Journal of Hydrology (2007) 344, 82-95

available at www.sciencedirect.com

— g

“e.¢ ScienceDirect

journal homepage: www.elsevier.com/locate/jhydrol §

The use of GLS regression in regional hydrologic
analyses

V.W. Griffis >*, J.R. Stedinger P

@ Department of Civil and Environmental Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton,
MI 49931-1295, USA
b School of Civil and Environmental Engineering, Cornell University, Hollister Hall, Ithaca, NY 14853-3501, USA

Received 27 October 2006; received in revised form 2 May 2007; accepted 30 June 2007

KEYWORDS Summary To estimate flood quantiles and other statistics at ungauged sites, many orga-
Generalized least nizations employ an iterative generalized least squares (GLS) regression procedure to esti-
squares regression; mate the parameters of a model of the statistic of interest as a function of basin
Flood frequency characteristics. The GLS regression procedure accounts for differences in available record
analysis; lengths and spatial correlation in concurrent events by using an estimator of the sampling
Regional skew; covariance matrix of available flood quantiles. Previous studies by the US Geological Sur-
Log-Pearson type 3 vey using the LP3 distribution have neglected the impact of uncertainty in the weighted
distribution skew on quantile precision. The needed relationship is developed here and its use is illus-

trated in a regional flood study with 162 sites from South Carolina. The performance of a
pooled regression model is compared to separate models for each hydrologic region: sta-
tistical tests recommend an interesting hybrid of the two which is both surprising and
hydrologically reasonable. The statistical analysis is augmented with new diagnostic met-
rics including a condition number to check for multicollinearity, a new pseudo-R? appro-
priate for use with GLS regression, and two error variance ratios. GLS regression for the
standard deviation demonstrates that again a hybrid model is attractive, and that GLS
rather than an OLS or WLS analysis is appropriate for the development of regional standard
deviation models.
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Introduction

An important problem in hydrology is estimation of flood
2943. quantiles for ungauged locations, or sites with very short re-
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area, main-channel slope, and land use and land cover indi-
ces (Tasker and Stedinger, 1989). Stedinger and Tasker
(1985, 1986a,b) and Kroll and Stedinger (1998) show that
GLS estimators are much more appropriate and efficient
for use with hydrologic data than ordinary least squares
(OLS) estimators. Unlike OLS estimators, the GLS estimators
account for differences in the variance of streamflows from
site-to-site due to different record lengths, and cross-corre-
lation among the estimators due to cross-correlation among
concurrent streamflows (Tasker, 1980; Kuczera, 1983). In
this paper, the traditional GLS estimators are extended to
correctly reflect uncertainty in a weighted skewness estima-
tor. In addition, metrics are developed that correctly de-
scribe the value of GLS regression models, and an example
demonstrates the benefit of pooled regression models.

The GLS procedure has been used extensively throughout
the US and the world. Applications in hydrologic studies in-
clude the regionalization of flood quantiles, water quality
parameters, and extreme rainfall (Tasker, 1978; Curtis,
1987; Tasker and Driver, 1988; Tasker and Stedinger,
1989; Landers and Wilson, 1991; Moss and Tasker, 1991;
Ludwig and Tasker, 1993; Madsen et al., 1995; Madsen and
Rosbjerg, 1997; Kroll and Stedinger, 1999; Pope et al.,
2001; Feaster and Tasker, 2002; Kjeldsen and Rosbjerg,
2002; Reis et al., 2005). GLS has also been used as a regres-
sion method to regionalize flood quantiles using region-of-
influence techniques (Tasker et al., 1996; Law and Tasker,
2003; Eng et al., 2005). And, GLS has been used as the basis
of hydrologic network design (Medina, 1987; Tasker and Ste-
dinger, 1989; Moss and Tasker, 1991; Soenksen et al., 1999).
Reis et al. (2005) and Gruber et al. (2007) suggest a Bayesian
analysis of the GLS model for hydrologic analyses. The GLS
procedure proposed by Tasker and Stedinger (1989) and
commonly used in the US for regionalization of flood quan-
tiles is considered here.

The weighted least squares (WLS) procedure, which con-
siders only differences in record length, has been used for
regionalization of the standard deviation in US Geological
Survey (USGS) studies as suggested by Stedinger and Tasker
(1985, 1986b) and Tasker and Stedinger (1989). In addition
to regionalization of flood quantiles, GLS is employed in this
paper to develop a regional model of the standard
deviation.

In the United States, flood quantiles at gauged sites are
estimated as a function of the mean, standard deviation,
and skew coefficient of the logarithms of the sample data
using the guidelines contained in Bulletin 17B (IACWD,
1982). To improve the accuracy of the at-site sample skew-
ness estimator, it is often combined with a regional skew-
ness estimator to obtain a weighted skewness estimator
(IACWD, 1982; Stedinger et al., 1993). Thus, the variance
of the estimated quantile at a given site is a function of
the sampling error in the sample mean, the standard devia-
tion, and the weighted skewness estimator.

One problem with using the GLS procedure with hydro-
logic data is that the covariance matrix of the residual er-
rors must be estimated from the data (Stedinger and
Tasker, 1985). To do so, the variance of the residuals is sep-
arated into two components: (1) the model error variance,
which is a measure of the precision with which the true
model can predict flood quantiles, and (2) the sampling
error in the flood quantile estimates. The GLS procedure

proposed by Tasker and Stedinger (1989) first estimates
the sampling error matrix using available streamflow data.
An iterative procedure is then employed to estimate the
regression coefficients and the model error variance. Equa-
tions are developed here to correctly include in the analysis
the sampling error in a weighted skewness estimator for the
LP3 distribution estimated with log space moments. Tasker
and Stedinger (1989) employ an estimator of the sampling
covariance matrix which only includes the sampling error
in the mean and the standard deviation, and ignores the er-
ror in the estimated skew; this is the estimator currently
employed by the US Geological Survey (see for example Fea-
ster and Tasker, 2002; and Law and Tasker, 2003). This pa-
per compares the precision of flood quantile estimators
obtained with Tasker and Stedinger’s (1989) estimator of
the sampling error matrix to that of flood quantile estima-
tors obtained using the new estimator of the sampling
covariance matrix which correctly includes the sampling er-
ror in the weighted skewness estimator.

Section 2 of this paper develops the GLS regression
framework and presents the new estimator of the sampling
covariance matrix that includes the error in the weighted
skew and its interaction with other moment estimators.
Section 3 presents an application of GLS regression for South
Carolina. This includes the development of a regional model
of the standard deviation using GLS regression, and models
for the 100-year event obtained using both estimators of the
sampling covariance matrix. Model selection is based on a
condition number which identifies problems with multicol-
linearity, and three metrics for model error: the model er-
ror variance, the average variance of prediction, and a
new pseudo-R? appropriate for use with GLS regression. Er-
ror variance ratios document the need for a full GLS regres-
sion analysis. In addition, this paper includes an evaluation
of the benefit of pooling data from different regions to in-
crease the number of sites used to develop regression mod-
els of the 100-year event, as opposed to simply developing a
separate model for each region.

Model description and assumptions
Estimation of quantiles at gauged sites

Consider a region containing N gauging stations. At each
gauged site i (i=1,...,N), a record of length n;-years is
available consisting of maximum annual flood peaks de-
noted {Qj,...,Q;,}. Flows at a given site i are assumed
to be temporally independent and identically distributed;
however, concurrent observations at different sites (i # j)
may be cross-correlated, resulting in correlation among
estimators of different statistics (Stedinger and Tasker,
1985).

