in Fig. 3. First,
the evaluation of the fitness function for the individuals
in the population is distributed over the slave proces-

sors, thereby avoiding excessively long execution times
on a single processor. Second, each slave computer
(node) is set up to evolve a different sequence and
complex in the SCEM-UA algorithm, as this step does
not require information exchange and communication
between different nodes. Each node might therefore be
considered as a “particle” within the state space, evolv-
ing each of the SCEM-UA Markov chains to explore
the global parameter space. The calculations reported
in this paper were implemented using 25 Pentium IV
3.40-GHz processors of the LISA cluster belonging to
the SARA parallel computing center (Netherlands).
The CPU time required for joint stochastic calibration
and ensemble state estimation of the SAC-SMA model
using 8 yr of daily streamflow data and 50 000 SCEM-
UA generated parameters combinations was approxi-
mately 22 h.

5. Experimental design and data used

The watershed used for this study is the Leaf River
basin in Mississippi for which approximately 40 yr of
historical 6-hourly MAP and daily streamflow and PET
data are available. Previous work has indicated that a
calibration dataset of approximately 8 to 11 yr of data,
representing a range of hydrologic phenomena (wet,
medium, and dry years), is desirable to achieve deter-
ministic model calibrations that are consistent and gen-
erate good verification and forecasting performance
(e.g., Yapo et al. 1996; Vrugt et al. 2006a). In this study
we use 8 yr [water years (WY) 1953–60] for model cali-
bration and further 28 yr (WY 1961–88) for evaluation
of model forecast performance.

Two calibration cases are considered. In the first
(benchmark) case, called “deterministic” in the text, we
calibrate and evaluate the SAC-SMA model in the con-
ventional manner, using SCEM-UA to estimate param-
eter uncertainty, without state-variable updating. The
wording deterministic is used to reflect that we do not
use an explicit (stochastic) model error, but instead as-
sume that the SAC-SMA model is a correct represen-
tation of the underlying rainfall-runoff transformation.
A standard maximum likelihood estimation criterion is
used based on a heteroscedastic Gaussian error model
for the streamflow measurements, with the measure-
ment error variances specified explicitly as explained
later in this section. The prediction performance of the
calibrated deterministic model is then evaluated by pro-
jecting the estimated parameter uncertainty into the
output space and comparing with the measured stream-
flow hydrograph.

In the second case, called “stochastic” in the text, we
use the SODA data assimilation methodology to cali-
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brate the model parameters (in batch mode), using
SCEM-UA to estimate parameter uncertainty, with
(recursive mode) state-variable updating using an
EnKF applied to each sampled parameter set. In this
case, we evaluate the model performance under two
conditions—first in simulation mode without recursive
assimilation of streamflow measurement data, and
then in online data assimilation mode using the EnKF
to update the model states as streamflow observations
become available. In both evaluation cases the param-
eters of the model are fixed to the constant values es-

timated during calibration. The first of these two evalu-
ation cases emulates the standard deterministic fore-
casting procedure except that streamflow uncertainty
bounds based on parameter uncertainty are also pro-
vided, while the second evaluation case illustrates the
performance achievable using recursive online data as-
similation for state updating.

In each calibration case, proper specification of the
likelihood function used to extract information from
the streamflow data requires realistic estimates of the
statistical properties of the streamflow measurement

FIG. 3. Schematic overview of the parallel implementation of SODA. The master computer
performs the various algorithmic steps in the SCEM-UA algorithm, while the slave computers
solve the computationally expensive recursive state estimation problem using the EnKF.
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error. In the absence of compelling information de-
scribing the statistical properties of the measurement
error, most previous studies reported in the literature
have assumed that the measurement error can be de-
scribed by a Gaussian distribution having zero mean
and having a prespecified parametric functional form
that relates the error variance to the magnitude of the
associated flow value (e.g., Sorooshian and Dracup
1980; Thiemann et al. 2001; Vrugt et al. 2003b, 2006a;
among others). The parameters of this variance func-
tion are then jointly estimated during calibration, along
with the parameters of the model, from the properties
of the model residual. However, because of input, state,
and structural errors the statistics of the model residual
will not necessarily behave in a fashion similar to the
statistics of the streamflow measurement error. In this
paper, we use an alternative nonparametric approach
for estimating the properties of the measurement error
in a data series (e.g., Rice 1984; Hall et al. 1990; Seifert
et al. 1993; Dette et al. 1998). This method assumes that
the measurement errors are random in nature, and in-
volves taking the time difference of the original time
series, z̃t, and estimating the error deviation as

