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8 Filtering  
The estimated spectrum of a time series gives the distribution of variance as a function of 

frequency. Depending on the purpose of analysis, some frequencies may be of greater interest 
than others, and it may be helpful to reduce the amplitude of variations at other frequencies by 
statistically filtering them out before viewing and analyzing the series. For example, the high-
frequency (year-to-year) variations in a gauged discharge record of a watershed may be relatively 
unimportant to water supply in a basin with large reservoirs that can store several years of mean 
annual runoff. Where low-frequency variations are of main interest, it is desirable to smooth the 
discharge record to eliminate or reduce the short-period fluctuations before using the discharge 
record to study the importance of climatic variations to water supply. Smoothing is a form of 
filtering which produces a time series in which the importance of the spectral components at high 
frequencies is reduced. Electrical engineers call this type of filter a low-pass filter, because the 
low-frequency variations are allowed to “pass through” the filter. In a low-pass filter, the low 
frequency (long-period) waves are barely affected by the smoothing.   

It is also possible to filter a series such that the low-frequency variations are reduced and the 
high-frequency variations unaffected. This type of filter is called a high-pass filter. Detrending is 
a form of high-pass filtering: the fitted trend line tracks the lowest frequencies, and the residuals 
from the trend line are what remains after the lowest frequencies have been removed. A third type 
of filtering, called band-pass filtering, reduces or filters out both high and low frequencies, and 
leaves some intermediate frequency band relatively unaffected. 

In this lesson, we cover several methods of smoothing, or low-pass filtering. We have already 
discussed how the cubic smoothing spline might be useful for this purpose. Four other types of 
filters are discussed here: 1) simple moving average, 2) binomial, 3) Gaussian, and 4) windowed 
(Hamming method). Considerations in choosing a type of low-pass filter are the filter length and 
desired frequency response of the filter.    

 

8.1 Mathematical operation   
A smoothed time series value is “merely an estimate of what the value in the series would be 

if undesired high frequencies were not present” (Panofsky and Brier 1958, p. 147),  A statistical 
filter, or digital filter, is a series of weights that when cumulatively multiplied by consecutive 
values of a time series gives the filtered series. The series of weights is sometimes called the 

filtering function, or simply the filter. The operation of 
filtering is illustrated in Table 1.  

Assume that the numbers 12, 17,…,14 in column 
three of the table are a time series, and that the filter 
has weights 0.25, 0.50, 0.25. The filtered values are 
the cumulative products of the weights and the 
original time series. Filtering proceeds by sliding the 
filter alongside the time series one value at a time, 
each time computing a cumulative product. For 
example, in Table 1, the filter is centered on year 3, 
such that the filtered value for year 3 is computed 
from the series at times 2, 3 and 4 as follows: 
( ) ( ) ( ) ( ) ( )0.25 (17) 0.50 10 0.25 22 14.75+ + =  

 
 
 

Table 1.  Filtering 
 

Year 
 

Filter 
Time 
Series 

Filtered 
Values 

1  12  
2 .25 x 17 14.00 
3 .50 x 10 14.75 
4 .25 x 22 17.25 
5  15 15.75 
6  11 13.75 
7  18 18.50 
8  27 21.50 
9  14  
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Figure 8.1.  Examples of 
symmetrical 9-weight filters. 
Weights sum to 1. (A) Triangular 
filter. (B) Evenly weighted moving 
average. 

 

The filtering can be described by the equation 
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where tx is the original time series, 
, ,( 1),...0,1,...,iw i n n n= − − + are the weights, with central 

weight 0w , and ts is the smoothed, or filtered, series. The 
filtered value is assigned to the year corresponding to the 
central value of the sliding weights, so that features in the 
smoothed series are not shifted relative to their position 
in the original series. Usually the weights are fractional 
values whose sum is one: this guarantees that the mean of 
the filtered series approximately equals the mean of the 
original series. The filter length is the total number of 
weights. A filter is symmetrical if the weights to left of 
the central weight are the same as those to the right of the 
central weight (Figure 8.1). For example, the filter used 
in Table 1 is symmetrical because the same weight (0.25) 
flanks the central weight on either side. Symmetry of the 
filter weights is important to avoid phase shifts (see 

frequency response) in filtering. For a filter with a central weight and n weights to either side, the 
filter length is  

 2 1N n= +  (2) 
The filtered series in Table 1 is shorter than the original time series because of the loss of 

starting and ending values. For the example, the first available filtered value is centered on the 
second observation in the original time series, and the last filtered valued is centered on the next-
to-last original time series observation. For a filter length (odd) of N, a total of ( 1) / 2N − values 
are lost off the front and back of the series because of the requirement for startup values. For 
example, ( ) ( )1 / 2 3 1 / 2 1N − = − = value is lost from each end in applying the three-weight filter 
in Table 1. 