Flood quantiles at each site are estimated following the
guidelines published in Bulletin 17B (B17) which suggests fit-
ting a log-Pearson Type 3 (LP3) distribution to annual flood
series. In particular, one uses the method of moments to fit
a Pearson Type 3 (P3) distribution to the base-10 logarithms
of the flood peaks, denoted {z;, ..., zj,}. Estimates of the
mean z;, standard deviation s;, and skew coefficient g; of
the logarithms of the sample data are computed using tradi-
tional moment estimators (Stedinger et al., 1993).
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The record available at a site is often limited to 100
years, and is typically less than 30 years. These short re-
cords yield sample skews which are sensitive to extreme
events. To improve the accuracy of the skewness estimator,
B17 recommends combining the at-site sample skew g; with
a regional skew G; to obtain a weighted skew G; where:

(1)

Here MSE[g;] is the estimated mean square error (equal to
the variance plus bias-squared) of the sample skew, and
MSE; is the mean square error of the regional skew. Esti-
mates of the regional skew and its variance are obtained
from a separate regional analysis such as that described
by McCuen (1979), IACWD (1982), or Reis et al. (2005).

B17 recommends approximating MSE[g;] as a function of
the sample skew g; and the record length n; using the equa-
tion provided therein. That equation is based on the Monte
Carlo study reported in Wallis et al. (1974), and yields rela-
tive errors as large as 10% within the hydrologic region of
interest (Griffis, 2003). Griffis et al. (2004) provide a rela-
tively more precise approximation which is also consistent
with the asymptotic variance for g; provided by Bobee
(1973).

The pth quantile of the fitted P3 distribution is computed
as ¥; = z; + Kis;j, where K; is the standard P3 frequency fac-
tor for the pth percentile given the weighted skew G;. Thus,
i is an estimate of the log of the desired flood quantile, i.e.
the 100-year peak flow (corresponding to p = 0.99):

Vi=Vi+n (2)

where y; is the true value of the log of the 100-year event
and 5; is a random error, referred to as the time-sampling
error. Assuming that y; is an unbiased estimate of y;, then
ni has mean zero. Its variance is a function of the error in
the estimated sample moments; Chowdury and Stedinger
(1991) provide the following first-order approximation of
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Chowdury and Stedinger (1991) show that this first-order
approximation works fairly well for a number of cases de-
spite the nonlinear relationship between y and y; however,
if the skewness estimator is poorly resolved by the sample
and regional information, then these first-order estimates
of the variance of LP3 quantiles can be inaccurate.

For a regional analysis, the estimates y; of the log of the
100-year event at each site are combined into a (N x 1) vec-
tor Y. It is assumed that Y is an unbiased estimator of
Y={Ys, ..., Y} The sampling covanance matrix of Y is
then given by X = E[(Y Y)(Y Y)']. Due to the cross-cor-
relation among concurrent flows, the quantile estimates y;
and y;(i # j) are correlated, and thus the off-diagonal ele-
ments of X are nonzero.

Tasker and Stedinger (1989) provide the following esti-
mator of the components of X which neglects the possible
error in the estimated skew:
of

i = {1 + Ky + 2K,2(1 + 0.757),.2)} o fori=j

mjjoio;
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1 1
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fori+#j

(4)

where mj; is the concurrent record length between sites i
and j, p;;j is the lag zero cross-correlation of flows between
sites i and j, and ¢; and o; are the population standard devi-
ations at sites i and j, respectively. To avoid correlation be-
tween the residuals and the fitted quantiles, Tasker and
Stedinger recommend that (i) p;; is estimated as a function
of the distance between sites i and j, (ii) the standard devi-
ations ¢; and o; are estimated using a separate regional
regression on drainage area, and (iii) the regional skew G;
is used in place of the population skew y;. Kroll and Ste-
dinger (1998) demonstrate for a number of cases that this
smoothing results in negligible loss of efficiency.

Because the sample skew is an estimate with an associ-
ated estimation error, the approximation in Eq. (4) should
be extended to reflect all of the sampling error in the quan-
tile estimates. The needed estimator of the sample covari-
ance matrix is:

X =Varly;] fori=j

1 1 1
Zij: 1 +iKiVi+2K}/j+2KK (pz]+075))1/1)
1 1 oK
+_WIKJ/16 (3pu+075h/}) _W]Kiyja(3pij+0'75”/iyj)
+WW0'6,2K6 Covg;,gjl|p m” 9 fori+j

(5)

where Varly;] is as specified in Eq. (3). The parameters pj;,
gi, and y; are estimated as specified in the preceding para-
graph to avoid correlation between the residuals and the fit-
ted quantiles. The partial derivative 0K/0y; is computed
using the approximation provided by Chowdury and Ste-
dinger (1991), and the weight W; is computed using MSE[g;]
estimated using the approximation provided by Griffis et al.
(2004) wherein the regional skew is used to estimate the
population skew y. Griffis (2006) considers different estima-
tors of y when computing weights for use in Eq. (1), and ulti-
mately recommends use of the regional skew.

To include skew uncertainty in Eq. (5), the needed
covariance terms such as Cov[x;, g;] and Cov[s;, g;] were esti-
mated assuming the relationship between concurrent obser-
vations y; and y; at sites i and j could be modeled by a
multivariate gamma distribution for which the two corre-
lated variables are generated by the sums

Vi=Z1+2;

6
Vi=Z1+2Z3 ©

wherein z;, z,, and z5 are independent standard gamma ran-
dom variables. Here z, is common to both y; and y;, thereby
introducing a common signal, whereas z, and z; are
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independent of one another causing y; and y; to be less than
perfectly correlated.

The off-diagonal elements of the sampling covariance
matrix estimator in Eq. (5) also include the term Cov[g;, g;]
which is the covariance between the two at-site skew esti-
mators g; and g;. This term is obtained from
Cov(g;, gj] = pgg \/Var(g]Var(g)] 7)
where the cross-correlation Pgg, 1S estimated using the
approximation developed by Martins and Stedinger (2002):

Paig; = Sign(py)cfis|pyl’ (8)

wherein cfj; = m,-j/\/(m,-,- + n;)(mj; + n;), and values of v are
tabulated by Martins and Stedinger (2002) for |y| < 1.0. In
addition, Var[g; ] and Var[g;] are evaluated using the follow-
ing approximation derived by Griffis (2003):

+ (G e )]
9)
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samples:
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731 459 865
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1

The regional skew G; is used in Eq. (9) in place of the popu-
lation skew y; to avoid correlation between the residuals and
the fitted quantiles. The approximation for MSE[¢] in Griffis
et al. (2004) has the same form as the approximation for
Var[g] above. The approximations are asymptotically equiv-
alent, and are identical for y = 0 because for that case the
skewness estimator is unbiased.

Griffis (2006) shows that for reasonable parameter values
the variance of y; in Eq. (4) underestimates the value of the
diagonal elements of X. This error increases with an in-
crease in either n or MSEg, and can be substantial when
the error in the regional skew is on the order of 0.3 as sug-
gested by Bulletin 17B. The relative difference between
Egs. (4) and (5) is independent of G. Evaluation of the error
in the off-diagonal elements of Eq. (4) is more complicated
because of the terms involving the cross-correlation p;; and
the concurrent record length m;;. However, results in Griffis
(2006) suggest that Eq. (4) overestimates the off-diagonal
elements of X for negative values of regional skew, whereas
the elements are overestimated for positive regional skews,
and the magnitude of the error increases with the magni-
tude of myj, pjj, G, and MSE. Section 3 of this paper includes
an evaluation of the impact of using Eq. (4) instead of Eq.
(5) on a GLS regression analysis and model selection using
data for South Carolina.

