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Long memory of rivers from spatial aggregation
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[1] Long memory is a hydrological property that can lead to prolonged droughts or the
temporal clustering of extreme floods in a river. Analyses of 28 long (up to 145 years),
continuous instrumental runoff series from six European, American, and African rivers
reveal that this effect increases downstream. Simulations reproduce the increase
qualitatively and show that a river network aggregates short-memory precipitation and
converts it into long-memory runoff. In view of projected changes in climate and the
hydrological cycle, these findings show that decadal-scale variations in drought or flood
risk can be predicted for individual rivers, with higher predictability downstream.
Spatial aggregation may also explain the emergence of long memory in other networks,

such as the brain or those formed by computers.

Citation:
doi:10.1029/2006 WR005721.

1. Introduction

[2] Temporal variations in the occurrence of extreme river
floods [Mudelsee et al., 2003] or droughts can be caused
[Bunde et al., 2005] by a property of runoff time series that is
denoted as long-range dependence or long memory; such
records are said to exhibit, after its discoverer [ Hurst, 1951],
the “Hurst phenomenon.” This refers to the ability of a
hydrological system to “remember” past states over long
time (decades). However, few physical mechanisms (climate
instationarities [Potter, 1976] and storage cascade mecha-
nisms [Klemes, 1974, 1978]) have been presented to explain
how long memory emerges, and none has been quantitatively
tested because of the scarcity of long records. This hampers
modeling and prediction attempts. In this paper, I propose an
explanation based on spatial aggregation of precipitation
contributions in a river network. To test this, I use long
instrumental runoff records and study the long-memory
parameter as a function of the basin size.

2. Hypothesis

[3] Many meteorological variables have noise compo-
nents that can be described as simple first-order autoregres-
sive (AR(1)) processes [Gilman et al., 1963], where a value
depends only on its own immediate past plus a random
component. The autocorrelation function (acf) or “memory”
of such variables decays exponentially (fast), as ~a”,
where a is the autocorrelation coefficient (between
0 and 1) and 4 is the time lag [Beran, 1994]. Studying
runoff time series from the river Nile and other
hydrological records, Hurst [1951] found deviations from
the short-memory exponential behavior. This inspired the
development of statistical long-memory processes [e.g.,
Mandelbrot and Wallis, 1969], for which the autocorrela-
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tion function decays hyperbolically (slowly), as ~A*?"!,

where d (less than 0.5) is the long-memory parameter.
(Hurst defined a coefficient equal to d + 0.5.)

[4] In theory, both acf ~ 1**~" and acf ~ 4" attain zero
values only for & = oo; in practice (finite data sizes and
nonzero measurement errors), the empirical acfs cannot be
distinguished from zero already for finite /, and this / value
may be considerably larger for long-memory than for short-
memory processes. A flexible long-memory model is the
ARFIMA type [Hosking, 1984], which offers exact maxi-
mum likelihood estimation and model suitability tests
[Beran, 1994]. Error bars for the estimated ARFIMA
parameter d indicate also how strong d differs from zero,
that means, they enable to distinguish between long and
short memory. The alternative estimation techniques, namely
rescaled range analysis and detrended fluctuation analysis,
are inferior in this regard, as has been shown by Hosking
[1984] and Maraun et al. [2004], respectively.

[5] An explanation of the Hurst phenomenon in river
runoff requires not only a mathematical model, but also a
description based on the physical-hydrological properties of
the system [Koutsoyiannis, 2005a, 2005b]. As physical
cause of long hydrological memory, changes in the mean
of a meteorological variable have been suggested, for
example, jumps as a result from abrupt climate changes
[Potter, 1976]. The problem is that the jumps are not allowed
to occur at an arbitrary rate but the no-jump probability has
to be roughly inversely proportional to the length of an
interval with no jumps, for which no reason seems readily
apparent [Klemes, 1978]. River basins (Figure 1), forming
a network of tributaries, confluences, and reservoirs that
has been geometrically characterized as a fractal object
[Rodriguez-Iturbe and Rinaldo, 1997], offer another line of
explanation. Consider a unit j of area 4, that is, a single,
homogenous reservoir with a linear release rule, Q; =k; s,/ At,
where Q; is outflow, k; is a dimensionless positive constant
describing the storage strength, s; is basin storage volume,
and At is the discretization time step. If the input to the
reservoir j, given by precipitation minus evaporation, is a
random series, which is assumed to be fulfilled for Az = 1
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Figure 1. A river network, schematically. Tributaries join
at nodes. Runoff at a point is the spatial aggregation of
runoff from upstream (to the left). Going downstream (e.g.,
from point 1 to point 4), it is shown that with increasing
basin size, not only runoff increases but also the size of the
long-memory parameter. This is the result of the aggrega-
tion of individual, short-memory contributions from hydro-
logical units j (dashed rectangle) of size A; and storage
constant k;.

