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ABSTRACT

In a numbser of areas of applied climatology, time series are either averaged to enhance a common underlying
signal or combined to produce area averages. How well, then, does the average of a finite number (V) of time
series represent the population average, and how well will a subset of series represent the N-series average? We
have answered these questions by deriving formulas for 1) the correlation coefficient between the average of
N time series and the average of n such series (where 7 is an arbitrary subset of N) and 2) the correlation
between the N-series average and the population. We refer to these mean correlations as the subsample signal
strength (SSS) and the expressed population signal (EPS). They may be expressed in terms of the mean inter-
series correlation coefficient 7 as

$SS = (R, n)? ~ T T W = DD

NO +(n - P’
=Ry ~ — D
EPS =~ =7

Similar formulas are given relating these mean correlations to the fractional common variance which arises
as a parameter in analysis of variance. These results are applied to determine the increased uncertainty in a
tree-ring chronology which results when the number of cores used to produce the chronology is reduced. Such
uncertainty will accrue to any climate reconstruction equation that is calibrated using the most recent part
of the chronology. The method presented can be used to define the useful length of tree-ring chronologies for
climate reconstruction work. A second application considers the accuracy of area-average precipitation estimates
derived from a limited network of raingage sites. The uncertainty is given in absolute terms as the standard
error of estimate of the area-average expressed as a function of the number of gage sites and the mean inter-
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site correlation.

1. Introduction

This paper is concerned with estimating the statistical
uncertainty in the average value of a set of correlated
time series. This type of problem occurs in areas of
applied climatology where sets of time series are av-
eraged to enhance some common underlying signal,
or are combined to produce spatial averages. For ex-
ample, in dendroclimatology time series of indexed
ring widths are averaged to produce “chronologies”
which reflect variations in ring widths that are common
to all trees at a particular site. A chronology based on,
say, N ring-width series is an estimate of a hypothetical
population chronology which may, in turn, be regarded
as the potential climate signal. It is useful to know
how well a given N-series chronology estimates the
population chronology, and, also, how well a chro-
nology based on a subset of 7 series estimates the larger
N-series chronology.

A second example is the estimation of area-averages
of meteorological variables, such as temperature and
precipitation. This application is less direct since it
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usually involves some weighting of the time series be-
fore averaging, and the weights may be time-dependent.
Although the temperature case is of considerable in-
terest, we will concentrate here on the hydrologically-
oriented example, the estimation of area-average pre-
cipitation. In an ideally instrumented river catchment
area, the areal average precipitation will be the average
value of all the individual precipitation values from a
regularly spaced network of raingages. How few gages
are required to yield a good estimate of the true area
average?

In mathematical terms we pose the following ques-
tions. Suppose that W, is the jth observation of a pa-
rameter W, (i = 1, N;j = 1, J) and that each W, reflects
some controlling process u which is obscured by noise
which depends on both i and j (i.e., W; = u; + ¢;). If
the ¢; have similar variances the best estimate of the
Jth value of the controlling process, which is common
to all f, is

W (N) =

M =

1
N & Wi 1
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where (N) indicates that the average is over N time
series. How good is . ;(IV) as an estimate of the pop-
ulation value u;, and how good is w. ;(n) as an estimate
of W. (V) for n < N? The answers depend on how
strongly the time series Wj; are correlated. If they are
highly intercorrelated, then they will have most of their
variability in common and g; can be well estimated
even if N is small. If they are poorly intercorrelated
(i.e. subject to a large error or noise element) then N
must be large in order to reliably estimate u;. We seek
to quantify these qualitative results.

2. Theory
a. Introduction

To determine the accuracy of W.;(n) as an estimate
of W. ;(N) we will use the average value of the cor-
relations between W. j(N) and all possible subsets 7 of
N. For a particular subset, the correlation between
W.(n) and W.;(N) is

J
> (W.1(n) — W(n)XW.;(N) — W(N))
_ =l
Ro = (J — Ds(ms(N) - @
where
R R -
[N = -1 W, - WNE (3)
j= .
with W.;(N) defined by Eq. (1) and
J
) [=I.(N)] = 5 5 W)
j=1

[similarly for s(n) and W(n)]. A measure of the accuracy
of W. ;(n) as an estimate of w. (V) is provided by the
average value of R, v (viz. R, ») overall possible subsets
of size n. By taking the limit as N — oo of R, and
replacing n by N we obtain a measure of the accuracy
of W. #(N) as an estimate of Hi» viz. Ry. Determination
of R, (and Ry) is the main objective of this paper
(See Appendlx A for nomenclature).

To determine R, y we need a number of intermediate
results relating to the statistical properties of W}; and
W.; and to the correlations between individual time
series and between any particular series and the average
series. If the basic time series are strongly correlated
then, for given N, the average series will be a better
estimate of the hypothetical population average, so the
mean inter-series correlation is obviously a key pa-
rameter.

b. Analysis of variance results

All of the expressions used in our analyses involve
sums of squares which appear naturally in a two-way
analysis of variance (ANOVA) of the time series data
portrayed, for example, as a matrix with the time series
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(variables) as rows and the observations as columns.
It is convenient, therefore, (although not strictly nec-
essary) to begin with an ANOVA Table. This is a useful
step because it helps to relate our results to other pub-
lished work in dendroclimatology which makes ex-
tensive use of ANOVA (Fritts, 1976); such comparisons
will be made in a later section of this paper.