The analysis presented in Section 3 employs LP3 quantile
estimates obtained for each site following B17 guidelines.
While other distributions and parameter estimation meth-
ods could be employed, Griffis and Stedinger (2007a,b)
demonstrate that the LP3 distribution provides a reasonable
model of annual maximum flood series in the United States,

and that log space method of moments with regional skew
information is an efficient LP3 parameter estimation tech-
nique relative to alternative methods such as maximum like-
lihood estimation and real space method of moments.
Overall, the results of Griffis and Stedinger (2007a,b)
indicate that the quantile estimators employed herein are
reasonable. Nonetheless, the procedures and statistics
developed in the following sections can easily be applied
to other distributions; one would only need an appropriate
estimator of X to describe the variance and covariance of
the quantile estimates obtained using the chosen
distribution.

GLS regression model

The goal of a generalized least squares (GLS) regression
analysis is to identify the best model one can for estimating
flood quantiles, such as the 100-year peak flow, at an unga-
uged site given a set of k basin characteristics. These basin
characteristics are assumed to be measured with negligible
error. If y; can be expressed as a linear function of the logs
of the basin characteristics (x’s) and the model error J;,
then one has the model:

Vi :ﬁ0+ﬁ1x,-1 +ﬁ2x;z+~~-+[3kxik+5,- (10)

The errors 9; are assumed to be normal and independently
distributed with mean zero and a variance of ¢%. Here o2
is the model error variance, or the residual variance not ex-
plained by sampling error.

Combining Egs. (2) and (10) yields

Vi = Bo 4 PiXit + BoXip + - - - 4 PaXix + 01 + 1 (11)

Thus, when y; = log(Q;), the log—log model in Eq. (11) corre-
sponds to the real space model:
Qi = boR%! R, ... RE10% 1 (12)
wherein b; is an estimate of the jth beta coefficient
(=0, ..., k) and R;; are the observed values of the k basin
charactensucs (Rij =10% for j=1,...,k).

Eq. (11) in matrix notation can be wr1tten as

Y=XB+e (13)

where X is a [N x (k + 1)] matrix of k basin characteristics
augmented by a column of one’s, gis a [(k+ 1) x 1] vector
of regression parameters, and ¢=6+# is a (Nx 1) vector
of random errors, for which E[¢] =0 and E[e'] = A.

Due to the correlation between the residuals, the tradi-
tional OLS analysis is not appropriate, and a GLS analysis
should be used to relate the fitted quantiles to the specified
basin characteristics and to describe the errors. The GLS
estimator of g is

b=XA"X)"X'AY (14)
This estimator would be the best linear unbiased estimator
of g if A were known (Johnston, 1984). However, A is not
known, but can be estimated by

Ae?) =y + £ (15)

wherein Iy is an (N x N) identity matrix, and ¥ is computed
using either Eq. (4) or (5).



86

V.W. Griffis, J.R. Stedinger

The model error variance ¢ and the vector of regression
coefficients b are estimated jointly by iteratively searching
for a nonnegative solution to the equation (Stedinger and
Tasker, 1985):

(Y =Xb)"[62ly + £ (Y —=Xb) =N — (k+ 1) (16)

where 62 is the estimator of the unknown model error vari-
ance and b is given by Eq. (14).

Measures of model and prediction error

The purpose of the regression model is to estimate flood
quantiles at ungauged sites. Therefore, given a site with ba-
sin characteristics Xxq, a concern is how well the GLS regres-
sion model predicts the true quantile, y, (Tasker et al.,
1986). Under the assumption that the observed data were
collected at representative sites at which predictions will
be made, the average variance of prediction (AVP) over
the available dataset is a measure of how well the GLS
regression model predicts the true quantile on average (Tas-
ker and Stedinger, 1986), where:

N
AVPgs = &2 +% D> xi(XTATX) ] (17)
i=1

Here the x;’s are row vectors containing the physiographic
characteristics of each site. When comparing hydrologic
regression models a smaller AVP is preferred. (See studies
cited in Reis et al., 2005.) Additionally, if the residuals have
nearly a normal distribution, then the standard error of pre-
diction in percent (SEP%) for the true flood quantile estima-
tor (rather than its common logarithm) is described by

SEP% = 100V 10"("0APais _ 4 (18)

In order to assess the precision of a model, the AVP and the
model error variance are preferred over more common met-
rics such as the traditional R* and adjusted-R*(R?), which
misrepresent the true power of the model. These R* metrics
measure the proportion of variance in the observed y; values
explained by the fitted model. Unfortunately, that propor-
tion considers the total error ¢, which includes the sampling
error 5. However, our interest is actually to quantify the
proportion of the variance among the unobserved y; ex-
plained by the model. Let 6%(k) be the estimated model er-
ror variance for the regression model with k explanatory
variables, and 63(0) be the estimated model error variance
when no explanatory variables are employed. Then a pseu-
do-R? appropriate for use with GLS regression is

o3 (k)
53(0)

Both our pseudo-R? and the traditional adjusted-R* correct
for the degrees-of-freedom lost when k parameters are
estimated.

An important question that should be addressed is
whether a full GLS regression is needed, or if WLS, or even
OLS would be sufficient. Unlike OLS regression which in-
cludes a single error term, WLS and GLS regression analyses
divide the total error into two parts: sampling error and
model error. Therefore, OLS regression should be sufficient
if the sampling variance is negligible when compared to the

RéLS =1-

(19)

model error variance. The relative magnitude of the aver-
age sampling variance to the model error variance, and thus
the necessity of a WLS or GLS regression analysis, can be de-
scribed using the error variance ratio (EVR) computed as

tr(X)
EVR = NG2 (k) (20)
If the EVR is greater than 20%, then a WLS or GLS regression
analysis is recommended instead of OLS.

Similarly, the Misrepresentation of the Beta Variance
(MBV) statistic can be used to determine whether a full
GLS regression is necessary, or if WLS regression is suffi-
cient. This is accomplished by measuring the impact the
correlation among the y; values has on the regression anal-
ysis. A statistic that is particularly sensitive to cross-corre-
lation is the variance of the estimator of the constant
term in the model, as illustrated by the results in Table 1
of Stedinger and Tasker (1985). For example, for a popula-
tion correlation of +0.3 and the true model error variance
of 0.011, their results indicate that WLS regression misrep-
resents the variance of the constant by a factor of 2.3; the
variance of the slope coefficient is misrepresented to a les-
ser degree by a factor of 1.6. Thus to illustrate the impact
of cross-correlation for a particular problem we consider
the variance a GLS and a WLS analysis would ascribe to
the WLS estimator by of the constant in the model f3,. Let
w be a (N x 1) vector with components

1

corresponding to the inverse of the square root of the diag-
onal elements of A. Then the WLS estimator of the average
of the y; s, computed as w'y/w'v where v is a (1 x N) vector
of ones, has sampling variance w'[diag(4;;)] w/(w'v)% =N/
(Ww'v)%; the GLS analysis would estimate the variance of
the WLS estimator as w'Aw/(w'v). Thus the MBV can be
computed as

Wi = (21)

_ Var[by®|GLS analysis] w'Aw

MBV
Var[by"*|WLS analysis] N

(22)

This ratio provides a direct measure of the distortion in the
estimated variance of the constant that results when a WLS
analysis is employed rather than a GLS analysis. If the MBV
statistic is notably greater than 1, then WLS regression is
insufficient and GLS regression should be employed. Here
the appropriate threshold depends upon the issues of con-
cern. If an analysis addresses the precision of the estimated
constant, and in particular if one is considering indicator
variables to represent differences among regions, then a
relatively precise description of the variance of such con-
stants is needed. To ensure less than a 10% error in the esti-
mated standard errors, GLS should be employed when the
MBYV is greater than 1.2. Errors in the computed standard er-
rors for other beta estimators are also a concern if different
explanatory variables are considered.