�̂t
o �� 1

2�n � 1� 
t�2

n

�z̃t � z̃t�1�2, �4�

which assumes that the time sequence of flow values is
sufficiently smooth, the sampling interval is sufficiently
high compared to the temporal scale of streamflow dy-
namics, and that the variance of the measurement error
is constant (homoscedastic). While the first two as-
sumptions might be reasonable for daily streamflow
time series, the assumption of homoscedasticity of the
streamflow error terms is unrealistic. We therefore in-
stead apply the nonparametric error deviation estima-
tor “locally” to the time series using

�̂t
o ���2u

u �
�1

��uz̃t�
2, �5�

where u denotes the difference operator applied u
times. It can be readily verified that the estimator in Eq.
(5) is insensitive to polynomial trends in the data up to
order u. While more sophisticated higher-order differ-
encing procedures have been proposed (Hall et al.
1990), our investigations with numerically generated
streamflow data have shown that a choice of u � 3
works well in practice (Vrugt et al. 2005). The optimal
value of u can be determined by evaluating Eq. (5) over
a range of u values and comparing the error estimates
as a function of flow level with the error functions used
to perturb the synthetic streamflow observations. Fig-

ure 4 shows a scatterplot of the observed streamflow
data against error deviation of the measurements using
10 yr of data from the Leaf River watershed. The solid
line was fit through the scattered data using a flexible
spline function, and this relationship was used when
computing the likelihood function to specify the vari-
ance of the streamflow measurement error at each time
step as a function of the observed streamflow level.

Successful implementation of the EnKF within
SODA also depends strongly on a realistic estimate of
the model error. The absolute and relative sizes of the
model and measurement errors directly control en-
semble spread among the ensemble members during
the propagation and update steps, and therefore affect
the mean ensemble model forecasts and associated pre-
diction uncertainty ranges. There is usually little exter-
nal information available to guide specification of the
model error. Further, there can be little compelling in-
formation to guide specification of the characteristics
and magnitude of the errors in the inputs to the model.
In this work, instead of perturbing the input data (MAP
and PET) using an assumed form for input error model
(e.g., Evensen 1994; Moradkhani et al. 2005a,b), we
treat input and model error jointly as a combined sto-
chastic forcing term (hereafter simply called model er-
ror) and estimate its properties separately for each en-
semble run within SODA. The most obvious advantage
of this approach is that we can reliably estimate the size
of this joint stochastic error term as a function of flow
level. Specifically, we estimate the size of the model
error as a function of flow level using total error de-
composition, that is, by subtracting the measurement
error function (described above) from the residual time

FIG. 4. Scatterplot (square symbols) of the error deviation of
measurements vs observed streamflow data using 10 yr of data
from the Leaf River watershed. This plot was obtained by time
differencing of the original streamflow data series. For more in-
formation, refer to Eqs. (4) and (5) in the text. The solid line
represents a flexible spline function fit through the scattered data.
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series obtained each time the SAC-SMA model is
evaluated against an observed time series of data. The
model error variance is, therefore, both dependent on
flow level and conditional (as it should be) on the spe-
cific parameter set used for each ensemble run.

Although our implementation of the SAC-SMA
model contains nine state variables (six SAC-SMA soil
storages and three NC routing storages) we determined
that, because of the strongly nonlinear state-to-output
transition equations, the EnKF linear updating rule
could only be satisfactorily used for updating a subset
of these. Figure 5 shows two-dimensional scatterplots
of the nine SAC-SMA simulated model states against
their corresponding channel inflow components Z1, Z2,
and Z3, using the SCEM-UA most likely parameter set
obtained by calibration to data period WY 1953–60.
Although we focus here on the calibration period only,
similar scatterplots and correlation structures were ob-
tained for the 28-yr evaluation period. Notice that only
some of the plots indicate strong linear correlations.
For the purposes of this study, we therefore decided to
recursively update only the three model states UHG3,

LZFSC, and LZFPC, corresponding respectively to the
three main components of channel flow (quick, inter-
mediate, and slow responses). UHG3 is the content of
the last of the sequential cascade of reservoirs used to
rout channel component Z1; LZFSC is the content of
the lower-zone free secondary water soil store, which
controls the early portion of the baseflow recession;
and LZFPC is the content of the lower-zone free pri-
mary water soil store, which controls the late portion of
the baseflow recession.