Degrees of
Parameter freedom Mean square Expected value
Sum of J-1 MSY = SSY/ E{MSY}
squares (J—-1 = No,* + o/
between
observations
= SSY
Sum of N-1 MSC = SSC/ E{MSC}
squares N=-1 =Jos2 + o2
between
series = SSC
Error sum of (N—1XJ—~1) MSE = SSE/ E{MSE} = ¢/}
squares N-IXJ-1
= SSE
Total sum of NJ-1 MST = SST/
squares (NJ—1)
=SST

Here ay2 is the populatlon between-observation (or
w1thm-ser1es) vanance o/ is the population between-
series variance and ¢, the population error variance.
IfW.,=W. (N ) is the average value over all IV series
of observatlon j [Eq. ()] and W;. = W,. (J) is the
average value over all J observatxons for series i, the
sums of squares terms are defined by

J
'SSY=N3I (W.;— W), “4)

J=1

Vv
SSC=J X (W,. — W), &)
i=1

N J _
SST= 3 3 (W; — W), (6)

i=1 j=1
,SSE = SST — SSY — SSC. N

We need also to define three variances, the variance
for the ith series (s7), the variance across series for
observation j (s,z), and the variance for the average
series {5 = [s(V)]*}. The last of these has already been
defined [Eq. (3)]. From Eq. (4) we have

SSY

= 2 = =
s = P = 55— ®)

We also have

J
(J—Ds? =2 (W; — W) &)

=1
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N
(N— 1)Sj2 = E (I’VU - W.j)z.

i=1

(10)

Note that s2 is not an unbiased estimator of the pop-
ulation between-observation (or ‘common’) variance
a,%. Since ‘

0,} = (E{MSY} — ¢.)/N = (E{MSY — MSE})/N
_ E{SSY — SSE/(N — 1)}

NJ-1) ’

an unbiased estimator of the common variance is

1 SSE
—————N(J__ D (SSY “N-1 1). (12)

(11)

§2 =[SV =

Finally, two fractional variance terms g and 4 will
be useful in later derivations. These terms are measures
of the strength of the common signal which our time
series averaging aims to detect and isolate. As will be
shown later, these fractional common variances are
closely related to the average inter-series correlation
which in turn is a direct measure of how closely the
various time series are related. One would naturally
expect closely related series to have a strong common
signal. Here a and 4 are defined by

SSY
4= SSY + SSE’ (3
. SSY — SSE/(N — 1)
a SSY + SSE (14)

The notation 4 is used to indicate that this parameter
involves unbiased estimates of corresponding popu-
lation parameters, viz.
o, _ E{SSY — SSE/(N — D}/N(J — 1)
o + o E{SSY + SSE}/N(J — 1)

Therefore, d has no systematic dependence on sample
size. The parameters g and 4 are related by

1—a
N

which shows how ¢ — d as N — oo.

a=4a+

(15)

¢. Mean inter-series correlation

This is a key parameter in our derivation. We begin
by considering the correlation between two particular
time series, series i and series I viz.

J
(Vl/ij - I/T/vl)(le - Wl)
=1

il ( J - I)S,‘S[ ( )
As a measure of the overall similarity of the whole set
of NV time series we use the average value of r;;, averaged

over all / and 1. This average can be estimated ap-
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proximately using the averages of the separate elements
in Eq. (16) (see Appendix B for details). We obtain

SSY
" SSY + SSE

for the average correlation over all N? possible pairs
(i, I) including the N pairs i = I for which r; = 1.
Excluding these gives

SSY — SSE/(N — 1)
SSY + SSE

Although (17) and (18) are only approximate results
we can show empirically that they are excellent ap-
proximations (see below).

The inter-series correlation, r*, is also closely related
to the average correlation between series i and the
average series. This is defined by

™ a (17)

e

a. (18)

J
T Wy~ W)W, — W)
ri,N=j=l

/ — Dsis 9

The average value of r;y (over i = 1, N), viz. ry, can
be shown to be given by (cf. the derivation of 7)

SSY
N op e
%)~ S5y + SSE (20)
so that
(rf,\,)2 ~ I*. (21)

These results can also be verified empirically.

d. Derivation of R, x

Equation (2) defined the correlation between the
n-series average and the N-series average. We are now
in a position to evaluate the mean value of this cor-
relation, viz. R, y. The details are given in Appendix
B. We give three alternative results

n*  p[l + (N = 1F]

Ron) =~ 1+ (n— I)F_N[l +n-=10r]’ @2)
Ryn) =~ nS:,Y_ ,, ’ (23)

nSSY + (1—\;_—1)555
Ropf m — 14 AL FWN = DAl

1+(n—1D& N[l+@®-1d’

where a, 4, 1, r* and the sums of squares must be
determined using all N series.

To find Ry, the expected correlation between an
N-series average, W.;(N), and the population average
u; we simply take the limit of Egs. (22) or (24) as
N — oo and replace n by N to give

Nr

S
RN~ T =

(25)