Alternative definitions of the MBV statistic could be em-
ployed. Griffis (2006) considers four possible definitions of
the MBV ratio (including the definition above) reflecting dif-
ferent ways the impact of the correlation among the y; val-
ues on the regression analysis might be measured. Three of
the MBV ratios (including Eq. (22)) measure the distortion of
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Table 1

Source

Pseudo ANOVA table for GLS regression analyses

Degrees-of-freedom  Sum of squares

N[a3(0) — a3(K)]
Na3 (k)

tr(X)

Na2(0) + tr(X)

Regression model  k

Model error ¢ N—k—-1
Sampling error 5 N

Total error 2N — 1

the computed variance of the OLS, WLS and GLS estimators
bg of the constant fo when the residuals are cross-corre-
lated. Of these three definitions, the MBV in Eq. (22) is pre-
ferred because it directly addresses the distortion in the
variance of the constant estimator from a WLS analysis if
the residuals were really cross-correlated, and thus a GLS
analysis were appropriate.

The fourth definition considered measures the loss of
efficiency from using the WLS estimator of the constant
rather than the GLS estimator by comparing the variances
of the two estimators. This loss of efficiency could be sub-
stantial, however, the more sensitive statistic appears to
be the errors made in the estimated precision of the f,
parameter represented by the MBV statistic. Such an error
can result in a hydrologist adding variables to a model that
are not statistically justified because their inclusion actually
increases the average variance of prediction.

Following Reis (2005), Table 1 presents a proposed pseu-
do Analysis of Variance (ANOVA) table for a GLS analysis. It
describes how the total variation among the y; values can be
partitioned among that explained by the model and the ex-
pected residual variation due to model error and sampling
error. This is an extension of the ANOVA table for OLS
regression to correctly separate the expected sampling
and model error variances. In a traditional OLS regression,
the observed total sum of squares (SST) is simply divided
into the regression sum of squares (SSR) and the error sum
of squares (SSE), where SST =SSR + SSE. Table 1 partitions
the expected variation due to sampling error and model er-
ror, rather than the actual error because the actual errors
are not observed.

Application of GLS regression in South Carolina

Data for N = 162 sites in South Carolina and adjacent states,
compiled by Feaster and Tasker (2002), was used in a GLS
regression analysis to develop models of the 100-year event.
Models were obtained using the sampling error matrix in Eq.
(4) and the more appropriate estimator in Eq. (5) which ac-

Table 2 Number of sites per region and record length statistics

counts for error in the skew. Model development, compari-
son, and selection were based on several statistical
innovations. The USGS data include moments of the fitted
P3 distribution at each site and the resulting estimate of
the 99th quantile, the latitude and longitude of each site,
estimates of the regional skew and its precision, estimates
of the lag-zero correlation of concurrent flows between
two sites, and the at-site and concurrent record lengths.
For each site, Feaster and Tasker (2002) also provide data
on eight basin characteristics: (i) drainage area measured
in square-miles; (ii) main-channel slope measured in feet
per mile; (iii) main-channel length measured in miles; (iv)
elevation reported as the mean basin elevation above sea-
level; (v) forest cover measured as a percent of drainage
area; (vi) storage measured as the percent of drainage area
consisting of lakes, ponds, and swamps; (vii) precipitation
measured in inches at the centroid of the basin; and, (viii)
runoff measured in inches at the centroid of the basin. A
concern addressed in the following subsections is that data
for all eight characteristics was not available for 28 of the
162 sites.

The study area was divided into three major physio-
graphic regions: the Blue Ridge, the Piedmont, and the
Coastal Plain. The Coastal Plain is further divided into the
upper and lower Coastal Plain. The Blue Ridge (region 1) is
a mountainous region with steep terrain. The Piedmont (re-
gion 2) has rolling hills and valleys with its highest elevations
located in the Blue Ridge foothills. Both the Blue Ridge and
the Piedmont are rocky regions with poorly permeable soil.
The upper Coastal Plain (region 3) has more gradual slopes
with extensive swamps and wide floodplains. The lower
Coastal Plain (region 4) is also swampy, with highly perme-
able terrain which absorbs rainfall and reduces runoff.
Table 2 reports the number of sites contained in each
region, as well as the minimum, maximum, and average re-
cord length (Feaster and Tasker, 2002). There is one region
containing several sites and three regions with a modest
number of sites.

Because of the similarity of the two coastal regions,
quantile models for regions 3 and 4 are likely to be very sim-
ilar. Likewise, quantile models should be similar in the more
mountainous terrain of the Blue Ridge and the Piedmont.
Conversely, estimates in the highly permeable Coastal Plain
might differ from estimates for the poorly permeable ter-
rain of the Blue Ridge and the Piedmont. To test these
hypotheses, three indicator variables were introduced:

d, = 1, if station is in the Blue Ridge; 0, otherwise; d, = 1,
if station is in the Piedmont; 0, otherwise; d4 = 1, if station
is in the lower Coastal Plain; 0, otherwise.

Region Number of sites (N) Minimum record Maximum record Average record
length length length

Blue Ridge 30 11 82 40

Piedmont 84 12 100 34

Upper Coastal Plain 22 11 77 34

Lower Coastal Plain 26 12 72 34

Total Study Area 162 11 100 35
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Indicator variables were not employed by Feaster and
Tasker (2002) who simply considered each of the four phys-
iographic regions separately.

A critical issue here is the precision of the regional skew-
ness estimator. Feaster and Tasker (2002) conducted a re-
gional analysis for the skew using the arithmetic mean
procedure recommended by B17. The skews in the Piedmont
were determined to be significantly different from those in
the Blue Ridge and Coastal Plain regions, but the differences
in the latter three regions were insignificant at the 5% level.
Therefore, Feaster and Tasker conducted a separate regio-
nal analysis for the Piedmont and obtained a mean regional
skew of —0.190 with a variance of 0.090; a mean regional
skew of 0.082 with a variance of 0.105 was obtained using
the combined data for the Blue Ridge and Coastal Plain re-
gions. These variances correspond to effective record
lengths on the order of 60 years (see Griffis et al., 2004),
but they were simply computed as the variance of the sta-
tion skew estimates about the regional average, and thus
may overestimate the actual error of the regional skew.
Using GLS regression with the same data, Reis et al.
(2004) obtained a model error variance of 0.025, which
has an effective record length over 200 years. The following
section describes a separate regional GLS analysis for the
standard deviation.