month, then it has been shown [Klemes, 1978] that Q; is an
AR(1) process with autocorrelation a; = l/(k; + 1). In a river
network, owing to the spatial variations of rainfall [ Liljequist
and Cehak, 1984; Shah et al., 1996] and storage properties
(soil), the runoff at a point on the river is not from a single
reservoir but rather a cascade [Klemes, 1974] of reservoirs,
one feeding the next. For example, runoff at point 3 in
Figure 1 is (for At large against the flow time) given by the
aggregated runoff contributions from reservoirs above that
point, O(3) = Z_,-:]’_ _.m O;. The basin size, 4, above a point
consists of m areas A;. Typical 4; values depend on the
meteorological —hydrological setting, and 4; = 20 x 20 km?
plus or minus a factor of ten squared might be a guess
[Shah et al., 1996]. The runoff cascade implies that O(3)
is given by the sum of AR(1) runoff processes with a whole
spectrum of autocorrelations, a;. It was shown mathemati-
cally [Granger, 1980] that adding a large number of AR(1)
processes (which have d = 0 [Beran, 1994]) of varying
autocorrelations yields a long-memory process (d # 0).
This leads to my explanation of the Hurst phenomenon:
Long memory in river runoff is the result of spatial
aggregation of short-memory reservoir contributions in
the network.

3. Data and Methods

[6] To test the aggregation hypothesis, I studied the long-
memory parameter in dependence of the basin size down-
stream individual rivers. The idea of such d(4) estimations
is that with increasing 4 also the number m of short-memory
runoff contributions Q; grows. Thereby should also d
increase, from zero (m = 1) to a saturation level below
0.5 (m large). The mathematical requirements for this d(4)
behavior have previously been verified. The saturation level
is mainly a function of the upper bound, a,.. of the
distribution of the a; [Granger, 1980; Linden, 1999], and
model simulations (Figures 2g and 2h) demonstrate that
d(A) saturation sets in for m around hundred (corresponding
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to 4 = 40,000 km? for an average A ; of 20 x 20 km?). The
reason why to study d(4) for each river separately, thereby
expecting that d(4) at point 4 (Figure 1) is higher than d(4)
at point 3 and so forth, is as follows. Rivers scatter in their
lengths, basin sizes, storage properties k;, precipitation
occurrence within their basin area and hence their d(A)
saturation levels (Figure 2). This scatter disappears when
analyzing rivers separately. That means, interriver variabil-
ity does not blur the d(4) curves in my analyses. To further
suppress variability from temporal changes, the runoff
records from the gauge stations along a river (points | to
4 in Figure 1) are required to span a common time interval.
For the data analyzed (Figure 2) the water that passes
through point 1, passes also through point 2, and so forth,
provided that water loss from evaporation or infiltration is
negligible. This test design should make the d(4) curves a
sensitive indicator of whether spatial aggregation causes the
long memory. A d(A4) increase with saturation would be a
positive result. The absence of this behavior could reflect
violated assumptions in the formulation of the model of
cascading linear reservoirs (e.g., too strong nonlinearities)
or inadequate data. The runoff records must be long enough
to yield acceptably small d estimation uncertainties [Hurst,
1951; Montanari et al., 1997; Koutsoyiannis, 2005a]; the
series should be without temporal gaps, which could bias
the d estimation [Hwang, 2000]; and the gauge stations
along a river should not be too few and cover a large 4
range to capture the d(A4) increase. These demands severely
limit the number of instrumental records that qualify for the
d(A) estimation. Adopting a minimum length of 70 years
(840 monthly runoff values), only a handful of rivers
(Weser, Elbe, Rhine, Colorado, Mississippi, and Nile) could
be taken from the large database of the Global Runoff Data
Centre (Koblenz, Germany). Particularly the Weser
[Zimmermann et al., 2000], with four gauge stations and
records of 145 year length each, is considered as of high
data quality. The auxiliary material' lists rivers, stations,
time intervals, and basin sizes.