23
ME
VoLu

. Y

LOG

RO

TEO

ME

D

APPLIE
D

AN

E

AT

LIM

F C

L O

NA

UR

JO

204

(26)
Né 2.
- 1)d mes
R ~ 1—_’__(7\'7_——_(26) beco
or Ry ares, Eq.
u
he sums of sq SSE 27
f the “N-1
=g 8 In terms o YTw ’ sSY
¢ Rc 2 3 ssY since e
e 92 NI S R in (23) as on
Nl N = =] (Rn) mn hat,
aa 5 [~} — 00 Wt
e ne 0 c t N sho 8)
Do a2 2 to le~ sy to 2
;? SS Jid Simpl?;v) It is ea: , .
mlx . - Py W
3 - is not v on Y. )
=z z (It is no depend Rnn)(Ry “jargon, ~)
§ == 2 2 nd SSE ect,  _ )= (R, € new for (R,, nd
' oah 28 5 S sitate descrip al stren
= 8 o2 2 e he for sign
HEM = wi eed le PS).
"E g .r.E' ° S 2 Althougll:nd a r;,e Sub-samls)ignal ®
) NI s p ima
g § 5 ss 3 ?yr,f éxpressed 2 are approxelrlrllsed
3 nn e e = ) ification RN a is w d
3 5| 24 8 = ical verifica 2 and (Ry )TO do tl.ln England)
2 a A irica RN ification. ites i erlan
g ~ IQ Emp r (an ﬁca € SI mbe 1-
2 g 88 s 3 e esults for (R, o from de (Northa data col-
S g . r 1 i i ipitatio
2| 3 3 22 3s Th:quire S wadth %at?{eslei’.slggd treeﬁ,?icxvg,aﬁes;
Z ] ] = <t and T nng hlre b4 ub 1S S] an ast f
gl 3 2 3 3 k tree- fords ); unp Jone outhe ange o
[43] 2 2 @ oa (OX von); P.D. nt (S ara 53
g 22 ® 2 dley (Dey nd hme an a r 0.
3 = = pec Ra elly ffaa atc a sp 6 to T
el ss s 3 3 i o  River ¢ teeringGaa 075 035 for
| NPHEE v Gusimie wﬂh
i 8 8 8 P da 0 kr n v ta Ou IS e
N =4 g 8 404 mon da ta). ade th
o 0 : N a om : on . da Re ' to
. 2 7 g2 8 area al com itatio tion dz alues. Re ectly
é 8 = 3 SR racuon- recip ipita ofdv ve dir -
& AT = while e P results can mo inary expla-
g 4|27 & Qg forespan resu limina, dexe
pay e o the re Sp ove e pl:e “in ee-
2 g g %8 % therit;(;pt the ab require ime serics gfoducel;gies
o 8 B S to a tion. data re tim ed to hrono to
8 a8 = xt sec ring ic data a verag_ 'I'lg C is used
"’5 8 —-s o ne. tree- ‘basic ) arc a bulldl 'ng 1S 976;
® g The e ba: hich In indexi . ts, 1 .
AE 17} o o % s o tion. Ths (I’Vd) WWJ(N)] oses in e.g., Frit urve (in
3 a 9 o pad] LA\ g g nig width ologies 1[ gical pur:ds (see.’ tofita cdividual
& a2 & 9 S 2 2 0 end s i
§ 8 2 2 2 8 .g § Eng Chac:,gc]imatogromlh ttel;;hnlqbg :0 eacl;lelr;aw d?ﬁz
= > 38 8 £ den -term a ia into t ‘hat
= n ©3S o0 g o for 1 ng usu nom . into s th: C
E 2 g 8 % 88 lie, 1983), The D i this "so that S8
= —_ 2 m ? 982). der vide . en tha d
& 8 38 = 8 2 § Ie illie, 1 OW-0Or to di €X1ing 1 S0 € use
: I %8 % & i1 idih soie i seris ey o analyss lthough
= =R == 8 idth s R : -
4 AEE E g |2 ring width lndezeapprf?eriﬁcauoloo L oetre ' for
& =% = ive i af-'a ie.J= k €s
& s s 8 2% o s, Wi, T2%0- 1679 (ie, ded bacthly ValunthS)'
=) == 22 means, or the 880-1 exten mon 00 mo
88 8 ~ 28 < spann ies ac used sites ( those
~| &8 R | all of he Jation work of 17 ety verified 4 [Ea.
Lasias} R 0 S . a . e F o
- g% all precipi anet“-/ven n Teaslly v iz, 7'~ single
8 he from gi St easl VI a
= == 3% T95 1‘75details hich are morrf‘«lauon,between A [Ecii
> 'c i CO . N 2 ~ 1
& . B §x| & 7 Further esults w hlr-serles orrelatio n(R“N) (24) WIty
£ £E_ & 53| 4 “ The r an inte ean ¢ €, VIZ. [Eq. directl
s SEE 3 B o8 5 JgJ the me the m averag P~ a ulated
%8 _ E ERS £ $EE o A8 o )] and fzr N-Senesd (Ry.v) were cale
F"’::. <'-.:g< -"._g_ag ~n [ n >
% 'SE-EF ﬁ‘éé—:%gsg‘é’ == 52 (ls'esa.ndt = 1] g*andR"N
s Sg“‘%*mﬁo?>5.2 & ne Ser ith n forz, 7
3| ££% a?%sss : 2% @2 I Values
3 %‘gg%':i) O 24 =1].
7] '§ K V:E Yo
== 0
-
v \O
<
o
, ~
Es| ~
=4
Z



FEBRUARY 1984

from the time series, and g and 4 were calculated from
the ANOVA results using Egs. (13) and (14). Note
that R, y = 7y so that verification of Eq. (22) forn = 1
also verifies Eq. (21).

It is of interest also to examine the effect of SSC on
the results; the various formulas should be more ac-
curate for small SSC, but their accuracy for large SSC
is difficult to estimate a priori. In the tree-ring case,
the indexed series have SSC approximately zero. To
examine the case where SSC is identically zero we
produced a second set of tree-ring series for each site
by normalizing the original series (although subtracting
the means would have been sufficient). For the pre-
cipitation case we also produced a second set of series
by weighting the original precipitation data using
weights appropriate for calculating the area-averaged
precipitation (see later). The raw precipitation data
had a relatively large SSC contribution to the total
sum of squares, while SSC for the weighted data was
negligibly small. Overall, then, we tested Eqs. (18), (22)
and (24) with eight sets of data.