Sometimes the original time series is extended forward and backward artificially before 
filtering so that the filtered series covers the same observations as the original series. Because no 
“real” data exist outside the ends of the original time series, this procedure can lead to 
disagreeable end effects in the filtered series. Two commonly used extension methods are 1) 
substituting the long-term mean or median, and 2) reflecting the data across the end points 
(Figure 8.2). 

8.2 Frequency response    
The frequency response of a filter describes the effect of the filter on sinusoidal inputs at 

different frequencies. The frequency response has two components – amplitude and phase.  The 
phase at a given frequency describes the shift in the position of a wave at that frequency along the 
time axis. For some filtering applications, it is desirable that the phase is zero, so that peaks and 
troughs representing waves in the original data are not shifted in the filtered data. Filters for 
which the phase of the frequency response is zero at all frequencies are called zero-phase.   
Symmetrical (example in Table 1) filters are zero-phase. Other types of symmetrical filters to be 
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discussed below are the moving average, binomial, Gaussian, and Hamming filters. 

 
 

The other component of the frequency 
response of a filter is the amplitude. The 
amplitude of the frequency response at a 
given frequency is the ratio of the amplitude 
of an output sine wave to an input sine wave 
at that frequency (Figure 8.3). Smoothing 
filters have little effect on the gradual, or low-
frequency, variations while damping or more-
or-less removing the high-frequency 
variations. For this reason, smoothing filters 
are also called “low pass” filters. The 
amplitude of frequency response as a function 
of frequency is sometimes called the 
frequency response function or just the 
response function (Figure 8.4).   

Symmetrical digital filters such as the filter 
in Table 1 are examples of finite impulse 
response (FIR) filters. The impulse response 
of a system is defined as the output for a unit 

pulse of input restricted to a single time step. An FIR filter has the property that if the input series 

 
Figure 8.2.  Artificial extension of data prior to filtering. (A) Padding by the median. (B) 
Reflection around endpoints. Original series covers years 1940-2007. Extended series covers years 
1935-2012. Extension avoids loss of data in filtering. In this example, filtering by a symmetrical 
11-weight filter would yield a filtered series with same coverage as original series. Reflection 
across endpoints can avoid imparting abrupt shifts in the extended series when the original series 
has a strong trend.   
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Figure 8.3. Effect on a sine wave of filtering by 
a filter with 0.50 amplitude of frequency 
response at the wavelength of the sinusoid. 
Because variance of a sine wave is proportional 
to the squared amplitude, the variance of the 
output is 25 % of the variance of the input. 
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has just a unit departure at one specific time, the response in the filtered series is restricted to a 
finite number of times. For example, the response to a unit impulse for the filter in Table 1 would 
be distributed over three time points.   

The frequency response function of an FIR filter can be computed as the Fourier transform of 
the filter weights. For a symmetrical FIR filter, the frequency response function can be written as  

 

 0
1

( ) 2 cos(2 )
n

k
k

u f w w k f tπ
=

= + ∆∑  (3) 

where ( )u f is the frequency response, f is frequency, kw is the thk weight numbered outward from 
the central weight 0w , and t∆ is the data interval, the time between successive observations in the 
time series  (Panofsky and Brier 1958, p. 149).   
 

8.3 Simple moving average    
An example of a symmetrical low-pass filter is the simple moving average filter of length N, 

where N is an odd integer. The individual weights of the moving average are equal to1/ N , so 
that the sum of the weights is ( )1 1NN = . An example of a simple moving average filter is the 9-

weight moving average{ }1 1 1 1 1 1 1 1 1
9 9 9 9 9 9 9 9 9 , whose weights 

are plotted in Figure 8.1B. Application of the N-weight moving-average filter is equivalent to 
computing a sample mean for each subset of N values. The simple moving-average filter is 
therefore also called the running mean. The running mean has the practical advantage of 
simplicity over some other types of filter.   

 
Figure 8.4.  Frequency response function of a low-pass filter designed for 
a time series with time step of 1 year. This filter will virtually eliminate 
fluctuations at frequencies higher than about 0.15, or wavelengths 
shorter than 6.7 yr. Frequencies lower than 0.05 (wavelengths longer 
than 20 years) will pass with almost no attenuation.   
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Figure 8.5.  Frequency 
response function of a 9-
year moving average. See 
Figure 8.1B for filter 
weights. 