In addition, we used the following assumption to im-
prove performance of the EnKF. The available data
provide us with measurement information about the
total channel streamflow rather than about the indi-
vidual channel flow components Z1, Z2, and Z3. How-
ever, both the conceptual structure of the SAC-SMA
model and examination of the streamflow hydrograph
reveal that each of these channel components tends to
dominate the magnitude of channel streamflow at dif-
ferent periods of time—Z1 (quick response) dominates
during the rising and early recession stages of the storm
event, Z2 (intermediate response) dominates during the

FIG. 5. Two-dimensional scatterplots of SAC-SMA simulated model states against their corresponding channel inflow components
Z1, Z2, and Z3, for the “most likely” SCEM-UA parameter set obtained for the calibration period.
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later recession stages of the storm event, and Z3 (slow
response) dominates during the interstorm baseflow re-
cession periods. We therefore assumed that the simu-
lated (i.e., model computed) estimates Z1(�), Z2(�), and
Z3(�) provide reasonable estimates of the relative frac-
tions of the total streamflow observation Z̃ coming
from each of the three components of channel flow.
Based on this assumption, the measurement operator
was modified so that

Z̃i��� �
Zi���

Z1��� � Z2��� � Z3���
� Z̃ for each i � �1, 2, 3�,

�6�

which, in effect, partitions the scalar streamflow mea-
surement Z̃t at each time step into a vector of three
values Z̃1, Z̃2, and Z̃3.

Finally, a number of experiments were conducted to
evaluate sensitivity of filter and parameter estimation
performance to the number of state-vector ensembles
to be used in the EnKF implementation. Figure 6 shows
a plot of the normalized rmse ratio (NRR) against
EnKF ensemble size for the SODA estimated best pa-
rameter set for a given ensemble size. NRR is calcu-
lated in two steps: first the ratio of the time-averaged
rmse of the ensemble mean to the mean rmse of the
ensemble members is computed (Ra), following which
Ra is divided by �((N � 1)/2N), where N denotes the
ensemble size (see Fig. 2) (see Anderson 2001; Morad-
khani et al. 2005a). A value of NRR close to 1.0 is
desirable; NRR greater than 1.0 indicates that the en-
semble has too little spread, whereas NRR � 1 indi-
cates too much spread. Figure 6 shows that the cali-
brated model gives an NRR value close to unity, indi-
cating that the size of the ensemble is of the correct

order of magnitude and that ensemble sizes larger than
50 do not provide improved results. An ensemble size
of N � 50 was used for all the studies reported in this
paper. Note that NRR values nearly identical to unity
were obtained when the model parameters were al-
lowed to vary within the bounds obtained using a clas-
sical Bayesian SCEM-UA calibration.

6. Discussion of results

Results of the model calibration phase of this study
are shown in Figs. 7 to 9 using WY 1953 for illustration.
In all cases where a streamflow hydrograph is shown,
box plot symbols are used to denote the median, lower,
and upper quartile values of the confidence intervals
for the streamflow data. Figure 7a shows the bench-
mark deterministic model case where the SAC-SMA
model was calibrated in the conventional manner
(which implicitly assumes an accurate model structure),
without state-variable updating, using the method de-
scribed in section 5 to specify variation of output mea-
surement error variance with flow level and the SCEM-
UA algorithm to estimate parameter uncertainty.
While the model-simulated estimates of streamflow
look reasonable, the simulated 95% confidence inter-
vals for streamflow (dark gray region; generated by
projecting parameter uncertainty into the output space)
are clearly too narrow and do not include the data,
indicating that the estimation procedure is placing too
much confidence in the validity of the model. Figure 7b
shows the stochastic model case where the SAC-SMA
model was calibrated using SODA (with EnKF recur-
sive state-variable updating applied to each parameter
set). The simulated overall 95% confidence intervals
for streamflow, representing both parameter uncer-