The results are shown in Table 1. The first thing to
note is that the observed mean correlations 7 and 7*
are independent of any normalizing or weighting. Since
this type of massaging only changes the origin and/or
scale it cannot affect the mean inter-series correlations,
and can only affect R,y slightly. Secondly, we note
that the formulas work exactly for the normalized tree-
ring data (numbers 2, 4 and 6 in Table 1). In this case
all series variances are the same and the formula der-
ivations are exact. When SSC is small (numbers 1, 3,
5 and 8 in Table 1) the variability in variance from
series to series is relatively small, so that approxima-
tions are excellent and all formulas work extremely
well. In these cases, however, the expression relating
(R,.~)? to the mean inter-series correlation [Eq. (22)]
works noticeably better than that relating (R, »)* to
the fractional common variance [Eq. (24)], or the
equivalent ANOVA sums of squares form [Eq. (23)].
This tendency is much more pronounced in the case
where SSC is comparable in size to SSE (number 7 in
Table 1). Here both Eq. (18) for 7 and Egs. (23) and
(24) for (R y)* are in error by 6-7%, but Eq. (22),
which relates (R, v)* to 7, is in error by only 0.3%.

The validity of Eqs. (22-24) for general n was con-
firmed by Monte Carlo simulation in the following
way. For each set of N tree-ring time series (corre-
sponding to the data in rows 1, 3 and 5 of Table 1)
we took a large number of randomly chosen subsets
ofnseries(n=1,2,3,..., N), calculated the n-series
average and then calculated R, . For each value of n
we then averaged the R,y over all subsets to obtain
an estimate of R, . The actual value of R, » depends
on the particular subset of n series chosen out of the
available N, so we also calculated the standard devia-
tions of these R, y values as a measure of the scatter
of individual realizations. We also estimated R,y using
the average inter-series correlation and Eq. (22). For
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small SSC this equation is equivalent to Eqs. (23) and
(24), but it is noticeably better for larger SSC. The
results are compared in Fig. 1. The agreement between
the simulated R,y and the formula estimates is ex-

-cellent confirming that Egs. (22-24) provide a correct

representation of the n-dependence of R, n. Further
confirmation is provided by a similar analysis of the
precipitation data (see Fig. 4 in section 3.b).

The relationship between W.i(N) and u; cannot
be tested directly since u; is unknown. However, since
Ry is a limiting form for R, v, verification of the lat-
ter allows us to place some confidence also in Egs.
(25-27).

3. Applications
a. Dendroclimatology

Some of the terms introduced before are already
used in dendroclimatology. The fractional common
variance concept (4) is equivalent to the percent com-
mon variance which Fritts (1976) defines as

SSY — SSE/(N — 1)
SSY + SSE

Fritts (1976, p. 294) has noted, empirically, that %Y/
100 is almost identical to the mean inter-series cor-
relation, a result which we have derived theoretically.
Fritts’ observation adds further support to the validity
of our Eq. (18).

The expressed population signal (Ry)? is closely re-
lated to the concept of chronology signal-to-noise ratio
(SNR) as used in dendroclimatology and defined (e.g.,
DeWitt and Ames, 1978; Graybill, 1982; Cropper,
1982) as

%Y = 100 (29)

_ N(%Y)
SNR = 100 — %7 " (30)
Alternative forms for SNR are
_ (N = 1)SSY - SSE
SNR = SSE , (31)
SNR = 4 (32)
1—a

Chronology signal-to-noise ratio has been used to eval-
uate the relative strength of the common variance signal
in tree-ring chronologies from different regions. For
example (following DeWitt and Ames, 1978) individual
chronologies from southwestern USA have maximum
SNR ~ 15 with N ~ 10, whereas eastern USA chro-
nologies (which tend to have only about half the frac-
tional common variance) require, since SNR = Na/
(1 — @), a substantially larger number of cores to attain
the same SNR.

SNR and (Ry)” are related [e.g., using Egs. (27) and
(31)] by
SNR

-2 _SNR
(Rv)"~ TGNR

(33)
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FiG. 1. Empirical verification of the n-dependence of the subsample signal strength (R.~)? using three sets

of tree-ring data. The solid circles show (R, x)* values based on Eq (22) forn = 1, 2,

, N. These are

compared with empirically determined values obtained by averagmg individual values of R,, .~ over a large
number of randomly chosen subsets of # ring-width time series, shown by crosses (mean values) and vertical
bars (two-sigma limits). Limits less than +0.01 are not shown, and (R, y)* values for n > 10 (Radley) and 7
> 19 (Hesleyside) based on Eq. (22) are omitted since they are identical to the simulated means. Agreement
is generally excellent, hence confirming the validity of Eq. (22).

The ratio [SNR/(1 + SNR)] when expressed as a per-
centage, has been called the “percent common signal”
by Cropper (1982, p. 66). Eq. (33) identifies this ratio
as the amount of population chronology variance
which is explained by an N-core chronology. SNR is
an indicator of the strength of the signal which is com-
mon to a set of tree-ring data, but it behaves in a
markedly non-linear fashion. For large SNR, large in-
creases in SNR lead to only minimal changes in Ry
Although SNR and (Ry)? give the same information,
the latter term (or Cropper’s percent common signal)
should be easier to interpret.