 

The frequency response of the running mean of length N is 1.0 at the lowest frequency 0f = , 
corresponding to infinite wavelength, and decreases to 0 at 1/f N= , corresponding to a 
wavelength the same as the filter length. Thus, for example, the frequency response of a nine-year 
running mean decreases from 1.0 at a wavelength of infinity to 0 at a wavelength of 9 years 

(Figure 8.5). But the frequency response of the running mean 
has an undesirable property: for wavelengths shorter than the 
filter length, N – or frequencies higher than 1/N -- the frequency 
response oscillates rather than stays close to zero. While the 
frequency response is zero at frequencies that are multiples of 
1/N (e.g., f=1/N,  f=2/N, …), it is nonzero at intermediate 
frequencies (Figure 8.5). Consequently, high-frequency 
variations in the original series at those intermediate frequencies 
are not removed. For example, a series smoothed with a 9-year 
running mean filter might retain considerable variance at f=0.15 
(wavelength ~6.7 yr) if the original series contains much 
variance near f=0.15. Essentially, this low-pass filter is letting 
high-frequency variation pass through at selected frequencies 
(e.g, at the high lobes in Figure 8.5). Because some higher-

frequency fluctuations may not be damped out, the interpretation of the filtered series is made 
more complicated.   

Ideally, a low-pass filter has a smoothly declining frequency response that remains low at 
frequencies higher than specified threshold frequency. Several classes of symmetrical filters 
whose filter weights decrease in size away from the central weight (unlike the moving average) 
have this desired trait. Such “better” low-pass filters include the binomial, Gaussian and 
Hamming. Another drawback of the moving average as a “smoothing” filter is that the smoothed 
series can jump abruptly in response to large single-year anomalies in the time series; the 
smoothed series can therefore appear jagged. Nevertheless, the moving average is often used 
because of the ease of interpreting each smoothed value as an arithmetic average over N 
observations.                                              

 

8.4 Binomial filter     
For the binomial filter, the weights are set proportional to the binomial coefficients (Panofsky 

and Brier, 1958; Mitchell et al. 1966). The binomial filter can be computed by repeated 
convolution of the sequence of weights [0.5 0.5], corresponding to equal probabilities of success 
or failure for a binomial distribution. If we let 0 [0.5 0.5]b = , the three-weight binomial filter is 
given by the convolution of 0b with itself 

 
01 0conv( , ) [0.25 0.50 0.25]b b b= =  (4) 

The four-weight binomial filter, say 2b , is formed by convoluting 1b with 0b . The five-weight 
binomial is formed by convoluting 2b with 0b , and so forth. The weights of an 1N + weight 
binomial filter can be computed conveniently as follows 

 
( )

0

! 0,1,...,
! !k

N

k k k
k

Nc k N
k N k

b c c
=

= =
−

= ∑
 (5) 

Following Mitchell et al. (1966), the appropriate value of filter length, 1N + , can be computed 
for any desired period of 50% frequency response. The standard deviation of the binomial 
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Figure 8.6.  Weights and frequency 
response of a binomial filter. 
Response is 0.5 at wavelength of 
about 9 years.  

 

distribution is / 2B Nσ = , and the 50% response period occurs approximately at six standard 
deviations. Thus, considering an annual time series, if the 50% response period in years is p , the 
relationship 

 6 3B N pσ = =  (6) 
 
  

yields  

 
2

3
pN  =  

 
 (7) 

 
To ensure that the filter length 1N + is odd, N is rounded to the nearest even integer before 

being substituted into (5) to compute the filter weights. Weights much smaller than the maximum 
weight (say, less than 5% of it) are dropped, and then the filter is normalized such that the 
weights sum to 1 (Mitchell et al. 1966). 

As an example, say the desired 50% response period is 10 years.  The computed value of N  is  

 
210 11.111

3
N  = = 

 
 (8) 

which is rounded to 12. The coefficients, computed from (5), truncated to remove excessively 
small values, and normalized to sum to 1 are 

[0.0162    0.0541    0.1216    0.1946    0.2270    0.1946    0.1216   0.0541    0.0162] 
(Figure 8.6).  

As N becomes large, the weights for the binomial filter approximate the ordinates of the 
Gaussian, or normal, distribution.  An alternative to the binomial filter is to set the weights 
proportional to the probability points of a normal distribution.   