Regression model for standard deviation

To avoid correlation between the residuals and the fitted
quantiles, an estimator of the standard deviation g; other
than the at-site value s; is required to compute X. Based
on their simulation studies, Stedinger and Tasker (1985)
and Kroll and Stedinger (1998) observe that the GLS estima-
tors are not very sensitive to the estimator of g;, and thus 4;
need not be highly accurate, though unbiased estimates are
desired. The important requirement is that the estimator be
independent of the model’s residuals and the time-sampling
error. Stedinger and Tasker (1985) were concerned that it
should also be consistent with the model of y; in Eq. (10).
Such an estimator is given by the model:

ai = o+ plogo(Ai) + & (23)

wherein 4; is the drainage area of the basin containing site i,
and the error ¢; is lognormally distributed with zero mean
and variance o? = ¢?(A)[10"19% _ 1], Additional basin char-
acteristics could be used; however, several studies (for
example, Benson, 1962; Cruff and Rantz, 1965; Thomas
and Benson, 1970) indicate that the drainage area is the
most significant explanatory variable and is sufficient for
the estimator’s purpose here.

The pooled regression model in Eq. (23) assumes a com-
mon intercept and slope for all four regions. To test for dif-

ferences between the intercepts of each region, a fixed
effects model using indicator variables was considered:

gj = 0 + 04 d1 + Otzdz + O(4d4 + ﬁlog10(A;) + & (24)

With this model, values of o4, oy, and o4 reflect the differ-
ence between the intercepts in regions 1, 2, and 4, respec-
tively, relative to the common intercept «o that then
corresponds to region 3.

To estimate the coefficients of the standard deviation
model, Stedinger and Tasker (1985, 1986b) suggest a WLS
regression. However, if there is substantial cross-correla-
tion between sites, then a GLS model of the standard devi-
ation would be more appropriate. To estimate the
coefficients of the standard deviation model using GLS
regression, one needs the sampling covariance matrix X(s)
for the standard deviations. Stedinger and Tasker (1986b)
provide an expression for X(s) for normal variates. From
Eq. (4), a formula for P3 variates is

2
0j

1 .
2(s);; = Var(s) = 2(1 + 0.75“/,-2)5 for i =j
1 mjjoio; .
Z(s)ij = Cov[s;,sj] = i(p,-j +0.75y7;) 0y . fori+#j
illj
(25)

To avoid correlation between the residuals and the esti-
mated standard deviations, (i) p;; is estimated as a function
of the distance between sites i and j, (ii) the regional skew
G; is used in place of the population skew y;, and (iii) the
standard deviations o; and ¢; are estimated using a separate
OLS regression on drainage area. Estimates of o and f§ are
obtained by iteratively solving Eqs. (14) and (16) wherein
A is estimated using

and Ay =Z2(s);  (26)

1

Ay = Elai* [10°097 — 1] + 5s),

Coefficients for the pooled regression model in Eq. (23) and
the fixed effects model in Eq. (24) were obtained using GLS
regression. Griffis (2006) reports the estimated coefficients,
and the t-values and their p-values for a two-sided hypoth-
esis test of whether or not each coefficient is significantly
different from 0. The p-values indicate that «; and «; in
the fixed effects model are not statistically significant at
the 5% level relative to a3 =0, but a4 is highly significant
with a p-value of 0.01%. These results suggest that regions
1, 2, and 3 are similar to one another, but are different from
region 4 corresponding to the lower Coastal Plain. Thus, the
recommended model for the standard deviation is

gj = 0 + 064d4 -+ /)’log10(A,-) + & (27)

Table 3 reports summary statistics for the models including
the average (over A) of the estimated model error variances
&2, the AVP, the traditional adjusted-R*(R?), the pseudo-R?

Table 3 Summary statistics for GLS regression models for standard deviation

Model &2 AVP R? R EVR MBV

Pooled model (Eq. (23)) 0.0020 0.00211 0.006 0.154 0.666 4.630
Fixed effects model with a3 =0 (Eq. (24)) 0.0017 0.00185 0.111 0.300 0.806 5.081
Fixed effects model with only o4 (Eq. (27)) 0.0016 0.00178 0.109 0.306 0.815 5.101
Interaction terms (Eq. (29)) 0.0017 0.00187 0.111 0.291 0.801 5.052
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(denoted RZ;), and the EVR and MBV. The EVR is about 70 to
80% indicating that the average sample error variance al-
most equals the model error variance. Thus, a WLS or GLS
analysis is called for. The values of the MBV exceed 4, which
is appreciably greater than 1 indicating that a WLS analysis
for the standard deviation could be very misleading.

Of the three models, the fixed effects model in Eq. (27)
has the smallest model error variance and AVP, and the larg-
est pseudo-R2. It is interesting that the model in Eq. (24)
actually has a larger traditional R? value than the model in
Eq. (27), even though the model in Eq. (27) yields a slightly
smaller AVP. This illustrates how the traditional R? can mis-
represent the true power of the GLS model.

Fig. 1 plots the residuals of the pooled regression model
by region wherein each site was assigned an index number
between 1 and N = 162. The pooled regression model yields
residuals with a mean greater than zero in region 4, whereas
the mean of the residuals is negative in the other three re-
gions. Use of the additional intercept term in the fixed ef-
fects model appropriately decreases the mean of the
residuals in region 4, and increases the mean for the other
three regions.

To further test if the restrictions imposed by this model
are justified, the following test statistic may be used:

Z[J] = [Bunres - Bres]T{Var[i)unres ‘)(]}71 [Bunres - Bres] (28)

where J is the number of coefficients estimated, Bunres is the
vector of coefficients estimated for the model in Eq. (24),
and b, is the vector of coefficients for Eq. (27). This test
statistic is approximately chi-squared distributed with J de-
grees-of-freedom (Greene, 2003, p. 347). The test statistic
75 has a value of 1.11, which is much less than the critical
value of 11.07 for a one-sided 5% test. This test, Fig. 1, and
the p-values for a two-sided hypothesis test for individual
coefficients indicate that use of a common intercept term
is appropriate for regions 1, 2, and 3, but an adjustment
is statistically justified for region 4.

In addition to the differences in the intercepts for the
four regions, there may also be differences in the slopes.
Interactions between region and drainage area were em-
ployed to test for possible differences in the slopes using
the model
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Figure 1 Residuals plotted by region for the pooled regres-
sion model (Eq. (23)).
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oi = og + o4ds + (o + p1ds + frda + f4ds)
1
x | logo(A;) N Zlc’gm(Aj) té (29)
=

Here the data are centered to allow for an adjustment of
the intercept in region 4 while also changing the slope.
The p-values for a two-sided hypothesis test indicate that
only the additional intercept term for region 4 (oy) is sig-
nificant at the 5% level (p-value =0.05%); none of the
interaction terms are significant at the 5% level relative
to f3=0. Further, the common slope term (fp) is just
barely not significant at the 5% level when all of the inter-
action terms are included because the standard error of fio
doubled. This clearly illustrates the value of pooling the
data when estimating the relationship between the stan-
dard deviation and drainage area. Overall, these results
indicate that the fixed effects model in Eq. (27) is an
appropriate model of the sample standard deviation in rur-
al South Carolina.

