Site and tree selection, sample design, and sampling techniques

How do we decide which trees to sample? How do we collect tree-ring samples?

There are endless sampling designs to choose from!

- Plots (fixed radius or n-tree)
- Targeted
- Systematic grids
- Stratified (random)
- Transects

Sampling is driven by the study design, which is always defined by the research question:

- Climate reconstruction
- Chronology building
- Tree growth along an environment gradient
- Climate change effects on tree growth
- Age structure
- Effects of topographic position on tree growth
- Fire or insect outbreak history
- Others?

Site selection for climate reconstruction

 If building a dating chronology, or seeking climate signal, one would go near, but probably not to, a distributional limit:

Why these locations?

- Near the limit because these are usually where a single environmental factor – for example available soil moisture – controls growth, so tree rings will tend to show stronger patterns of common variation.
- Not exactly at limit, because conditions are often so stressed there that circuit uniformity is poor, and missing rings so frequent that dating is more difficult.
- Open-grown stand reduce between-tree interactions (thus, this depends on question).

Site selection at the semiarid margin of a species' local distribution reveals moisture as limiting factor

Fritts 1965, Ecology

Sensitive vs Complacent Trees

Climate sensitive trees

Temperature & Precipitation reconstruction comparisons

Temperature reconstruction from upper treeline bristlecone pine (living and remnant); Precipitation reconstruction from lower treeline Douglas-fir, ponderosa, pinyon pine (living and archeological)

Salzer MW, Kipfmueller KF. 2005. Reconstructed temperature and precipitation on a millennial timescale from tree-rings in the Southern Colorado Plateau, USA. CLIMATIC CHANGE 70 (3): 465-487

Other considerations in tree and site selection

Open-grown stand, minimal tree interaction maximizes climate signal. *Pinus longaeva*, White Mts, California, about 3000 yrs old.

Photo V.C. LaMarche

<u>Closed-canopy stand</u> with evidence of past disturbance, substantial tree interactions, and thus more of an ecological signal in the tree-ring record. *Picea engelmannii, Abies concolor and Populus tremuloides,* White Mts, Arizona Sampling design for dendroecology may follow different logic:

- Often in dendroecology we look for growth differences among trees:
 - Growth increases in trees released from competition
 - Host/non-host differences in stands affected by a host-specific insect (e.g. defoliator)
 - Growth changes from foliar damage during fire
 - Clusters of recruitment dates reflecting climate and disturbance

Sampling considerations in fire history

Example Research Questions:

- How does fire occurrence and extent vary with climate?
- To what extent is fire area burned governed by topography?
- What is the influence of sample area on metrics of the fire regime?

Each of these would suggest different sampling strategies

Farris et al. 2010: Objective was to compare landscape patterns of area burned reconstructed from fire scars with perimeters in fire atlases (Rincon Mts, AZ)

This objective required a spatially distributed, gridded sample design

"Occupied" Jemez Mountain Salamander sites

Gridded fire history at Monument Canyon RNA, NM Question: Are metrics of the fire regime scale dependent?

Vegetation

(ground corrected Landfire EVT):

- <u>47% Piñon-juniper (savanna)</u> -Pinus edulis, Juniperus scopulorum, J. monosperma
- <u>29% Grassland (short grass)</u> -Bouteloua gracilis
- <u>24% Ponderosa pine</u> Pinus ponderosa, Quercus undulata

Tree-ring sample collection

Increment cores:

- 1. tree age
- 2. climate reconstruction

Surface fire history

Pecos Wilderness

Sometimes you take anything you can find

Sampling **all** live and dead trees to reconstruct composition, age structure, and fire history in mixed conifer forests

We often "target" certain trees that have the information we seek

Fire-killed tree death dates

Class Field Trip

Research questions

1. Has fire exclusion affected tree species composition and density?

2. Is there a tree-ring response to crown damage from fire?

Species composition and density change?

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2013)

CORRESPONDENCE

Unsupported inferences of high-severity fire in historical dry forests of the western United States: response to Williams and Baker

Peter Z. Fulé¹⁴, Thomas W. Swetnam², Peter M. Brown³, Donald A. Falk^{4,2}, David L. Peterson⁵, Craig

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2014)

CORRESPONDENCE

High-severity fire corroborated in historical dry forests of the western United States: response to Fulé *et al*. MARK A. WILLIAMS and WILLIAM L. BAKER*

OPEN ORCESS Freely available online

Examining Historical and Current Mixed-Severity Fire Regimes in Ponderosa Pine and Mixed-Conifer Forests of Western North America

Dennis C. Odion^{1,2*}, Chad T. Hanson³, André Arsenault⁴, William L. Baker⁵, Dominick A. DellaSala⁶, Richard L. Hutto⁷, Walt Klenner⁸, Max A. Moritz⁹, Rosemary L. Sherriff¹⁰, Thomas T. Veblen¹¹, Mark A. Williams¹²

"current attempts to "restore" forests to open, low-severity fire conditions may not align with historical reference conditions in most ponderosa pine and mixed-conifer forests of western North America."

PLOS ONE

Last widespread fire in 1899

Were these sites mixed conifer when there was frequent fire?

Sample design

- 2 n-tree plots in mixed conifer forest
- Core 30 trees in each plot to determine whether they pre- or post-date the last widespread fire (1899)?

Research questions

1. Has fire exclusion affected tree species composition and density?

2. Is there a tree-ring response to crown damage from fire?

Injured fire-survivors (growth changes/resin ducts)

Fire-survivors

Missing ring, then release after fire

Growth suppression following crown damage from fire

Tree-ring response to crown damage from fire