 

8.5 Gaussian filter   
Weights of the Gaussian filter are proportional to 

ordinates of a normal probability density function with a 
specified standard deviation (Mitchell et al. 1966). The 
Gaussian filter is convenient because the standard 
deviation of the appropriate Gaussian distribution can be 
related directly to the 50% frequency response of the 
filter. According to Mitchell et al. (1966), “the response 
… drops below 50 per cent at wavelengths equal to 
about 6 standard deviations of the Gaussian curve.”     

The appropriate Gaussian distribution therefore has 
standard deviation 

                           0.5

6G
λ

σ =  (9) 

where 0.5λ is the desired wavelength at which the 
amplitude of frequency response is 0.5. The filter 
weights are obtained by sampling the pdf of the standard 
normal distribution at 

valuest − 0, 1/ , 2 / , 3/ ,G G Gσ σ σ± ± ±  .    These 
weights are next truncated to exclude values less than 5 
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Figure 8.7.  Brick wall filter with 
cutoff frequency f0=0.2 yr-1, or 
cutoff wavelength 5 years.   

 

percent of the maximum weight, and then are scaled so that the weights sum to 1.0.   
For example, say we want a Gaussian filter with frequency response of 0.5 at a 

wavelength of 10 years. The appropriate Gaussian filter has standard deviation  
 10 / 6 1.66667Gσ = =  
The t-distribution is sampled at t-values 0, 0.6, 1.2, 2.4,± ± ±  , where the sampling is continued 

out to a large number of points – say as many points as observations in the series to be filtered.  
For 21 sample points, the pdf values are (to 4 digits) 

 
0.0000    0.0000    0.0000    0.0001    0.0006    0.0044    0.0224    0.0790    0.1942    0.3332    
0.3989    0.3332    0.1942    0.0790    0.0224    0.0044    0.0006    0.0001    0.0000    0.0000    
0.0000 
 

Truncating to exclude all values less than 5 percent of 0.3989 yields 
0.0224    0.0790    0.1942    0.3332    0.3989    0.3332    0.1942    0.0790    0.0224. 
 

These weights sum to about 1.6565.  Dividing the weights by the sum yields the final 
weights 
0.0134    0.0474    0.1165    0.1999    0.2394    0.1999    0.1165    0.0474    0.0134. These weights 
sum to 1 (ignoring rounding error). 

 

8.6 Hamming-window filter  
The binomial filter approaches a “bell shape” as filter length, N, increases, and the Gaussian 

filter is by definition bell shaped. Other ‘bell-shaped’ filters have the desired trait for low-pass 
filtering of a frequency response that drops steadily from 1.0 at low frequencies to zero at some 
frequency and remains at zero at higher frequencies.   

A different approach to filter design consists of applying a smoothing window, or smoothing 
filter, to a mathematically derived ideal digital filter. The ideal filter is specified by a cutoff 
frequency, 0 ,f  defined such that the amplitude of the frequency response is 1 for all frequencies 
less than 0f and is 0 for all frequencies greater than or equal to 0f . Such a frequency response is 
called a brick-wall response. Recall that the frequency response of a filter is the Fourier transform 

of the impulse response of the filter, and that the impulse 
response of a symmetrical digital filter is proportional to 
the filter itself. The ideal filter is accordingly computed 
as the inverse Fourier transform of the brick-wall 
frequency response (Figure 8.7). The ideal filter as so 
defined is not implementable because its impulse 
response is infinite and non-causal (The MathWorks, 
1998, p. 2-19). To create a finite-duration impulse 
response, the ideal filter is truncated by applying a 
“window.”   

A useful window for this purpose is the Hamming 
window, or raised cosine window (Karl 1989, The 
MathWorks 1999). The Hamming window weights are 

computed as a function of a cosine  

 ( )
1

0
(0.54 0.46cos 2 / 1 ) / 0 ( 1)

N

i i
i

w i N w i Nπ
−

=

= −  −  ≤ ≤ −  ∑  (10) 
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Figure 8.8.  Low-pass filter 
by Hamming-window 
method. (A) filter weights. 
(B) Frequency response. 
Filter response is 0.5 at 
wavelength 20 yr.   

 

where N is the length of the window, or filter. N includes the central weight and the weights on 
either side of it.  For example, a 5-weight Hamming-window filter1, with 5N = and central 
weight 2w ,  has weights  [0.0357 0.2411 0.4464 0.2411 0.0357]. The Hamming window applied 
to the ideal low-pass filter yields an implementable filter that in a sense is ideal given the 
specified constraint on the filter length.   