GLS regression model for the 100-year peak flow

A goal of this analysis is to use GLS regression to identify and
estimate the parameters of a model to estimate the 100-
year peak flow at ungauged basins in South Carolina. A pre-
liminary analysis indicated that the logarithms of the 99th
quantile estimates were linearly related to the logs of sev-
eral explanatory variables: drainage area (A), main-channel
slope (S), main-channel length (L), basin storage (St), and
precipitation (P). Distinct relationships with the logs of
the elevation (E), forest coverage (F), and runoff (RO) could
not be found; thus, these variables are unlikely to contrib-
ute to the estimation of the 99th percentile. The following
analyses consider the model:

y; = bo + by log(A;) + bz log(S;) + bs log(L;) + by log(E;)
+ bs log(F;) + be log(St;) + by log(P;) + bs log(RO;) + e;
(30)

where y; is the base-10 logarithm of the 99th percentile at
site i and e; is the estimation error. Cross-products of the
explanatory variables were investigated by Feaster and Tas-
ker (2002) in an attempt to try to improve the estimator y;.
However, it is not clear that this is the correct approach as
the general understanding of hydrology is not advanced en-
ough to know whether or not this model specification is rea-
sonable. Furthermore, by using a log—log transformation,
such a multiplicative relationship between the variables
should be captured in the resulting real space quantile esti-
mator. Therefore, cross-products of explanatory variables
were not considered in this study.

The coefficients of the model in Eq. (30) were estimated
using a GLS analysis. The regional skew information and
other data provided by Feaster and Tasker (2002) were used
in conjunction with regional estimators of the sample stan-
dard deviation obtained using Eq. (27). The sampling error
matrix 2 can be computed using Eq. (4), or more appropri-
ately using the new relationship in Eq. (5) that accounts for
the error in the skew. The impact on the GLS analyses due to
correctly including the skew error in 2 is investigated
below.
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GLS regression model using new estimator of X with
MSE; ~ 0.100

Using the new estimator of X in Eq. (5), various forms of the
model in Eq. (30) were fit using GLS regression. In addition
to the constant term shown in Eq. (30), indicator variables
were again employed to test for differences in the four re-
gions. For the purpose of model comparison, models were
fit using only the 134 sites out of the total 162 sites for
which information was available for all eight explanatory
variables. Griffis (2006) reports the estimated coefficients
and p-values for a two-sided hypothesis test. Table 4 reports
summary statistics for each model. The EVR and MBV dem-
onstrate that the full GLS model is needed. The condition
number (CN) is reported to provide a check for problems
with multicollinearity, where

. T
N = \/Max(elgenvalue of (X'X)) 31)

Min(eigenvalue of (X"X))

Generally a CN greater than 20 indicates a problem with
multicollinearity (Greene, 2003, p. 58).

Model 1a. Model 1a employed all eight explanatory variables
and a single constant term. This is the pooled regression
model which assumes the intercept is the same for all four
regions. Four of the variables [log(S), log(L), log(F), and
log(St)], are not statistically significant at the 5% level,
although the coefficient for log(St) is significant at the 6%
level. Also, CN =297 >> 20 which suggests serious multicol-
linearity; the residuals are plotted by region in Fig. 2 to
investigate possible causes.

Fig. 2 indicates that over the 134 sites there are prob-
lems with the model specification because the residuals in
regions 1 and 3 tend to be more negative, while the residu-
als in region 2 tend to be more positive; the residuals in re-
gion 4 appear reasonably centered around a mean of zero.
This suggests there are differences between the four regions
that are not captured in the pooled model. Therefore, in
addition to the eight explanatory variables and a common
intercept term, indicator variables were added for regions
1, 2, and 4 resulting in a fixed effects model denoted as
Model 1.

Model 1. Model 1 employed all eight explanatory variables
and three indicator variables in addition to a common inter-
cept term. Only the variable log(A) is statistically significant
at the 5% level. The variables log(S), log(L), log(E), log(F),
and log(St) have p-values ranging from 16% to 60%, whereas
log(P) and log(RO) have p-values greater than 90%. Because
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Figure 2 Plot of residuals by location for GLS regression

model 1a using the new estimator of 2.

the p-values of log(P) and log(RO) are so large relative to
those of the other variables, only these two variables were
removed from the model to see if the significance of the
other variables would be improved. The resulting model is
denoted Model 2.

Model 2. Model 2 employed three indicator variables in
addition to a common intercept, and six of the eight explan-
atory variables, excluding log(P) and log(RO). Again, log(A)
is the only significant explanatory variable at the 5% level
(other p-values ranged from 15% to 57%). Therefore, the
variables log(S), log(L), log(E), log(F), and log(St) were ex-
cluded resulting in Model 3.

Model 3. Model 3 employed the explanatory variable log(A)
and three indicator variables in addition to a common inter-
cept. All of the variables are highly significant with p-values
less than 0.01%. The results in Table 4 show that Model 3
yields a slightly larger model error variance and a slightly
smaller pseudo-R? than Model 2, but the AVP for Model 3
is noticeably smaller than those of Models 1 and 2. Further-
more, Models 1 and 2 have large CN values and the coeffi-
cients are not all statistically significant at the 5% level as
they are for Model 3. Plots of the residuals by region did
not reveal any heteroscedasticity.

Table 4 also reports the traditional R? for each model
considered. The traditional R? is consistently smaller than
the pseudo-R?, illustrating how the traditional R? underesti-
mates the performance of the model.

Table 4 Summary statistics for GLS regression models of the logarithm of the 100-year peak flow obtained using the new

estimator of X with MSE; ~ 0.100 and N = 134 Sites

CN & AvpP R? R EVR MBV
Model 1a 297 0.0332 0.0373 0.850 0.890 0.363 3.32
Model 1 330 0.0159 0.0196 0.913 0.947 0.760 4.76
Model 2 102 0.0155 0.0186 0.914 0.949 0.780 4.82
Model 3 12.8 0.0156 0.0177 0.913 0.948 0.775 4.80
Model 4 9.5 0.0146 0.0177 0.919 0.951 0.825 4.94
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Model 4. Interaction terms were introduced to test for pos-
sible differences in the slopes resulting in Model 4:

Vi = Qo + a1dy + G,d; + asds + (bo + b1dy + byd, + bads)

< [log(A) — 1> log(4) (32)
=

None of the interaction terms are significant at the 5% level
relative to b; = 0. This suggests the restrictions imposed by
Model 3 are appropriate. However, Eq. (28) can be used to
test if the interaction terms in Model 4 are jointly signifi-
cant; the resulting test statistic 7 has a value of 7.98,
which is much less than the critical value 15.51 for a one-
sided 5% test. This indicates that use of a single slope coef-
ficient for all four regions is appropriate, and thus Model 3 is
recommended. Table 5 reports the estimated coefficients
using all 162 sites, their standard errors, and the corre-
sponding t-values and p-values for a two-sided hypothesis.
A pseudo ANOVA table is provided in Table 6. Table 7 re-
ports additional summary statistics.

The recommended model has a different constant for
each region, but a common slope. Although there may be
physiographic differences among the four regions, these
differences are insignificant in terms of the estimated slope
coefficients. This makes sense if one believes that the basin
time of concentration should scale with drainage area in a
consistent fashion, such as the power law. However, the
differences in the intercepts allow for differences in runoff
volume due to differences in soil characteristics, land
cover, storage area, and slope, even though individual
slope coefficients for these variables were found to be
insignificant.