Even so, the significance of these terms in dendro-
climatology is a little obscure. Although common cli-
mate forcing may well be a major contributing cause
of common variance, the strength of the common sig-
nal [as determined by SNR or (Ry)?] cannot be in-
terpreted solely in climatic terms, since common vari-
ance may also arise from other factors—management,
pests and disease, pollution, etc. Furthermore, there
is no obvious way to determine how high SNR or
(R~)? should be to ensure that a particular chronology

is suitable for climate reconstruction purposes. Nev-
ertheless, when carefully interpreted, SNR can be a
useful concept in dendroclimatology, and the present
work may be viewed as a contribution towards its
clarification through (Ry)* and its generalization
through (R, ~)%

The parameter (R,y)* should be of considerable

, value in dendroclimatology. In climate reconstruction

work a statistical link between climate and a chronology
(or set of chronologies) is usually established using a
recent part of the chronology generally made up of a
maximum or near-maximum number of cores (N).
Reconstructions are then based on earlier sections of
the chronology which tend to contain smaller and
smaller numbers of cores (n) as one goes back in time
(see Fig. 2). As n becomes smaller, the n-core and
N-core chronologies become more disparate, so the
quality of the reconstruction must diminish. Since
(R,.~)* is a measure of the uncertainty in a chronology
due to a reduction from N cores to n cores, this pa-
rameter must also be an indicator of the parallel loss
of reconstruction quality. At some point (R, »)* will
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FIG. 2. Changes in the number of cores with time for the three chronologies. A few
additional cores exist after 1850 for Clovelly but these have been omitted from the present
study because they terminate well before 1980.

become sufficiently low that we may judge the n-core
chronology to be an inadequate representation of the
N-core chronology. This point can be defined by some
pre-specified threshold value of (R, )’ or (R,).

Any such threshold value must be a subjective choice
based on the particular application and on the user’s
experience. Since it is desirable for any reconstruction
uncertainty resulting from chronology uncertainty to
be considerably less than the uncertainty inherent in
the statistical climate-chronology link, the threshold
value should be substantially higher than the explained
climate variance in the reconstruction. This would en-
sure that there was, in absolute terms, only a small
loss of explained climate variance due to n-core versus
N-core chronology uncertainty. In the best climate re-
constructions based on tree-ring widths, the climate
variance explained is of order 50% (e.g. Fritts et al.,
1981; Duvick and Blasing, 1981; Briffa er al., 1983;
and various papers in Hughes et al., 1982). As a rough
guide, let us assume that chronology uncertainty of
order 15% due to a reduction in the number of cores
is acceptable [corresponding to a threshold (R, x)* of
0.85]. For explained climate variance of 50% based
on an N-core chronology, reduction in the number of
cores to the point where (R,~)?> ~ 0.85 would only
reduce the explained climate variance to around 43%
(0.85 X 50%), a noticeable reduction, but, in most
cases, probably not a statistically significant one. The
absolute size of the additional loss of explained variance
due to R, v effects is even smaller if the climate variance
explained is less than 50%.

The value 0.85 for a threshold (R, ~)? is given here
only as a guide; in any particular case the chosen

threshold will depend on the user’s subjective evalu-
ation of accuracy needs. However, if we accept 0.85
as reasonable, then we can easily determine the cor-
responding minimum number of cores for any given
N and 4. Fig. 3 shows the minimum 7 as a function
of N and 4, with the three chronologies used earlier
plotted as examples. For Clovelly, with the lowest frac-
tional common variance, at least 8 of the original 13
cores are required; for Hesleyside, with a somewhat
higher 4, 7 out of the original 23 are required; while
for Radley, with the highest &, as few as 4 cores are
Jjudged to give a satisfactory chronology. Instead of
using Fig. 3 the same results can be obtained from the
plots of (R, ~)* as a function of », such as in Fig. 1.
From Fig. 2 we can see that the three chronologies are
satisfactory back to 1798 (Clovelly), 1808 (Hesleyside)
and 1832 (Radley).

In practice, the application of this technique for
evaluating the maximum satisfactory length of a
chronology is straightforward. In the process of chro-
nology construction, it is standard procedure to per-
form an analysis of variance on the maximum-core-
number part of the chronology. Fractional common
variance (¢ or Fritts’ %Y) is also determined routinely.
Theoretical plots (cf. Fig. 1) of (R,)* as a function
of n can easily be constructed using Eq. (23) or (24),
or Fig. 3 can be used as an immediate guide.

b. Hydrometeorology

One of the concerns of hydrometeorology is the
calculation of area-average precipitation, either to es-
timate total precipitation over river basin catchment
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areas for reservoir planning or hydrological experi-
ments or as an indicator of regional-scale climate and
climatic change. In a typical situation, with N raingage
sites distributed over an area, we may wish to know
how well the area-average based on the N-site network
represents that for an ideal, fully instrumented area,
or how well the N-site area-average is approximated
by a smaller set of n raingage sites. The parameters
(Ry)* and (R, y)? are measures of the strength of these
relationships.

This particular application is more complex than
the tree-ring case since area-average precipitation is
not a simple average of the individual site values: in-
stead

W.i(N)=

™M =

c-X,j = Wi, (34)

lle

1 1
N; N,

i

where Xj; is the precipitation at site i at time j, ¢; is
the weight for site i and W; are the weighted precip-
itations. (The X;; may be hourly, daily, monthly, etc.
values; our example uses monthly data.) Depending
on the method, the weights ¢; may differ according to
how many sites are used. (This would be the case if
the area-average were calculated using Thiessen poly-
gons, for example.) If so, then adding or removing a
time series from the N-series set will change all of the
W series and the theory we have developed will not
be immediately applicable. For a rigorous application
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a weighting system which is independent of N is re-
quired, as provided by the method in which
W)

Xy’

where angle brackets denote the average over some
chosen reference period for which the area-average is
known accurately.

