
Notes_7, GEOS 585A, Spring 2019 1 

7 Detrending  
 
Trend in a time series is a slow, gradual change in some property of the series over the whole 

interval under investigation. Trend is sometimes loosely defined as a long term change in the 
mean (Figure 7.1), but can also refer to change in other statistical properties. For example, tree-
ring series of measured ring width frequently have a trend in variance as well as mean (Figure 
7.2). Traditionally, seasonal or periodic components, and irregular fluctuations, and the various 
parts were studied separately. Modern analysis techniques frequently treat the series without such 
routine decomposition, but separate consideration of trend is still often required. Detrending is 
the statistical or mathematical operation of removing trend from the series. Detrending is often 
applied to remove a feature thought to distort or obscure the relationships of interest. In 
climatology, for example, a temperature trend due to urban warming might obscure a relationship 
between cloudiness and air temperature. Detrending is also sometimes used as a preprocessing 
step to prepare time series for analysis by methods that assume stationarity. Many alternative 
methods are available for detrending. Simple linear trend in mean can be removed by subtracting 
a least-squares-fit straight line. More complicated trends might require different procedures. For 
example, the cubic smoothing spline is commonly used in dendrochronology to fit and remove 
ring-width trend that might not be linear, or not even monotonically increasing or decreasing over 
time. In studying and removing trend, it is important to understand the effect of detrending on the 
spectral properties of the time series. This effect can be summarized by the frequency response of 
the detrending function.    

 

7.1 Identifying trend 
Identification of trend in a time series is subjective because trend cannot be unequivocally 

distinguished from low frequency fluctuations. What looks like trend in a short segment of a time 
series segment often proves to be a low-frequency fluctuation – perhaps part of a cycle -- in the 
longer series. By extension, we can view the entire observed time series as a segment of an 
unknown infinitely long series, and cannot be sure that an observed change in mean over that 
segment is not part of some low-frequency fluctuation imparted by a stationary process. 

 Sometimes knowledge of the physical system helps in identifying trend. For example, a 
decrease of ring width of a tree with time is expected partly on geometrical grounds: the annual 
increment of wood is being laid down on an ever-increasing circumference. If the volume of 
wood produced annually levels off as the tree ages, ring width would still be expected to decline.  

 
Figure 7.2.  Trend in mean and variance.  
Ring widths from a Douglas-fir tree in 
Jemez Mountains, New Mexico, 1785-
2007. Both mean ring width and variance 
of ring width decline with age of tree.  
 

 
Figure 7.1. Trend in mean. A strong 
trend dominates the December 
atmospheric CO2 concentration at 
Mauna Loa, Hawaii, 1958-2007. Source: 
http://cdiac.ornl.gov/ftp/trends/co2/maun
aloa.co2 
 

http://cdiac.ornl.gov/ftp/trends/co2/
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A hypothetical “age curve” in ring width can be computed assuming the cross-sectional area of 
wood added each year is constant (Figure 7.3). Such a conceptual model was used in 
dendrochronology as justification for “modified negative exponential” detrending (Fritts 1976).    

If a physical basis is lacking, we need to rely 
on statistical methods to quantify trend. 
Statistical methods can help distinguish trend 
from other variations.   

A simple statistical technique of identifying 
linear trend is to regress the observed time series 
against time and test the estimated slope 
coefficient of the regression equation for 
significance (Haan 2002). The null hypothesis is 
that the slope coefficient is zero (no linear trend) 
and the alternative hypothesis is that the slope 
differs from zero. A t-test applied to the 
estimated slope coefficient will indicate 
rejection or acceptance of the null hypothesis. 
This approach can be extended to multiple linear 
regression for trends in mean more complex 

than simple linear trend (Haan 2002). Nonparametric tests are also available for identifying trend.  
The Mann-Kendall test is one such test commonly used in climatology and hydrology (Salas 
1993).    

