One person’ s signal is another’ s noise
Linear aggregate model
Standardization

Replication

A reminder about dating

T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona



 Signal — Is the effect you are interested in;
« Noise — is all other variation.

« So — for a climatologist, the part of tree-ring
variability that is caused by climate fluctuations is
signal;

 For an ecologist — this Is noise, because it may
hide the effects of an ecological change.

A tree-ring record may contain several signals —
how to separate them?
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« The tree-ring series is a linear aggregate of several series —
their mean, for example.

e Let’ s consider what controls this series:

where:

R,
A,
C
D1,

E,

" the observed ring-width series;

the age-size-related trend in ring width;

the climatically related environmental signal;

the disturbance pulse caused by a local endogenous disturbance;
the disturbance pulse caused by a sta.ndW1de exogenous dlstur-
bance; and

the largely unexplained yea.r—to-year variability not related to
the other signals.

A, C,and E,are ‘on” all the time. D1, and D2 . may be on (8 l) or off (8 O)
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Standardization
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Notice different trends in growth rates among these different trees.



Standardization

e Actual values
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Standardization

We go from this ...
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« Standardization

From this ...
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Ring Measurements and Standardized Indices

Comparison

Make indices by dividing

s LT L
oz L T T 1 actual measurements
s 1 by some growth
o 1 curve (as here) or
. 1 subtracting the growth
. 1 curve from them.

r- 1 Division gives
SN .1 dimensionless indices
{  with amean of one,

g Lot i and deals with different
e 3 absolute growth rates.
e ]
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Standardization

Index Series 1

+

Index Series 2

+

Index Series 3

Calculate Mean

Master
Chronology!



Standardizing ring-width series, and averaging the indices
into a mean or “summary” chronology.
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Four red spruce ring-width series from the same stand, but different
trends in different trees related to competition and disturbance.
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Ring-width records from 3 eastern hemlock from a stand logged round AD

1910.
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« D2,— exogenous disturbance originating outside
the forest, e.g. hurricane damage, ice storm, late
frost, or logging; typically stand-wide effects.
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» A;- age-size related trend In ring width

A single Douglas-fir tree In
N. Arizona.
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RING WIOTH
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A reminder about dating
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A jeffrey pine chronology from Sorrel Peak, California, dated (with dots) and
only ring counted — below — the difference between the two.

8
2
Fri}
&
&
2 E- 1.0
E_ E- o.s
g .o E- 0.0
% - ) E-—o.5
E e 1760 1760 1800 1820 1890 = 1850 1880 1300 1920 = 1940 = 1sbo PP b

venss 17
T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona




« D1,— disturbance pulse caused by local
endogenous disturbance, for example competition,
changing tree stature, etc.; typlcally W|th|n stand
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» Ct - climatically-related growth variations
common to a stand of trees in year ‘t’ — not
exactly same as climate signal because of
Persis

camate Yea,

19
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Larch trees at 70
degrees North — strong
cross-dating within and
between sites equals
strong climate signal C,
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 First, remove the climate signal: either
Identify it statistically, remove it and see
what Is left:

— Temporal partitioning: pollution example
— Spatial partitioning: insect defoliation example

VAN

T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona
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Kienast et al. 1985 used a partioning in time approach to
study air pollution effects on tree ring growth in Switzerland.
A ring-width chronology was calibrated with climate data
prior to a period of observed growth decline, then the climate-
growth model was used to project expected growth during the

affected period.
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« Or, compare growth in species or a stand
you expect to be ecologically affected with
one you do not:

Spatial, and/or species partitioning: e.g., Douglas-fir & Grand
fir — host chronologies, versus ponderosa pine -- non-host
chronologies, with similar climate responses; Swetnam and
Lynch 1990.

T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona 23



Comparisons of host and non-host tree-rings series enables us to
separate climate effects from defoliation effects.
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Host vs. non-host
ring-width
comparisons can be
guite effective In
Identifying
outbreaks, and
helping to assure
that climatic
episodes) e.g.,
droughts) are not
confounded.

Swetnam, T.W., B. E. Wickman, H. G. Paul, and C. H. Baisan.
1995. Research Paper PNW-RP-484. Portland, OR: U. S.
Department of Agriculture, Forest Service, Pacific Northwest
Research Station. 27 p.
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 This latter is an example of developing a sampling
structure to deal with an ecological question —
could also stratify samples by age, status within
the stand, soil type, etc.

 Pollution studies have also used a partitioning in
space approach, I.e., sampling trees downwind and
nearby a pollution source, and sampling “control”
trees upwind and/or distant from the pollution
source.

T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona 26



» Need to exclude ecological signals.

 First —exclude, as far as possible, samples
and trees that show evidence of
disturbances such as those described here,
l.e., via sampling strategies

 screen samples and measurements for
growth releases and suppressions, reaction
wood, etc.. This should get rid of much of

D1, and D2,

" T.W. Swetnam, Laboratory of Tree-
ring Research, University of Arizona
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« Second, remove age/size trend. In the ideal
case, where all the disturbance signals have
been excluded by sample selection, can use
a regional growth curve, If the pith date of

each sample is known.

Regional growth curves

o.

low elevation
0.40 —
0.20 —

2
ambial age in years

T.W. Swetnam, Laboratory of Tree- 28
ring Research, University of Arizona
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 In many cases this will not be possible, and
so some empirical approach will be needed.

 In many cases, especially in closed-canopy,
mesic forests, there will also be much
disturbance signal.

* It’ s necessary to remove these, but this will
Involve loss of climate information varying
on the same time scales.

T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona 29



 Third, working on the assumption that many
of the D1,and E, effects are tree specific,
and probably randomly distributed, whereas
the climate signal will be common to all
trees, strengthen climate signal by
replication, and by deriving a mean value
(or measure of central tendency) for each
year in the chronology. This should average
out the disturbance and error effects.

30
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RECONSTRUCTED TEMPERATURE AND PRECIPITATION 473
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Figure 4. Time-series plots of the southern Colorado Plateau tree-ring based climate reconstructions.
(A) Reconstructed mean-maximum annual temperature from 250 BC to 1997. (B) Reconstructed
October—July precipitation from AD 570-1994. The gray lines are the annual estimates. The heavy
smooth lines are the reconstructions smoothed with a 50-year spline. The thin black lines represent

the sample depths of the tree-ring chronologies (number of radii) through time.

T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona
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Fig. 5. An example of an extended PDSI reconstruction (upper plot in gray and red) from the North America Drought Atlas, created by using PPR in a
nested manner to generate all possible length reconstructions from a suite of tree-ring chronologies with uneven starting years. The blue curve in the
upper plot shows the change in the number of chronologies available back in time. As a consequence, each extension back in time has its own
calibration (CRSQ, same as R? in the text) and verification (VRSQ, RE, and CE; VRSQ=RSQ in the text) statistics, which causes them to vary over
time in the lower plot.
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 This has been just an outline of some of the
approaches used — there are many more
some rather sophisticated.

« Remember, no amount of manipulation will
help if the material is not well dated. Recall
Holmes experiment with missing rings and
effect on signal and variance of chronology.

T.W. Swetnam, Laboratory of Tree-ring Research, University of Arizona 33



Standardization

. Straight lines can be either horizontal (zero slope),
upward trending (positive slope),
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Standardization

. Curves are mostly negative exponential...

y=aeP




RING WIDTH mm

Standardization

. .... but negative exponentials must be modified to
account for the mean.
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