[7] Logarithmic transformations [Klemes, 1978;
Montanari et al., 1997] brought the right-skewed runoff
records to approximately normal shape. Subtraction
of daywise (monthwise) long-term averages from
daily (monthly) records removed annual cycles. Linear
detrending removed instationarities owing to climatic
changes. Downsampling to 30-day segments of daily records
allowed comparability with monthly records. Long-memory
ARFIMAC(1, d, 0) models with an autoregressive component
[Hosking, 1984] were fitted by exact Gaussian maximum
likelihood [Doornik and Ooms, 2003] to the data. Compa-
risons with ARFIMA(O, d, 0) fit results attested in all cases
that including the autoregressive component improved the fit
quality. Bootstrap simulations [Doornik and Ooms, 2003]
yielded error bars and significances of d estimates. See
auxiliary material for numerical results.

4. Results

[8] For most records, the long-term trends were upward,
which is consistent with previous findings for other regions
[Peterson et al., 2002], and perhaps an indirect (via global

'Auxiliary materials are available at ftp:/ftp.agu.org/apend/wr/
2006wr005721.
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Figure 2. Long-memory parameter, d, in dependence on basin size, 4. Vertical bars are | — ¢ standard
errors. (a) Weser, January 1857 to April 2002; (b) Elbe, November 1899 to October 1990; (c) Rhine,
January 1920 to December 2003; (d) Colorado, April 1934 to September 2003; (e) Mississippi, April
1906 to September 2003; (f) Nile, January 1912 to December 1982; (g, h) model. The runoff model
generated records by the aggregation of m first-order, unit variance autoregressive Gaussian processes,
O;. Each Q; series had a data size of 1000, corresponding to a record length of 83 years at monthly
resolution. Here m varied logarithmically from 2 to 100, corresponding to A between 800 and 40,000 km?
under the assumption of a mean unit area of 4; of 400 km?. For each m, 400 simulations of the procedure
aggregation-estimation were performed. The autocorrelation coefficient of the O; process was thereby
drawn from a uniform distribution [Linden, 1999] over (0.0; a,.x). Shown (solid symbols) are average +
standard error of each d estimate over the simulations. Figure 2h also shows (open symbols) the result
from simulations where the variance of Q; is not constant over m but itself a zero-mean, unit variance
Gaussian random variable.

warming) or direct (via suppressed plant transpiration) curves, which was found also when employing stepwise
effect of changes in atmospheric carbon dioxide concentra- trend functions [Mudelsee, 2000]. This argues against
tion [Gedney et al., 2006]. However, linear detrending had  explanations [Potter, 1976] of the Hurst phenomenon via
only minimal (within error bars) influence on the d(4) climate instationarities.
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[¢] The results for the river Weser (Figure 2a) show a
significant increase of d with 4 in the upper river part (small
A), while for the station in the lower part (large 4) there is
no change within error bars. This increase-saturation be-
havior is as expected under the aggregation hypothesis. A
permutation test finds that by chance such an increase
occurs with a probability of 1/24, equivalent to a confidence
level of 95.8%.

[10] The d(4) curves for the two other central European
rivers Elbe and Rhine agree with the aggregation explana-
tion (Figures 2b and 2c). In case of the Elbe, the station
Turice on the tributary Jizera was included because no long
record was available from the upper Elbe. Although the
Turice record is slightly shorter than the other Elbe records
(80 years versus 91 years), its d is significantly smaller than
the d values for stations further downstream of the Elbe
(Figure 2b). Those points (4 > 50,000 km?) appear to sit
close to the saturation part of the curve, with only small d
increases and one insignificant d inversion (station Neu-
Darchau). Still, the Elbe d(4) increase has a permutation test
confidence of 96.7%. The four Rhine gauge stations cover a
large 4 range (Figure 2¢) and exhibit a clear increase of the
d(A) graph in the upper to middle river parts (91.7%
confidence). The Colorado river (USA) has only three
stations covering a long enough period (70 years). Its d(A)
curve (Figure 2d) displays an increase, which, however, is
significant only at a level of 83.3% due to the small number
of stations. The apparent absence of saturation for 4 up to
445,000 km* (gauge station below Hoover Dam) might
indicate larger areas 4; in the Colorado basin, which would
be compatible with enhanced spatial dependence of mete-
orological—hydrological properties, in comparison with
central Europe (Weser, Elbe, and Rhine). However, it
appears too speculative to relate this to the large size of
the Hoover Dam reservoir without a detailed hydrological
model analysis.