The frequency domain is particularly useful here. Granger and Hatanaka (1964 p. 130) give 
some insight into spectral interpretation of trend. They conclude that we are unable to 
differentiate between a true trend and a very low frequency fluctuation, and give the following 
advice: 

 
It has been found useful by the author to consider as “trend” in a sample of size n  all frequencies less than 
1 (2 )n  as these will all be monotonic increasing if the phase is zero, but it must be emphasized that this is 
an arbitrary rule. It may also be noted that it is impossible to test whether a series is stationary or not, given 
only a finite sample as any apparent trend in mean could arise from an extremely low frequency 
fluctuation. 

 
If we apply the above reasoning to a 500-year tree-ring series, we would say that variations 

with period longer than twice the sample size, or 1000 years, should be regarded as trend. In 
another paper, Granger (1966) defines ‘trend in mean’ as comprising all frequency components 
whose wavelength exceeds the length of the observed time series. Cook et al. (1990) refer to 
Granger’s (1966) “trend in mean” concept in giving suggestions for detrending tree-ring data: 

 
Given the above definition of trend in mean, another objective criterion for selecting the optimal 
frequency response of a digital filter is as follows. Select a 50% frequency-response cutoff in years 
for the filter that equals some large percentage of the series length, n. This is the %n criterion 
described in Cook (1985). The results of Cook (1985) suggest that the percentage is 67%n to 75%n 
based on using the cubic smoothing spline as a digital filter. The %n criterion ensures that little 
low-frequency variance, which is resolvable in the standardized tree rings, will be lost in estimating 
and removing the growth trend. This criterion also has a bias of sorts because of the stiff character 
of the low-pass filter estimates of the growth trend. It will not necessarily guarantee and, in fact, 
will rarely possess any kind of optimal goodness-of-fit. 

 

 
Figure 7.3.  Mathematical form of 
expected ring width as function of time 
assuming constant increment of cross-
sectional area.  
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7.2 Fitting the trend 
Four alternative approaches to detrending are: 1) first differencing, 2) curve-fitting, 3) digital 

filtering and 4) piecewise polynomials. This section is weighted heavily toward the piecewise 
polynomials approach, which is widely used in dendrochronology. 

 
First differencing. A time series that is non-stationary in mean (e.g., trend in mean) can be 

made stationary by taking the first difference. The first-difference is the time series at time t 
minus the series at time 1t − : 

 1t t tw x x −= −  (1) 
   

where tx is the original time series and tw  is the first-differenced series. If the series is 
nonstationarity in not just the mean but in the rate of change of the mean (the slope), stationarity 
can be induced by taking the second difference, or the first difference of the first difference: 

 1t t tu w w −= −  (2) 
  
Higher orders of differencing can likewise be applied. First differencing has been applied in 

hydrology in the context of ARIMA (Autoregressive-Integrated-Moving-Average) modeling of 
streamflow series (Salas et al. 1980). As with any detrending method, first differencing can be 
expected to strongly attenuate the variance at the lowest frequencies in a time series. Salas et al. 
(1980) report that first differencing can be problematic in hydrology because it tends to introduce 
spurious high-frequency variation. 

Anderson (1975) describes differencing as a way to remove nonstationarity from time series in 
general. According to Anderson (1975), each successive differencing will decrease the variance 
of the series, but at some point, higher-order differencing will lead to an increase in variance. 
When variance increases, the series has been over-differenced. First-differencing is most 
applicable with a linear trend in mean. 

 First-differencing can be illustrated with the trend-dominated Mauna Loa CO2 time series 
plotted in Figure 7.1. In this case, first-difference fails to remove the trend. The first-differenced 
series is positive at all times, reflecting the accelerating rate of increase in the original CO2 curve 
(Figure 7.4a). Second-differencing appears to remove the trend (Figure 7.4b). The variance, 
however, increases with second-differencing, suggesting possible over-differencing: standard 
deviations of the original, first-differenced and second-differenced series are 20.89, 0.60 and 
0.68. The huge drop in variance from the original series to the first-differenced series attests to 
the overwhelming importance of trend to variance of the Mauna Loa CO2 time series.  
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It is important to recognize that first-differencing implies that all the useful information in the 

time series is in the change from one observation from next, and that the level of the original 
series is unimportant. For example, if a time series of ring widths is first-differenced, a change 
from a very wide tree ring to a moderately wide ring can yield the same “detrended” value as a 
change from a moderately narrow ring to very narrow ring. First-differencing of ring widths 
ignores the fact that a year-to-year drop in tree-ring width toward the inner part of the radius or 
core is more likely attributable to “growth trend” than the same drop toward the outer part of the 
core.     