As an example we have used monthly data from
the River Wye catchment upstream of Redbrook (5
km south of Monmouth). These data have already
been discussed in reference to Table 1. For this catch-
ment we have compiled a basic data set using a 17-
site network, which extends back to 1899 (Jones, 1983).
Annual precipitation varies considerably over the
catchment, from around 690 mm to 1600 mm. For
the period 1916-50 an accurate area-average value has
been calculated based on isohyetal analyses using all
available data (more sites than our basic 17-site net-
work). This value and the corresponding site values
were used to determine the weights ¢; defined by Eq.
(35). We are interested in knowing how few gage sites
are needed to produce a reasonable area-average (re-
quired, in this case, to estimate river flows). The ap-
propriate parameter is (R,)>.

To calculate (Ry)? and (R,n)* we need to know
either the mean inter-series correlation 7 or the frac-
tional common variance 4. We have already deter-
mined these using data for the period 1951-75; the
results are given in Table 1. Note that r gives the better
estimate of (Ry)? and (R, »)* (although the gain over
using 4 is only marginal in this case), and that 7 can
be calculated using the raw, unweighted data. Using
Egs. (22) and (25) we have

n(1 + 16(0.8524))

G = (35)

-

(Rnn) 17(1 + (n — 1)0.8524

1.0102n
 n+0.1732° (36)
o 0.8524n n

2 = =
(Ra) =177 (n—10.8524 n+0.1732° 37
(Rn)? = (R7)* = 0.9899. (38)

The (R,, ~)? and (R,)? based on these equations are
shown in Fig. 4 together with estimates of (R,,, ~)? based
on Monte Carlo simulations and standard deviations
of these estimates (cf. Fig. 1). The agreement between
theory and simulation is excellent.

We also show in Fig. 4 the observed values of (R, »)*
for the actual n-site network which existed at various
times prior to 1899 (see Fig. 5). These individual re-
alizations differ somewhat from the expected values
but they are generally within the 95% (i.e., two-sigma)
confidence limits. The fourth site included in the net-
work is an upland site for which precipitation is highly
correlated with the 17-site area-average (based on 1951~
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FIG. 4. Variations in (R, )’ for weighted precipitation time series
from the River Wye catchment area. Values for increasing n based
on Eq. (22) are shown by the solid curve and values based on Monte
Carlo simulations are shown by crosses (mean values) and vertical
bars (one sigma limits). The open circles show observed values of
(R,n)* for the particular raingage configurations which existed at
different times (see Fig. 5). The dashed curve shows (R,)? based on
Eq. (25).

75 data) and so gives an unusually large improvement
in (R, »)* The fifth and sixth sites, however, are rel-

atively poor in their correlations with the area-average
and these cause a noticeable depression in (R, )’ below
(R.n)* It is clear from Fig. 4 that a number of the
individual networks are noticeably inferior in that their
(R, ~)? values are well below the corresponding (R, v )
value. A part of this departure must be due to sampling
uncertainty in (R, )% in Fig. 4 only the n = 6, 7, 8
and 9 cases are significantly different from (R, x)? at
the 0.05 level. Conversely, for any given n some net-
works will be superior, with (R, ~)* noticeably larger
than (R, ).

Our theoretical results can be used to determine the
number of gages required to give an accurate estimate
of area-average precipitation (according to some pre-
determined criterion for accuracy) for the case of ran-
domly located measuring sites. (Note that a fewer
number may be satisfactory if the gages could be op-
timally located and provided the corresponding R, v
value was significantly above R, y). For randomly lo-
cated gages the number required for given accuracy
in area-averaging can be determined using (R,)?, the
squared-correlation between an #n-site area-average and
the population (i.e., the true) area-average. Since the
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true area-average is not known, (R,)* can only be de-
termined theoretically. Applying this theoretical result
to real-world situations depends on the assumption
that the real site network is uniform, in the sense that
all sites are equally important in determining the area- .
average. This is a common assumption (see, e.g., Sut-
cliffe, 1966; Herbst and Shaw, 1969; Clarke and Ed-
wards, 1972). Fig. 4 shows that noticeable differences
can occur between the theoretical uniform network
and a particular network, but these differences tend
to become smaller as the number of sites increases.
Relatively few differences are statistically significant.

We now use the River Wye data as an example and
determine the minimum acceptable number of gages
for calculating area-average precipitation. We could
spec1fy a critical R,, value for acceptable accuracy, but
it is more convenient to consider accuracy in terms
of the standard error (SE,,) of the area-average estimate.
Unfortunately, this standard error cannot be uniquely
defined, nor specified uniquely in terms of sample sta-
tistics. If we make use of the relationship

(SE,)* = S(1 — (R)), (39)

where S? is the variance of the area-average precipi-
tation, then we have alternative results depending on
which expressions are used for S and R,. For example,
using the d form for R, [Eq. (26)] we have either

SSY 1—a
SE,)? = = 40
OB = MU= D1+ ;= a (40a)
using the sample variance for S? [Eq. (8)], or
(N—1)SSY -SSE  1—-4
(SEx) NN-1)YJ—-1) 1+(n-1Da (40D)

using the best estimate of ¢,% for S? [Eq. (12)]. Note
that we cannot use the sum of squares form for (R,)?
since the sums of squares are functions of n and are
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(SE,)* =

only known for n = N. Eq. (40a) can be expanded
[using Eq. (14)] to give
[ N-—n SSE]"
1+
n(N — 1) SSY

SSE
nN—-1D)J—-1)

(Note that here, and elsewhere, SSE-and SSY are de-
termined from the N-site network.) Hence, provided
n is not too small, )
___SSE_
nN—1)J—-1)"
Eq. (40c) is similar to the result given by Clarke and
Edwards (1972).