FIG. 6. NRR as a function of ensemble size for the “most likely” SODA parameter set derived for
the calibration period.
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tainty (dark gray) and state-variable uncertainty caused
by model structure and input errors (light gray) are now
reasonable and tend to bracket the observations. Figure
8 and Table 1 report the associated posterior parameter
uncertainties for these two cases. The parameter uncer-
tainty ranges for the stochastic model case (shown to
the right of each subplot) are much wider than for the
deterministic model case. Also, the estimated param-
eter values are different, which has implications that
will be discussed later. Figure 9 shows the mean inno-
vations of the ensemble (dark line) and ensemble in-
novation spread (gray area) for the three updated
model states, UHG3, LZFSC, and LZFPC, for the
“most likely” parameter set identified using SODA.
The relative corrections to UHG3 and LZFSC are seen
to be similar, indicating inability of the filter to separate
out information relating to these two faster flow com-
ponents, while the corrections to LZFPC vary in
strength at different times and indicate significant cor-
rections to the state variable controlling the model es-
timates of slow response baseflow.

Results for the model evaluation phase of this study

are shown in Fig. 10 using WY 1977 for illustration.
Figure 10a shows the performance of the model for the
benchmark deterministic model calibration case. The
model forecasts tend to be poor and fall well outside
the 95% streamflow measurement confidence intervals
at times. In contrast the performance of the stochastic
model seems good and the prediction uncertainties gen-
erally bracket the streamflow measurements.

Table 2 reports the variance of the model residuals
computed for different flow ranges. In addition to the
deterministic case (labeled SCEM-UA) and the sto-
chastic case (labeled SODA Updating), the table in-
cludes results in which the stochastic case parameter
estimates are used for deterministic streamflow predic-
tion without online data assimilation (labeled SODA
No updating). This table illustrates a number of impor-
tant results. 1) Recursive state estimation using the
EnKF applied to only three of the nine model states
results in significantly better model forecasts during
both the calibration period (52% improvement) and
evaluation period (34% improvement). The model per-
forms less well over the evaluation period, indicating

FIG. 7. Streamflow hydrograph predictions for calibration year WY 1953 for the (a) SCEM-UA
deterministic model case parameters and the (b) SODA stochastic model case parameters. Streamflow
data measurement uncertainty is indicated using box plots. In each case, the prediction given by the
“most likely” parameter set is indicated using a solid black line, and the prediction uncertainty ranges
corresponding to parameter uncertainty are indicated by the dark gray region. For SODA the additional
uncertainty due to model error is indicated by the light gray region.
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that the statistical properties of the rainfall–soil mois-
ture–runoff transformation may be variable in time
[i.e., the batch calibration assumption of time-invariant
model structure and parameters may be incorrect—see

also Moradkhani et al. (2005a,b)]. 2) State estimation
results in much larger relative improvements to model
performance at lower flows (�80% improvement) than
at high flows (�40% improvement for calibration/

FIG. 9. Mean ensemble innovations (dark line) for the LZFSC, LZFPC, and UHG3 states in the
SAC-SMA model for calibration year WY 1953. Results correspond to the mode of the posterior
distribution identified using SODA. Dark gray ranges reflect uncertainty in the ensemble members.

FIG. 8. Posterior uncertainty ranges (box plots) for the (left) SCEM-UA deterministic model case
parameters and the (right) SODA stochastic model case parameters resulting from model calibration
using the period WY 1953–60. The parameter uncertainties are scaled relative to their prior ranges to
obtain normalized values.
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�30% improvement for evaluation). This of course
correctly reflects the fact that the error variance of the
streamflow measurement data increases with stream-
flow level. 3) The “most likely” parameter set esti-
mated using SODA gives significantly better forecast
performance than the one estimated using SCEM-UA
for both the calibration and evaluation periods (SODA
No updating case). This confirms our view (see Vrugt et

al. 2005) that proper acknowledgment of state-variable
uncertainty (in addition to parameter uncertainty and
output measurement error) can result in better esti-
mates for the parameters (in the sense that they are less
corrupted by system and other kinds of errors). Further
support for this claim is given in Clark and Vrugt
(2006).

Figure 11 illustrates another test of model perfor-

TABLE 2. Summary statistic (rmse) for the one-day-ahead streamflow forecasts over the calibration and evaluation period using the
SCEM-UA and SODA methods with and without recursive state updating. The error statistic is computed for different flow groups.