Curve-fitting. If a time series changes in level gradually over time, it makes sense to 
summarize trend by some simple function of time itself. A simple and widely used function of 
time is the least-squares-fit straight line, which assumes linear trend. Simple linear regression is 
used to fit the model  

 t tx a bt e= + +  (3) 
 
   

where tx is the original time series at time t,  a is the regression constant,  b is the regression 
coefficient, and te are the regression residuals. The trend is then described by 

 ˆˆ ˆtg a bt= +  (4) 

where ˆ tg is the fitted trend, â is the estimated regression constant, and b̂ is the estimated 
regression coefficient.     

 
Figure 7.4. First-differencing and second-differencing to remove trend. (A) First-difference of 
December atmospheric CO2 concentration at Mauna Loa. (B) Second-difference of CO2 
concentration. Original series, xt, is plotted in Figure 7.1.   
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While the straight-line method has the virtue of simplicity, the straight line may unrealistic, in 
restricting the functional form of the trend. Other functions of t (e.g., quadratic) might be better 
depending on the type of data. Sometimes the mathematical form of the trend function has 
physical basis. For example, a modified negative exponential curve with conceptual basis in the 
change of tree-geometry with time has been used to remove the “age trend” from ring-width 
series (Fritts 1976). The modified exponential follows the equation 

 
ˆ ˆˆ ˆ bt

tg ae k−= +  (5) 

where the coefficients, ˆ ˆˆ, , and a b k are estimated such that the sum of square of differences of the 
smooth curve ˆ tg and the original time series is minimized. 
     Ring-width trend alternatively described by a straight line and a modified negative exponential 
is illustrated in Figure 7.5. The curvature in the time plot of ring width is so slight that the choice 
of curve makes little difference for this example. At the recent end of the time series, however, 
the expected ring width according to trend is about 30 percent higher for the modified exponential 
than for the straight line.   
 
 

Digital filtering.  Another procedure for dealing with trend is to describe the trend as a linearly 
filtered version of the original series. The original series is converted to a smooth “trend line” by 
weighting the individual observations, tx : 

 
Figure 7.5. Trend in measured tree-ring width fit by straight line and modified negative 
exponential curve.  Tree-ring series is same series described in caption to Figure 7.2. Time 
variable (year) was shifted to begin with 1 before estimating parameters annotated on figure.  
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s
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r q

g a x +
=−

= ∑  (6) 

where{ }ra is a set of filter weights (summing to 1), and tg is the smooth trend line. The weights 

are often symmetric, with s q= and j ja a−= .  If the weights are all equal, the filter is a simple 
moving average, which generally is not recommended for measuring trend (Chatfield 1975). 
Preferable is a symmetric filter with weights decreasing from the central weight.   

 
 
Piecewise polynomials. An alternative to fitting a single curve to the entire time series is to fit 

polynomials of time to different parts of the time series. Polynomials used this way are called 
piecewise polynomials. The cubic smoothing spline is a piecewise polynomial of time, t, with the 
following properties: 

 
• “Knots” are defined as the times of each data point 
• Separate cubic polynomials (functions of t, t2 and t3, where t is time) are defined to 

apply between each pair of adjacent knots  
• The cubic polynomials are continuous at each knot and have continuous first and 

second derivatives at each knot 
 
 The set of fitted cubic polynomials form a smooth curve over the length of the time series. A 

“spline parameter” specifies the flexibility of this curve, and depends on the relative importance 
given to “smoothness” of the fitted curve, and “closeness of fit”, or how close the fitted curve 
passes to the individual data points. 