A fourth alternative obtains if we use Eq. (39) with
the 7 form for (R,)* [Eq. (25)] and Eq. (12) for S2.
This gives

(SE,)? ~ (40c)

(N — 1)SSY — SSE 1—r

2 —
- (SE) NN-DJ -1 1+@n- 1

(40d)

The differences between these expressions for SE,, are ‘

small and, in most cases, within the other uncertainties
inherent in this type of analysis of precipitation data.
Eq. (40d) is preferred since the r forms of our results
have been shown, empirically, to be superior to the d
forms.
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The 7 form for (SE,)? is one which can be exploited
in order to apply the result to arbitrary catchment
areas. In general, the value of r will depend on catch-
ment size, topography and location (i.e., climatic zone),
and also on the precipitation time unit being considered
(r is smaller for hourly than for monthly data, for
example). For any given catchment, 7 can be expressed
in terms of a spatial-correlation decay length and Eq.
(40d) can usefully be rewritten in terms of this decay
length. This approach will be developed further else-
where.

For the River Wye catchment, using the unweighted
precipitation data (number 7 in Table 1), Eqs. (40c)
and (40d) become

2176
SE. =7

(40¢)

17.68

SEw = i ¥ 01732

(40d)

These results are compared in Fig. 6. Eq. (40d") implies
a smaller error than (40¢’) for all n. On the basis of
(40d’) and assuming a uniform gage network, 4 gages
would be required to achieve a standard error of less
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than 10 mm [5 gages using (40c)], while 13 gages
would give a standard error below 5 mm [19 gages
using (40c¢)]. The minimum acceptable SE will depend
on the use to be made of the area-average precipitation,
but it is unlikely to be much less than 5 mm. For
riverflow reconstruction, for example, an SE of ~10
mm is usually adequate (see Jones, 1984). For mini-
mum SE less than ~5 mm any substantial gain in
accuracy requires a large number of additional raingage
sites.

Since 7 is the same regardless of whether the series
are weighted or not, Eq. (40d) can be used indepen-
dently of the procedure used to calculate the area-
average. For any given network it is, of course, possible
to optimize the combination of data to give a best
estimate of area-average precipitation (e.g. by multiple
regression analysis, or using trend surfaces, Thiessen
polygons or isohyetal analysis). This may allow one
to satisfactorily estimate the area-average precipitation
in particular cases with less than the minimum number
of gages determined from our uniform network theory
if one assumes that the optimized result is stable in
time. Alternatively, for a given number of sites their
locations can be optimized to maximize the amount
of information obtained. Since our method takes no
account of the particular gage configuration, it provides
a base-line result against which optimized networks
can be judged.

4. Summary and conclusions

We have developed a theory for estimating uncer-
tainties in the average of a set of correlated time series.
The determining parameters are the mean inter-series
correlation () and/or the fractional common variance
(d). Approximate formulas have been derived for the
mean correlation between the average of NV time series
and the average for a subset n of N (R,x), and for the
mean correlation between the N-series average and the
population average (Ry). Empirical verification has
shown the formulas involving 7 to be more accurate
than those involving 4. All formulas are extremely
accurate when the between-series sum of squares (SSC)
is small.

We have applied these results to tree-ring time series
and to precipitation time series. In the former case we
have shown that 7 ~ 4, a result previously demon-
strated empirically by Fritts (1976). We have also
shown that (Ry)? is closely related to the signal-to-
noise ratio as used in dendroclimatology. Here (R, »)?
is a measure of the loss of reconstruction accuracy
which occurs when an n-core chronology is used to
reconstruct past climate with a transfer function which
is derived from an N-core chronology. The n-depen-
dence of (R, »)* allows one to estimate the minimum
number of cores required to reduce this loss of recon-
struction accuracy to below any chosen threshold level
and hence to estimate the maximum useful length of
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a tree-ring chronology. The minimum number of cores
depends on N and 4 (or 7) and on the acceptable ac-
curacy level. Chronology sections based on as few as
4 cores were shown to be potentially useful for climate
reconstruction, but the number of cores required varies
widely with N and 4. Our analysis only considers the
case of one core per tree but it can be adapted to more
general cases. For example, multiple cores may be av-
eraged to produce a single time series for each tree, or
7 (or 4) can be determined using only a single core
per tree if the early parts of a chronology suggest that
such a strategy is more appropriate.

We have also applied our theoretical results to the
problem of determining the accuracy of area-average
precipitation estimates. While 4 is the more useful
parameter in the dendroclimatological case (since it is
already calculated as a routine procedure), the mean
inter-series correlation is more useful in the precipi-
tation case. Although the area-average may be based
on a weighted average of precipitation series from dif-
ferent raingage sites, 7 can be calculated from the raw,
unweighted data. The important accuracy-determining
parameter is (R,)°. This can be used to estimate the
number of raingage sites required to achieve any desired
level of accuracy. [This is done more conveniently
when (R,)? is expressed in terms of the standard error
of estimate for the area-average.] Although our results
here apply strictly to uniformly distributed raingage
networks, they provide a baseline for evaluating the
results of network optimizations. We considered an
example using monthly data from a river basin catch-
ment area. In more general applications there are some
practical considerations in dealing with zeros (in the
case of short precipitation time units) and in applying
the method to cases where the data show strong sea-
sonal cycles. These problems are more appropriately
discussed in the hydrological literature.