Calibration (WY 1953–60) Evaluation (WY 1961–88)

SCEM-UA

SODA

SCEM-UA

SODA

Flow group (m3 s�1) No updating Updating No updating Updating

0–5 3.36 1.73 0.55 3.42 1.44 0.65
5–10 8.22 3.91 1.76 7.02 3.36 1.71
10–25 13.18 8.59 4.15 10.83 8.18 5.68
25–50 19.74 15.54 9.19 22.78 15.67 10.99
50–100 28.41 25.95 17.90 32.42 28.52 17.41
100–250 69.89 58.29 33.03 53.83 53.06 43.12
�250 129.81 121.41 78.47 128.63 111.45 102.29
Overall 22.47 18.31 11.07 27.83 24.67 18.28

FIG. 10. Streamflow hydrograph predictions for evaluation year WY 1977 for the (a) SCEM-UA
deterministic model case parameters and the (b) SODA stochastic model case parameters. Streamflow
data measurement uncertainty is indicated using box plots. In each case, the prediction given by the
“most likely” parameter set is indicated using a solid black line, and the prediction uncertainty ranges
corresponding to parameter uncertainty are indicated by the dark gray region. For SODA the additional
uncertainty due to model error is indicated by the light gray region.
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mance and consistency. For each of the 36 water years
used in this study (8 calibration plus 28 evaluation), the
annual standard deviation of the one-day-ahead
streamflow forecast errors is plotted against the annual
mean flow level for that year. Each box symbol indi-
cates a calibration year and each “�” symbol indicates
an evaluation year. In all three cases the symbols ap-
pear to fall approximately on a straight line indicating
that calibration and evaluation period performance are
mutually consistent. The slopes of the lines indicate
that forecast errors tend to be larger for wetter years
(as reported also by Hsu et al. 2002). However, in the
case of SODA, the points are less scattered, the slope of
the regression line is smaller and the intercept approxi-
mately intersects the origin, indicating better and more
consistent forecast performance. Further, a statistical
check of the autocorrelation functions of the residuals
showed that for both of the cases without state updating
the forecast errors are strongly correlated. In contrast,
the SODA forecast errors are essentially white (uncor-
related), indicating that most of the bias in the one-day-
ahead streamflow predictions is removed by the recur-
sive state updating procedure.

Finally, it is worth mentioning that the performance
of the SAC-SMA model with recursive state estimation
is very similar to that obtained for the same watershed
by Hsu et al. (2002) using the deterministic SOLO ar-
tificial neural network (ANN) approach having 1350
parameters. The ANN results provide an indication of
the limits to achievable forecasting performance for this
watershed when using rainfall to predict streamflow.
These results indicate that the SAC-SMA model is a
relatively good representation of the rainfall–soil mois-
ture–runoff transformation process for medium-sized
humid watersheds such as the Leaf River. Taken to-
gether with the parameter uncertainty results reported

in Fig. 8 and Table 1, they also further support our view
that [contrary to suggestions by Jakeman and Horn-
berger (1993)] the rainfall–runoff data can and do con-
tain sufficient information for identifying models of this
level of complexity (14� parameters and 9 state vari-
ables).

7. Summary and conclusions

While conceptual watershed models are widely used
for operational streamflow forecasting their strongly
nonlinear structural equations (including threshold-
type discontinuities) have historically posed a challenge
to the application of computer-based systems’ methods
for automated model identification, and parameter and
state estimation. Progress in stochastic global optimiza-
tion methods has helped to diminish the difficulties as-
sociated with parameter estimation. The recent devel-
opment of ensemble-based techniques and filtering
strategies for sequential data assimilation now make it
possible (in principle) to implement techniques that
properly account for data (input and output), state vari-
able, parameter, and model structural uncertainties, al-
though the details of how such implementation can be
achieved are still an active area of research.