Given the approximate values ( )i i iy g x ε= + of some supposedly smooth function g at data 

points 1, , Nx x and an estimate iyδ of the standard deviation of iy , the problem is to recover the 

smooth function from the data. Let ( )is x be the spline curve, or the approximation to the smooth 
function g . Following De Boor (1978, p. 235), the spline curve is derived by minimizing the 
quantity 

 
( ) ( )

1

2
22

1
1 D

nxN
i i

i i x

y s x
p p s

yδ=

− 
 + −   

 
∑ ∫  (7) 

 
over all functions s for a given spline parameter, p , where 2D s refers to the second derivative of 
s  with respect to time. The first term in (7) is similar to a sum-of-squares of deviations. The 
second term integrates curvature contributions (second derivative). Minimizing establishes a 
compromise between staying close to the given data (first term) and obtaining the smoothest 
possible curve (second term). The choice of p , where p can range from 0 to 1, depends on which 
of those two goals is given the greater importance. For 0p = , s is the least squares straight-line 
fit to the data. At the other extreme, 1p = , s is the cubic spline interpolant, and passes through 
each data point. As p ranges from 0 to 1, the smoothing spline changes from one extreme to the 
other (Figure 7.6). The term iyδ allows for differential weighting of data points. Following 
recommendations of Cook and Peters (1981) we use equal weighting of 1 to all points ( this is the 
default in Matlab).  
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7.3 Frequency response 
The frequency response function describes how a linear system responds to sinusoidal inputs 

at different frequencies (Chatfield 2004, p. 198). The frequency response function has two 
components -- the gain and the phase. The gain at a given frequency describes how the amplitude 
of a sinusoid at that frequency is damped or amplified by the system. The phase describes how a 
wave at that frequency is shifted in absolute time.    

For a cubic smoothing spline, the phase is zero, such that the "frequency response" describes 
the gain, or the amplitude, of the response function. The input to the "system" in this case is the 
original time series; the output is the smoothed curve intended to represent the trend.  The 
frequency response measures how strongly the spline curve responds to or “tracks” a periodic 
component at a given frequency, should the time series have such a component. The amplitude of 
frequency response at a given frequency is the ratio of the amplitude of the sinusoidal component 
in the smoothed series (the spline curve) to the amplitude in the original time series.   

 
Relation of frequency response to spline parameter 

The cubic smoothing spline has become increasingly popular as a detrending method in 
dendrochronology because the spline is adaptable and easily applied to a wide range of types of 
“age trend” or “growth trend” found in tree-ring data. Application of the spline to 
dendrochronology was first proposed by Cook and Peters (1981), who derived a mathematical 
relationship between a spline parameter and the frequency response of the spline.  Jean-Luc 
Dupouey (INRA, Forest Ecology and Ecophysiology Unit, Champenoux, France), has pointed out 
(personal communication) that the spline parameter p is defined somewhat differently in Matlab 

 
Figure 7.6. Cubic smoothing splines of differing stiffness fit to a time series of tree-ring ring 
width.  Spline parameter is p. Spline has a frequency response of 0.50 at wavelength 0.50λ , 
which is expressed as a decimal fraction of the series length, N, in parentheses. Spline p for 
upper left plot is small enough that straight line is approximated. 
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Spline Toolbox1 than in Cook and Peters (1981), and has provided equations that give the correct 
relationship for use with Matlab. 

In terms of the parameter p in equation(7), the frequency response of the spline is given by  

 
( )
( )

2

1( )
cos 2 111 12
cos 2 2

u f
fp

p f
π
π

=
 − −
+   +   

 (8) 

 
 

where ( )u f is the amplitude of frequency response at frequency f, and p is the spline parameter 

as defined earlier. A plot of ( )u f against f shows the relative response of the spline to 
hypothetical input variations at different frequencies. For a smoothing spline, this response is 
higher toward the low-frequency end of the spectrum (Figure 7.7) .    