In both the dendroclimatological and hydrometeo-
rological applications our analysis makes the tacit as-
sumption that g and r are well-defined quantities which
show no systematic variation with N. This assumption
may not be correct for the hydrometeorological case
where r could increase as N increases because this will
increase the relative number of closer-spaced, more-
highly-correlated sites. For N 2 10, however, we have
found 7 variations to be slight, but this is an aspect
which requires further study.
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APPENDIX A
Terminology
a Fractional common variance [Eq. (13)]
a Unbiased fractional common variance [Eq.
(14)]
i Subscript for i-th time series
J Subscript for j-th observation
J Total number of observations
n, N Total number of series
ri Correlation between series i and series I [Eq.
A6)L: H(W,, W)
r* Average value of ryoverall i, I
r Average value of ry, i # 1
riN Correlation between series i and the series
obtained by averaging N time series [Eq.
(9L Wy, W.4(N)]
In Average value of r;yover i = I, N
RN Correlation between the n-series average and
the N-series average where n is a subset of
] N [Eq. Q)): r[W.(n), W.,(V)]
R, N Average value of R, y for all subsets of size
n .
R{(Ry) Correlation between the n(N)-series average
and the population (limiting form of R, »)
s? Variance of the i-th series [Eq. (9)]
57 Variance across series of observation j [Eq.

(10)]
s> = s%(N) Variance for the N-series average [Eqs.
(3) and (8)]
§? = §%N) Unbiased estimate of the population
common variance, o, [Eq. (12)]

S? Variance of area-average precipitation

SE, Standard error of area-average estimate [Eq.
(391

SNR Signal-to-noise ratio as used in dendrocli-

matology [Eq. (30)]

SSC Between-series sum of squares [Eq. (5)]
SSE Error sum of squares [Eq. (7)]
SSY Between-observations (i.e. within-series) sum
of squares [Eq. (4)]
SST Total sum of squares [Eq. (6)]
W _j-th observation of parameter w;
Wi. = W;.(J) Average value of Wjoverj=1,J
W.;= W.AN) Average value of W,, overi=1,N
o [Eq. (1)]
W= W..(N) Average value of W over i = 1,
N and j = J [strictly, W
= W..(N, J)] :
%Y Percent common variance as used in den-
droclimatology [Eq. (29)]. %Y = 1004
[y Population value of W
ol Population between-series variance
0.’ Population error variance
o)’ Population between-observation variance

= common variance
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APPENDIX B
Derivation of Expressions for 7* and (R, x)*

The relationship 7* ~ a [Eq. (17)] comes directly
from the definition of r; [Eq. (16)]. We use the fact
that, if 4 = B/(C?D?)' then A ~ B/(C? D?)"? pro-
vided the constituent terms do not have large coeffi-
cients of variation. The numerator average for Eq. (16)
is simply

™M~

(W.;— W) = SSY/N,

=1

.

while the denominator, using s? = (SST — SSC)/MJ
— 1), becomes (SST — SSC)/N. Hence
’7* — __S_SY— =q
T SST-SSC
To obtain the expressions for (R, x)* [viz. Eqs. (22—
24)] we begin with the definition of R, v [Eq. (2)]. This
becomes

(BI)

1 iy .
B = = Tt {[ =

Jj=1 i=1

X(%é Wi‘%é%EWj)}
[

1 - -
" nJ = Ds()s(V) § WiN) = WN)]
n 1 J
<(z{m-32w)f
i=1 j“l
The first two summations can be commuted (0 give
) G 1
Ran = ns(n) E {(J — 1)s(N)

J
X S W, (N) — W)W - W.-.)} .
=1

Using Eq. (19) this may be written

Ryny=—— 2, 8it;
N S(n),_sz

(B2)
Averaging this expression over all subsets n of N gives
N O % |

" s

To find s%(n) recall that s*(n) is defined by

(B3)

si(n) = = E (W.,(m) — W(n)F
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which becomes

2 J 1 n _ 2
S(n)=mz[ ?(Wy Wi~):|
or
1 _
s¥n) = 20-1 § [122 (Wy— W)
+2 2 (W — W XWy — W)l

i#l
The summation signs can be interchanged and the
result simplified to

s%(n) = [2 st +2 2 sisiril. (B4)
i#]
Averaging over all subsets n of N gives
s n) ~ ~ s, s2(1 + (n — DF). (B5)

As a_check on this result we note that, in the case »
= 1, s%(n) and s? are the same thing, and that Eq. (B5)
reduces to this equality when n = 1. Substituting (B5)
into (B3) and using the expression for (7y)* derived
earlier [Eq. (21)] gives

nr* ol + (N = 1)F]
1+@m—1F N[+@- 1D

Using Eq. (18) to express 7 in terms of the sums of
squares gives

(RN ~ (B6)

_ nSSY
(Rp ) =~ N—n (B7)
nSSY + (N — l)SSE
or, in terms of the fractional common variances
_ na n[d@d + (1 — d)/N]
R\ ~ 2= remr
Rn) 1+ (n—1)d 1+ (n— 1d (B8)
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where g, 4, r, r* and all sums of squares are determined
using all N series. Note that, while (B7) and (B8) are
formally equivalent, these results involve additional
approximations when derived from (B6).
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