Use of a pooled regression model versus separate regional
models. Many regional regression studies, such as Feaster

and Tasker (2002), define physiographic regions and then
develop models of a given flood quantile for each region
individually. The analysis here demonstrates this may be
unwise. It may be beneficial to pool data across regions in
which the physiographic differences are not significant,
particularly when individual regions contain relatively few
sites. Consider separate models of the form y; =a+
blog(A;) for each region. The coefficients and select
summary statistics obtained for each region using GLS
regression with the new estimator of X are reported in
Table 8.

Using the data for all four regions, an AVP of 0.0201 was
obtained for the pooled model (Model 3 above). This corre-
sponds to AVPs of 0.0206, 0.0194, 0.0206, and 0.0211 for re-
gions 1, 2, 3 and 4, respectively, using the physiographic
characteristics of each region and the pooled model esti-
mate of the variance. When separate models are used for
each region, the change in the AVP for regions 2 and 4 is rel-
atively modest, however, the AVP for region 1 is reduced by
roughly 43%, and the AVP for region 3 is increased by about
28%. For region 1, the difference in the AVP is predomi-
nantly due to the observed decrease in the model error var-
iance for that separate region, though the set of x values
upon which the AVP is computed has also changed. The
model error variance for the pooled model (Model 3) is
0.0182, but when using a separate model for region 1, the
estimated model error variance decreases by roughly 50%,
thereby yielding a large reduction in the AVP; but the model
error variance estimate is now based on only 30 sites. It is
also important to note that the variance of the slope coef-
ficients in the models for regions 1, 3 and 4 are now two
to three times greater than the variance of the common
slope coefficient in the pooled model. Therefore, the sepa-
rate model for region 1 may not be suitable for application
at ungauged sites, particularly if they have unusual drainage
areas.

Table 5 Estimated coefficients for recommended GLS regression models for the logarithm of the 100-year peak flow obtained
using various estimators of X with N =162 (with base-10 logarithms)

b SE t-Value p-Value
Using Eq. (4) to Compute X with MSEg =0
Constant 2.1861 0.0631 = =
d 0.6982 0.0631 11.07 0.0000
d; 0.5667 0.0496 11.42 0.0000
dy 0.2948 0.0593 4.968 0.0000
log(A) 0.6443 0.0176 36.61 0.0000
Using Eq. (5) to Compute X with MSEs ~ 0.100
Constant 2.1912 0.0632 — —
d 0.6960 0.0634 10.98 0.0000
d; 0.5641 0.0492 11.46 0.0000
dy 0.2924 0.0598 4.892 0.0000
log(A) 0.6433 0.0175 36.74 0.0000
Using Eq. (5) to Compute X with MSEg = 0.302
Constant 2.1963 0.0629 = =
d 0.6932 0.0631 10.99 0.0000
d, 0.5611 0.0486 11.55 0.0000
dy 0.2890 0.0594 4.864 0.0000
log(A) 0.6426 0.0173 37.11 0.0000
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Table 6 Pseudo ANOVA table for recommended GLS regression models of the logarithm of the 100-year peak flow obtained using

various estimators of X~ with N =162

Source

Degrees-of-freedom Sum of squares

Using Eq. (4) to Compute X with MSEs =0
Regression model

Model error &

Sampling error

Total error

Using Eq. (5) to compute X with MSEg =~ 0.100
Regression model

Model error §

Sampling error

Total error

Using Eq. (5) to compute X with MSEg = 0.302
Regression model

Model error 6

Sampling error

Total error

4 49.0
156 3.32
162 1.64
323 54.0

4 49.0
156 2.94
162 2.01
323 54.0

4 491
156 2.59
162 2.36
323 54.1

Table 7 Summary statistics for recommended GLS regression models of the logarithm of the 100-year peak flow obtained using

various estimators of 2 with N= 162

& AvpP R? R EVR MBV
Eq. (4) (MSEG =0) 0.0205 0.0224 0.909 0.937 0.495 4.76
Eq. (5) (MSEg ~ 0.100) 0.0182 0.0201 0.909 0.943 0.684 4.68
Eq. (5) (MSEg = 0.302) 0.0160 0.0178 0.909 0.950 0.912 4.61

Table 8 Estimated coefficients for GLS regression models for the log of the 100-year peak flow for each region using the new

estimator of ¥ with MSEg ~ 0.100 (with base-10 logarithms)

Region

1 2 3 4
a 2.7685 2.7965 2.0853 2.4527
b 0.7016 0.6159 0.6869 0.6493
SE(a) 0.0932 0.0521 0.1275 0.0955
SE(b) 0.0416 0.0232 0.0520 0.0411
2 0.0090 0.0207 0.0218 0.0166
AVP 0.0118 0.0221 0.0264 0.0207
R? 0.917 0.904 0.902 0.915
RéLS 0.958 0.934 0.938 0.953
N 30 84 22 26

For region 3, the model developed using only the 22
sites in the region has a larger model error variance, and
thus a larger estimated AVP than the joint model. Consider
a particular site (#02102910) in region 3 for which the log
of the drainage area is 0.3424: this site has the smallest
drainage area in region 3, and the largest residual error
using the region 3 model in Table 8. Now consider a new
site in region 3 with the same drainage area. To demon-
strate the benefit of pooling data across regions, the var-
iance of prediction at this new site using the region 3
specific model in Table 8 will be compared to the variance
of prediction using the pooled model (Model 3). For a gi-

ven model, the variance of prediction at a site i is com-
puted as

VPgis = (A)'g + X,‘(XTK71X)71X;F (33)

where for a fair comparison, the estimated model error var-
iance of 0.0182 from the pooled model is used in both com-
putations. The variance of prediction for this new site is
0.0306 using the region-specific model for region 3 in Table
8, whereas the variance is only 0.0217 using the pooled
model (Model 3), corresponding to roughly a 40% reduction.
This indicates how the prediction error can be reduced by
pooling the data from all four regions.
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GLS regression model using alternative estimators of ~
One goal of this study is to compare the precision of models
estimated using the new and more appropriate estimator of
2 in Eq. (5) that accounts for the error in the skew versus
the estimator in Eq. (4). In order to assess the potential im-
pact of appropriately estimating X as in the previous
section, the analysis was repeated using Eq. (4). Overall,
the results and conclusions using Eq. (4) are similar to those
reported above for the new estimator of X in Eq. (5). The
same form of the fitted model of the log of the 100-year
peak flow was chosen and the estimated coefficients are
very similar, as were the AVP values. This is likely due to
the precision of the regional skew model, which was as-
sumed to be on the order of 0.100. Table 5 reports esti-
mated coefficients using Eq. (4) with all 162 sites, their
standard errors, and the t-values and p-values for a two-
sided hypothesis test. A pseudo ANOVA table is provided in
Table 6, and additional summary statistics are presented
in Table 7.

What if the regional skew was not so precise? When using
the regional skew map contained in Bulletin 17B an estima-
tion error of 0.550, corresponding to MSEg = 0.302, is to be
employed. This is three times the variance of the regional
skew model developed by Feaster and Tasker (2002).
MSE; = 0.302 has been used in many USGS studies; see for
example Giese and Franklin (1996) and Walker and Krug
(2003).