Equation (8) can be rearranged with p on the left-hand side to get the spline parameter 
corresponding to a spline with a desired amplitude of frequency response at a specified 
frequency: 

 
( )

( )
( )
( )

0 0( )

0 0 0
2

0 0 0

1

1 cos 2 2
1

12 cos 2 1

u fp
u f f

u f f
π
π

=
    − +   +    −      

 (9) 

where 0f is the target frequency, ( )0 0u f is the desired amplitude of response at that frequency, 

and ( )0 0u fp is the corresponding spline parameter. Cook and Peters (1981) define an “n-year 

spline” as the spline whose frequency response is 50%, or 0.50, at a wavelength of n years.   

 

                                                      
1 Spline Toolbox was discontinued with release 2010b of Matlab.  Spline functions are now available 

from the Curve Fitting Toolbox. 

 
Figure 7.7. Frequency response function of a cubic smoothing spline with spline parameter 
p=3.1257E-6 as applicable to an annual time series. (A) Full frequency response. (B) Frequency 
response zoomed to frequency range 0 to 0.01 (period ∞ to 100 years).  Response rises above 0.2 
at a wavelength slightly longer than 100 years, and reaches 0.5 at a wavelength of about 149 
years (frequency of 0.0067). Plot of full response emphasizes that this spline tracks only low 
frequencies. 
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Equation (9) can be used to compute the required spline parameter for the “n-year spline” by 
setting ( )0 0) 0.50u f = , where 0 1/f n=  . For example, substitution into equation (9) for the 
“100-year” spline yields: 
 

( )
( )

[ ]( )( )
[ ]( )( )

( )
( )

0
2

0

2

2

1

cos 2 20.5 1
0.5 12 cos 2 1

1

cos 2 1/100 2
1

12 cos 2 1/100 1

1

0.99802672842827 2
1

12 0.99802672842827 1

1.5585e

p
f
f

π
π

π

π

=
   +    +      −     

=
   +    +   −     

=
   +   +   −     

= -005

 

 
Function csaps in the Curve Fitting Toolbox of Matlab can be used generate the spline-

smoothed curve for a given input time series and spline parameter (middle curve, Figure 7.8). It is 
important to keep in mind that the spline parameter in equation (9) will not give the desired spline 
smoothness if applied in tree-ring standardization program ARSTAN; for that application, the 
correct versions of the equations for the spline parameter and frequency response are those in 
Cook and Peters (1981).   
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Figure 7.8.  Spline parameter as a function of wavelength 
of frequency response. Curves shown correspond to 
amplitude of frequency response 0.05, 0.50 and 0.95. For 
example, a spline with parameter p=2E-07 has a 
frequency response of 0.50 at wavelength 300 years, a 
response of 0.95 at wavelength slightly longer than 600 
years, and response of 0.05 at wavelength of about 150 
years. Such a spline strongly tracks variations with 
wavelength longer than 600 yr and hardly tracks at all 
variations with wavelength shorter than 150 yr. If the 
original time series were a sine wave with wavelength 
300 years, the smooth curve would be a damped sine 
wave with 25 percent (0.50 squared) of the variance of 
the original series. The detrended series—the difference 
of the original series and smooth curve-- would have 75 
percent of the variance of the original series. 

 

7.4 Removal of trend 
Once a trend line has been fit to 

the data, we can regard that line as 
representing the “trend.” The 
question remains, how to remove 
the trend? If the trend-identification 
method has identified a trend line, 
two options are available. First is to 
subtract the value of the trend line 
from the original data, giving a time 
series of residuals from the trend.  
This “difference” method of 
removing trend is attractive for 
simplicity, and for giving a 
convenient breakdown of the 
variance: the residual series is in the 
same units as the original series, and 
the total sum of squares of the 
original data can be expressed as the 
trend sum-of-squares plus the 
residual sum-of-squares.   

The other method of removing 
trend is to compute the ratio of the 
time series to the trend line at every 
point in time. This ratio will exceed 
1.0 when the series is above the 
trend line and will below 1.0 when 
the series is below the trend line. 
The “ratio” option is attractive for 
some kinds of data because the ratio 
is dimensionless, and because the 
ratio operation tends to remove 
trend in variance that might 
accompany trend in mean. Tree-ring 
width is one such data type: 
variance of ring width tends to be 
high when mean ring width is high, 
and low when mean ring width is 
low. Ratio-detrending should not be 

used if the original time series contains negative values, and can become problematic when the 
fitted trend line approaches zero (e.g., division by zero yields infinity). These issues are addressed 
in the context of detrending tree-ring width by Cook and Peters (1997). 