[11] The d(A4) curve combined from the Blue Nile and the
Nile (Figure 2f) shows an increase, which scatters some-
what due perhaps to the relatively short records (70 years).
For a small basin size, a nonsignificant d was found (Blue
Nile, Roseires Dam). An exception from the monotonic
d(A) increase is nilometer Hudeiba, but this deviation is
within error bars. Although basin sizes are considerably
larger than those of the other rivers, no clear d(4) saturation
was found. Data from nilometer Roda at Cairo, analyzed by
Hurst [1951], could resolve this, but this record has only
annual resolution, and a comparison of d values would
likely be biased. Interestingly, the low d values (0.2 and
less) for the Blue Nile or Nile (Figure 2f) contrast with the d
values from the lower White Nile, which are close to 0.5
(see auxiliary material). In case of the White Nile, the
aggregation hypothesis might not be applicable because in
that region (Sudd swamp) strong evaporation occurs. After
the confluence of the Blue Nile and the White Nile at
Khartoum, it seems that the memory of the Nile is deter-
mined by the Blue Nile, while the memory of the White
Nile is “lost.” This agrees with observations [El-Sebaie et
al., 1997] that the Blue Nile dominates the water supply
although it has a smaller basin size than the White Nile.

[12] The d(A) curve from the Mississippi has no increase
as expected under the aggregation hypothesis, but rather a
decrease (Figure 2e). On the other hand, despite the con-
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siderable length of the records (97 years), the errors are
wide enough to explain this decrease as a coincidence of
values in the d(4) saturation region. (The slope of a
weighted regression line is significantly different from zero
only at 1 — p = 86%, in agreement with 83.3% from the
permutation test.) One could alternatively seek to augment
the aggregation model, for example by invoking jumps in
the distribution of the a;, but this seems premature as long as
no long records from the upper Mississippi confirm the d(4)
decrease.

5. Discussion and Conclusions

[13] Following assumptions went into the evaluation of
the aggregation hypothesis. First, the runoff records are
obtained from water stage measurements via stage-runoff
calibrations. Although these formulas have been regularly
updated and the river morphologies studied over time
[Zimmermann et al., 2000; Mudelsee et al., 2003], system-
atic uncertainties, which would propagate into d(4) errors,
cannot be ruled out. However, the high test confidence
levels indicate that systematic errors are small. Second, river
basins need not obey a fractal geometry [Rodriguez-Iturbe
and Rinaldo, 1997] to produce long memory. As the
modeling experiments (Figures 2g and 2h) clearly demon-
strate, the confluence of around hundred independent short-
memory contributions (unit areas A4;) is already sufficient.

[14] Third, those contributions are interpreted as AR(1)
processes generated by a linear reservoir [Klemes, 1978]
that stores random precipitation input. On the one hand, the
linearity assumption is supported because the time spacing
considered (1 month) reduces nonlinearities like shorter-
term unsteady flow [Klemes, 1978]. On the other, the
assumption that water storage variations operated by a
single basin and water losses from evaporation or infiltra-
tion are negligible, could well be violated for larger basins.
Indeed, this might explain the absent (Mississippi,
Figure 2¢) or nonmonotonic (Nile, Figure 2f) increases of
the d(A4) curves.

[15] Further, at monthly resolution precipitation should be
random, without short or long memory. To test this, a
gridded data set [Hulme et al., 1998] of mean monthly
precipitation in 1900—1998 was analyzed in the same
manner as the runoff records. The centers of the grid cells
(2.5° latitude by 3.75° longitude) representing the river
basins were: Weser, 52.5°N, 11.25°E; Elbe, 50°N, 15°E;
Rhine, 47.5°N, 7.5°E; Colorado, 37.5°N, 112.5°W; Mis-
sissippi, 42.5°N, 97.75°W; and Nile (annual precipitation),
15°N, 33.75°E. From the six precipitation records, none had
a long-memory parameter above 0.1 or different from zero
at a confidence level of 95% (Weser, 94.3%; Elbe, 45%;
Rhine, 88.3%; Colorado, 78%; Mississippi, 88.7%; and
Nile, 45%), and none had an autoregressive component
different from zero at a level above 72%. Also analyses of
long rainfall records from the United States [Potter, 1979]
or Italy [Montanari et al., 1996] found no or only modest
long memory. Even if rainfall had a small long-memory
parameter [Hurst, 1951; Bunde et al., 2005], this should not
be sufficient to falsify the aggregation explanation, which
would likely be required to produce the larger d values of
runoff and the d(4) increases (Figure 2).