This paper has demonstrated the applicability of the
SODA method for joint parameter–state estimation
and operational ensemble streamflow forecasting using
the SAC-SMA conceptual watershed model. SODA
merges the strengths of the ensemble Kalman filter for
recursive data assimilation to update model states, and
the shuffled complex evolution metropolis algorithm
for batch data assimilation to estimate time-invariant
values for the model parameters. The algorithm was
implemented using a LAM/MPI distributed processing
interface and Octave programming environment to

FIG. 11. Annual mean standard deviation of one-day-ahead streamflow forecast errors as function of mean
annual flow level for the (a) SCEM-UA deterministic model case parameters, and the (b) SODA stochastic model
case parameters without state updating and (c) with state updating. Calibration years are plotted using the box
symbol, and evaluation years are plotted using the “�” symbol.
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maximize computing efficiency, using 25 Pentium IV
3.40-GHz processing nodes. Each stochastic joint cali-
bration and ensemble state estimation run reported in
this paper using 50 000 SCEM-UA generated param-
eter combinations required approximately 22 h of CPU
time.

The performance of the stochastic SODA method
(using an ensemble size of 50) was compared to a con-
ventional deterministic model calibration approach.
The heteroscedastic error variance properties of the
streamflow measurement error were estimated from
the data using a nonparametric approach and the het-
eroscedastic error variance properties of the model
structural error were estimated (for each parameter
set) from the model residuals by subtraction. Because
the EnKF uses a linear rule for state updating we de-
cided to update only the three of the nine model states
that showed strong cross covariances with the three
main components of channel flow (quick, intermediate,
and slow responses). A simple but reasonable assump-
tion was used to partition the scalar streamflow mea-
surement at each time step into a vector corresponding
to the three flow component values. The results may be
summarized as follows:

1) The conventional deterministic approach gives nar-
row estimates of streamflow uncertainty that do not
include the data, indicating that the deterministic
estimation procedure places too much confidence in
the validity of the model. In contrast, the stochastic
SODA approach gives reasonable streamflow con-
fidence intervals (neither too wide nor too narrow)
that bracket the observations.

2) The parameter uncertainty ranges for the stochastic
model case (SODA) are wider than for the deter-
ministic model case (SCEM-UA) and lie in different
areas of the feasible parameter space. Further, the
SODA “most likely” parameter set gives signifi-
cantly better forecast performance (in nonupdating/
simulation mode) than its SCEM-UA counterpart,
indicating that proper treatment of state variable,
parameter, and output measurement uncertainties
can result in better (i.e., less biased) parameter esti-
mates. This may increase the prospects for finding
useful regionalization relationships.

3) Although data assimilation via recursive state esti-
mation was applied to only three of the nine model
states, significant improvements in SAC-SMA
model forecast performance were realized (on the
order of 30% to 50%).

4) State estimation resulted in larger relative improve-
ments to model performance at lower flows than at
higher flows, reflecting the fact that streamflow

measurement error variance increases with stream-
flow level. Further, SODA forecast errors were es-
sentially white (uncorrelated), indicating that most
of the bias in the one-day-ahead streamflow predic-
tions was removed by recursive state updating.

5) The calibrated SAC-SMA model with stochastic
state-variable uncertainty propagation and updating
provides streamflow forecast estimates that ap-
proach the accuracy achievable using a sophisticated
1350-parameter artificial neural network approach.
These results suggest that the 16-parameter SAC-
SMA model is a relatively good representation of
the rainfall–soil moisture–runoff transformation
process for medium-sized humid watersheds such as
the Leaf River.

On the negative side, we also found that the cali-
brated model performs less well over the evaluation
period, suggesting that the statistical properties of the
rainfall–soil moisture–runoff transformation may be
time varying in a manner not adequately captured by
the SODA procedure. Part of this might be due to the
fact that the evaluation period showed on average con-
siderable higher flow values. In particular, the SCEM-
UA batch calibration approach assumes that the system
structure (as reflected in the structural equations and
parameters) is time invariant and that the accuracy of
the model (as reflected in the temporal trajectory of
model error bias) is stationary. Further, our approach
does not yet properly account for input errors, particu-
larly of the nonstationary kind arising from nondetec-
tion of precipitation (caused by inadequate gauge den-
sity and other factors). Nevertheless, the results of this
study indicate that the SODA method has the potential
for ready implementation into operational forecasting
procedures, and the capability of providing improved
ensemble streamflow forecasts without requiring sig-
nificant modifications to operational model codes or
software. Research aimed at further improvements in
algorithm applicability, performance, and efficiency are
ongoing and will be reported in due course. As always,
we invite dialogue with others interested in these top-
ics. Software used in this and related work can be found
online at www.science.uva.nl/ibed/cbpg/products and/
or at www.sahra.arizona.edu/software.
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