In order to assess the impact of a less precise regional
skew on the estimated model error variance and AVP of
the model of the 100-year peak flow, the analysis was re-
peated using the new estimator of X~ wherein MSE; = 0.302
was employed in all four regions. Again, Model 3 was se-
lected. The results are included in Tables 5—7. The esti-
mated coefficients and their variances are very similar to
those obtained using the more informative regional skew
model with MSEg =0.100. However, when MSE; =0.302,
the model error variance and the average variance of pre-
diction are smaller than those obtained with MSEg = 0.100.
In this case we reduce the estimated model error variance
by correctly accounting for the error attributed to the
skew. However, this example suggests that gross errors
would not result from use of Eq. (4) to compute X with
MSE; = 0.302.

Table 6 reveals the most telling differences among the
three cases: when the error attributed to the skew in-
creases, the total sampling error increases, and the esti-
mated model error variance decreases accordingly, while
the variation attributed to the model and the total variabil-
ity in the data remain essentially fixed. Indeed the total var-
iation in the data is fixed, and Eq. (16) seeks to partition the
variability not explained by the model between the sam-
pling error and the model error variances.

The results in Table 7 indicate that for models of the log
of the 100-year peak flow both the model error variance and
the AVP are significantly overestimated when the regional
skew is relatively imprecise and it is incorrectly assumed
that there is no error in the skew. This is because the error
in Eq. (4) increases as the true precision of the regional
model decreases. (See Griffis, 2006). And, the error in the
estimator of X is dominated by the diagonal elements which
are underestimated when the error in the skew is ignored.
Thus, there is a trade-off between the magnitude of the ele-
ments of 2 and the estimated model error variance. By
ignoring the error in the computed skew, the elements of
X are underestimated, thereby resulting in the inflation of
the estimate of the model error variance. This inflation is
exacerbated if the regional skew is relatively imprecise as
suggested by Bulletin 17B with an effective record length
of only 17 years. However, if the regional skew is relatively
precise as suggested by more recent studies, such as Tasker
and Stedinger (1986) and Reis et al. (2003, 2004, 2005), with
an effective record length in excess of 60 years, then the
misrepresentation of the model error variance when using
Eq. (4) is likely to be inconsequential. Here the average re-
cord length is 35 years across the 162 sites with a standard
deviation of 21 years. The misrepresentation of the model
error variance due to using Eq. (4) when MSE; =~ 0.100 is
likely to be even less important with shorter records be-
cause the X estimator would be dominated by at-site sam-
pling error in the mean and standard deviation, rather
than the imprecision in the regional skew. This is discussed
in more detail below.

Application with fewer sites
The analysis presented above is based on a large number of
sites, with 162 sites total across the four regions. Would the
same trade-off between the sampling and model error be
observed if fewer sites were available? Would the misrepre-
sentation of the model error variance when using Eq. (4)
still be modest when the regional skew is relatively precise?
Consider region 3 which contains only 22 sites, with an aver-
age record length of 34 years and a standard deviation of 21
years. For the individual regions in this study area, Feaster
and Tasker (2002) found that the most appropriate model
of the log of the 100-year event is y; = a + blog(4;). Table
8 contains the estimated coefficients and some summary
statistics for this model obtained using the data for region
3 and GLS regression with the new estimator of 2 wherein
MSE; ~ 0.100. Similar coefficients are obtained using Eq.
(5) with MSE; =0.302 and Eq. (4) to compute X. Summary
statistics for these models obtained using the three estima-
tors of X are summarized in Table 9.

With fewer sites available to develop the regression mod-
els, the values of 62 and AVP reported in Table 9 for the

Table 9 Summary of model error variance and AVP for models of the log of the 100-year peak flow in region 3 obtained using

various estimators of X with N =22

&2 AvpP R? R EVR MBV
Eq. (4) (MSEg =0) 0.0244 0.0290 0.903 0.931 0.422 1.75
Eq. (5) (MSEg ~ 0.100) 0.0218 0.0264 0.902 0.938 0.586 1.80
Eq. (5) (MSEg = 0.302) 0.0195 0.0240 0.902 0.944 0.765 1.81
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models obtained using data for region 3 alone are larger
than those in Table 7 for the models obtained using data
pooled across all four regions. However, again the esti-
mated model error and the AVP increase as the precision
of the regional skew increases. Thus, the same trade-off be-
tween the sampling covariance and the model error vari-
ance is observed, as Eq. (16) suggests would occur.
Furthermore, when the regional skew is relatively precise,
the overestimation error due to incorrectly ignoring the er-
ror in the skew is again only on the order of 10% in terms of
both the estimated model error variance and the AVP. For
regions with a greater number of sites, the AVP will essen-
tially equal the model error variance 63, so any distortion
in 2 will be reflected in the computed AVP.

Conclusions

The appropriate estimator of the sampling error matrix for
the log of LP3 quantiles obtained with an estimated skew
is developed for use in GLS regression. This new estimator
correctly accounts for the error in quantile estimates due
to the error in a weighted skewness estimator. The results
of this study indicate that the estimated model precision
decreases significantly if it is incorrectly assumed there is
no error in the skew when the regional skew is actually rel-
atively imprecise. However, if the regional skew is relatively
precise as recent studies have shown, then use of the esti-
mator that ignores skew uncertainty results in little distor-
tion with typical record lengths.

While these results were obtained using data for the
State of South Carolina, they should generalize to other
basins. For a number of record lengths and reasonable
parameter values, Griffis (2006) revealed that the error
in the estimator of the sampling covariance matrix which
ignores skew uncertainty is dominated by the error in the
diagonal elements which are consistently underestimated
when the error in the computed skew is ignored. This
underestimation of the sample variance results in an in-
flated estimate of the model error variance, as suggested
by Eq. (16) which implicitly equates the sum of the sam-
pling error and model error variances to the total variation
in the residual errors. Nonetheless, this trade-off between
the two variances should not impact model selection as
the variance of the estimated coefficients depends on
the total error.

This paper also presented innovative approaches to GLS
regression in hydrologic applications. New metrics were em-
ployed to evaluate model performance. A condition number
was used to check for multicollinearity, and a pseudo-R?
appropriate for use with GLS regression was used in place
of the traditional R? which misrepresents the fraction of
the true variation in the statistic of interest that is ex-
plained by the model. In addition, variance ratios were used
to verify that the full GLS regression analysis was necessary.

A full GLS model was developed to support modeling the
standard deviation as a function of basin characteristics.
Previous studies had used either ordinary or weighted least
squares. The misrepresentation of beta variance (MBV) sta-
tistic had a value of 5, indicating that a WLS analysis would
underestimate the actual variance of the estimator of the
constant in the model by a factor of 5. Given that much
of the model identification effort focuses on whether or

not different constants were appropriate for different re-
gions, the need for an honest and accurate estimate of
the precision of estimators of such constants is important.
Thus, future studies should seriously consider a GLS analysis
if alternative models of the standard deviation are to be
considered.

Pooled regression models were also employed to
combine data across physiographic regions, thereby increas-
ing the number of sites and information available for model
estimation. When a region contains relatively few sites,
pooling the data with neighboring regions allows for
the development of a more accurate model, both in terms
of the average variance of prediction and the precision of
the estimated coefficients and the model error variance.
The analysis found that a common slope parameter was
appropriate, whereas the individual regions had statistically
different constants. This makes sense if one believes that
the basin time of concentration should scale with area to
a power, while the different constants allow for differences
in runoff volume due to differences in soil characteristics,
land cover, storage area and slope. Similarly, for the stan-
dard deviation, a hybrid model with a separate constant
for the lower coastal plain (region 4) was recommended
based on the GLS regression analysis.
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