[16] F1na11y, the assumption of a unit area 4; of around
400 km? is motivated by the requirement that the precipi-
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tation contributions are independent. When the spatial
variability of rainfall itself is strongly time-dependent
(e.g., varying types of rainfall), the theoretical d(4) satura-
tion curves (Figures 2g and 2h) may become distorted.

[17] Deeper theoretical knowledge about the long-mem-
ory properties of aggregated short-memory processes would
permit to test harder the mathematical part of the aggrega-
tion hypothesis as an explanation of the Hurst phenomenon.
If we assume the m aggregated AR(1) processes to have
identical means (zero), identical variances (unity), and
either beta-distributed [Granger, 1980] or uniformly dis-
tributed [Linden, 1999] autocorrelation coefficients a;, then
the aggregated process can be shown to possess long
memory. However, it appears likely that also under relaxed
assumptions regarding the processes, long memory can
emerge in the aggregation. Less the variance (Figure 2h),
skewness [Anis and Lloyd, 1975], or shape [Mudelsee,
2006] of the distributions of the processes than rather their
serial dependence structures [Granger, 1980; Linden, 1999]
should be relevant hereby. For example, the interval bound
of the a; in case of aggregated AR(1) processes has consid-
erable influence on the d(4) saturation level (Figures 2g
and 2h). Because most measured precipitation and runoff
records are relatively short for accurate long-memory esti-
mations, long runoff model simulations should also be
utilized.

[18] Almost all analyzed rivers confirm the aggregation
hypothesis. They show d(4) increases with confidence
(Figure 2). An exception is the Mississippi, for which an
interpretation compatible with the aggregation hypothesis is
that the areas 4; are small, so that only the d(4) saturation
range was sampled. The aggregation explanation of long
memory expands the idea of Klemes [1978], who invoked
cascading reservoirs. The difference is that under aggrega-
tion a d(4) increase is predicted. This could be tested and
verified using exceptionally long runoff records from sev-
eral stations downstream individual rivers. The observed
d(A) increases (Figure 2) contradict previous [Hurst, 1951]
claims of a constant d parameter. This is supported by a
recent paper [Koscielny-Bunde et al., 2006], which finds
considerable d variation among 41 river runoff records.
Interestingly, this paper does not detect a systematic d(A)
dependence, likely because interriver variability was not
taken into account. The aggregation explanation further
refutes a previous statement [Potter, 1979] that “if long-
term persistence in streamflow series has a physical basis, it
must lie in the precipitation process.”

[19] Spatial aggregation, an inherent property of river
networks (Figure 1), can produce long memory and con-
stitutes a simple physical explanation of the Hurst phenom-
enon [Hurst, 1951]. Long memory in river runoff has
considerable effects on flood risk assessment. It can lead
to clustering of extreme floods [Bunde et al., 2005] and
long-lasting droughts and produce temporal changes in
flood risk [Mudelsee et al., 2003]. Long memory further
means long-range dependence and a reduction of the
number of independent observations [Koutsoyiannis,
2005a, 2005b]. As a result, error bars become wide and
estimates of quantities like flood return periods become
rather uncertain. Likewise, statistical tests suffer from a
reduced power compared to a situation without long mem-
ory [Cohn and Lins, 2005; Rybski et al., 2006]. Such effects
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have also to be anticipated in data where the aggregation is
introduced artificially, namely by averaging, as for example
in global temperature records [Bloomfield, 1992]. On the
other hand, long-term changes in the risk of extremes such
as floods can in principle be predicted for individual rivers.
With the long-memory parameter, also predictability should
increase downstream. The envisioned forecasting tools feed
projected precipitation changes [Giorgi et al., 2001] into
hydrological models, for which realistic river network
properties (parameters 4, k;, and s;) have to be available.

[20] The spatial aggregation of many short-memory pro-
cesses may also explain how long memory emerges in other
types of networks. Examples are computer communication
in an Ethernet [Beran, 1994] or neural oscillations in the
human brain [Linkenkaer-Hansen et al., 2001].

[21] Acknowledgments. I thank M. Alkio, U. Griinewald, J. Hosking,
V. Klemes, D. Koutsoyiannis, A. Montanari, and G. Tetzlaff for comments
and the Global Runoff Data Centre (Koblenz, Germany) for data. This
work was supported by the Deutsche Forschungsgemeinschaft (Bonn,
Germany).
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