  

7.5 Effect of detrending on spectrum 
Whether the “detrended” series is a difference of the original series and a fitted smooth curve 

or a ratio of the original series to the smooth curve, the effect is removal of the gradual, or low-
frequency, fluctuations tracked by the smooth curve. The effect is therefore to remove low-
frequency variance. Detrending in essence is equivalent to high-pass filtering. That is, the 
variance at low frequencies is diminished relative to variance at high frequencies. In detrending 
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by a cubic smoothing spline, the frequency response of the spline is high for those frequencies 
tracked closely by the spline. In the subsequent removal of the trend line, these frequencies are 
mostly removed. Frequencies at which the frequency response of the spline is high are therefore 
those at which variance is most suppressed or damped in the spectrum of the detrended series. In 
general, at the lowest frequencies, the spectrum of the detrended series will be diminished relative 
to the spectrum of the original data. The more flexible the spline, the higher the frequency-range 
affected by the detrending.  

 

 
Normalized spectrum.  The objective in comparing two spectra is sometimes restricted to 

discerning differences in the relative distribution of variance as a function of frequency. The 

 
Figure 7.9.  Contrast of time series detrended as difference and ratio. (A) Ring-width time 
series and fitted spline with 0.50 frequency response at 70 percent of series length. (B) Index 
computed as difference of original time series and fitted trend line. (C) Index computed as ratio 
of original time series to fitted trend line. Ratio-detrended series converted to same overall 
mean and variance as difference-detrended series before plotting. Time trend of variance 
evident in original ring width and difference-detrended series is not evident in ratio-detrended 
series. Data: ring-width from New Mexico, USA, described in caption to Figure 7.2. 
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visual comparison can be muddied by differences in total variance of the two series. To eliminate 
spectrum differences due to differences in total series variance, the spectra in this case are best 
plotted as normalized spectra. The total areas under two normalized spectra are by definition 
equal, as the spectra are standardized to have a unit area of 1.02. The normalized spectrum is 
computed by dividing each ordinate of the original spectrum by the area under the spectrum 
(Figure 7.10). A normalized spectrum can also be arrived at by first converting a time series to 
“Z-scores” (zero mean, unit standard deviation) before spectral estimation. (Recall that the area 
under the spectrum equals or is proportional to the variance.) 

7.6 Quantifying the importance of trend 
A simple measure of the practical importance of trend in a time series is the fraction of 

original variance of the series accounted for by the fitted trend line, which can be computed by 

 
( )
( )

2 var
1

var
t

t

e
R

x
= −  (10) 

  
where ( )var tx is the variance of the original time series, and ( )var te is the variance of the 
residuals from the trend line.   

Equation (10) measures the importance of the tend component in a time series time series, and 
can range from 0 for no importance to 1 if the series is pure trend (Figure 7.11). Note that for 
ratio detrending, the total variance of the original series cannot be decomposed into variance due 
to trend and residual variance because the detrended series is NOT a residual. 

 

                                                      
2 Depending on plotting convention, the area under a plotted normalized spectrum may appear to differ 
from 1.0. For example, areas under the normalized spectra in Figure 7.10 are 1.0 only if the frequency axis 
is scaled such that the range {0 0.5} is scaled to {0 1}. The important point is that the total area under the 
normalized spectrum is the same regardless of total variance of the time series.   
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to  
 
 

 

 
Figure 7.10. Normalized spectrum as tool for comparing spectral features in two time 
series. (A) Time plots of annual (Oct-Sept) point precipitation and divisional precipitation 
for northern New Mexico. (B) Spectra of the two precipitation series. (C) Normalized 
spectra. Without normalization, the spectra might be miss-interpreted as showing higher 
low-frequency variance in the divisional series. The vertical offset in spectra in the middle 
plot merely reflects the differing total variances of the two series. Total areas under the 
two normalized spectra are equal.    
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