The filter design problem in the windowed method is reduced to 1) specifying a desired cutoff 
frequency, and 2) specifying a desired filter length. As the filter length is increased, the algorithm 
comes closer to the objective of an “ideal” filter in terms of frequency response, but more data is 
lost off the ends of the series because of the large number of weights. The filter weights sum to 1, 
but for longer filter lengths some weights can be negative (Figure 8.8). This is a necessary 
consequence of the mathematics, but can be disturbing for practical interpretation.   

The windowing method of filter design can be useful for 
band-pass and high-pass as well as low-pass windows. The 
method is probably most applicable when well-defined 
frequency ranges are of interest. For example, a tree-ring series 
might be filtered with a band-pass filter targeted on the 
frequencies that dominate the variance of the 11-year sunspot 
cycle. In most dendroclimatological studies, however, the 
precise cutoff frequency of variations of interest is difficult to 
specify, and the complexity of the windowing method might be 
overkill. If so, a simpler filter (e.g., binomial, Gaussian) with a 
more gradual transition between the frequencies retained and 
eliminated may suffice. 

 

8.7 Effects of filtering on the time series and 
its spectrum    

 
The effect of low-pass filtering on a pure sine wave is to 

“damp”, or reduce the amplitude, of the wave to some degree, 
depending on the wavelength of the sine wave and the 
frequency response of the filter (e.g., see Figure 8.3). 
Geophysical time series are generally mixtures of variance at a 
wide range of frequencies, such that application of a low-pass 

filter will smooth out the high frequencies and leave the lower frequencies relatively unaltered.  
Because high-frequency variance is removed, the filtered series can be expected to have a 

lower variance than the original series. How much lower depends on the spectrum of the original 
series and the frequency response of the filter. If a time series has no variance at high frequencies, 
smoothing with a low-pass filter will have relatively little effect on the total variance. Conversely, 
if the time series is dominated by high-frequencies variations, low-pass filtering will greatly 
reduce the total variance of the series.   

As an example of the effects of low-pass filtering, consider a time series of an annual tree-ring 
index plotted (Figure 8.9). The series does not appear to be cyclic, but does have some large-
amplitude fluctuations with wavelength exceeding a decade, as well as considerable high-
frequency variability. 

As expected, filtering with a 9-weight binomial filter yields a smoother time plot and reduced 
range in the time series (Figure 8.10).  The frequency response for the binomial filter (see figure 

                                                      
1 Matlab function hamming yields a hamming window. Function fir1 returns the weights of a low-pass 
filter designed by the Hamming-window method. 
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8.6b) indicates that variance at frequencies higher than about f=0.2 will be severely reduced in 
filtering.2 Indeed, the spectra plotted in Figure 8.11 show that variance has essentially been 
completely eliminated at those high frequencies. The ratio of the areas under the two spectra is 
about 1/3, meaning that filtering has removed 2/3 of the original variance.  

 
 
 

 

 
 

                                                      
2 Theoretically, for a linear system with the original time series as input and the filtered time series as 
output, the spectrum of the input multiplied by the square of the frequency response at a given frequency 
will give the spectrum of the output at that frequency (see Chatfield 2004). 

 
Figure 8.9.  Time plot of an annual index of tree growth. Series is a standard index of 
growth for a Pseudotsuga menziesii from Echo Amphitheater, New Mexico (data provided 
by Ramzi Touchan).  
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Figure 8.10.  Annual index of tree growth, before and after smoothing by binomial filter.  
Series was extended by reflection across endpoints prior to filtering to provide filtered series 
with same time coverage as original series.  

 

 
Figure 8.11.  Spectra of tree-ring index before and after low-
pass filtering with binomial filter.   

 



Notes_8, GEOS 585A, Spring 2019 11 

8.8 References 
 

Chatfield, C., 2004. The analysis of time series, an introduction, sixth edition: New York, Chapman & 
Hall/CRC.  

Karl, J.H., 1989. An introduction to digital signal processing, Academic Press, Inc., San Diego, California 
92101. 

Mitchell, J.M., Jr., Dzerdzeevskii, B., Flohn, H., Hofmeyr, W.L., Lamb, H.H., Rao, K.N., and Wallen, 
C.C., 1966. Climatic change, Technical Note 79: Geneva, World Meteorological Organization. 

Panofsky, H.A., and Brier, G.W., 1958. Some applications of statistics to meteorology: The Pennsylvania 
State University Press, 224 p. 

The MathWorks, Inc., 1998. Signal processing toolbox for use with Matlab, User’s Guide, version 4.  
Apple Hill Drive, Natick, MA 01760-2098 

 


	8 Filtering
	8.1 Mathematical operation
	8.2 Frequency response
	8.3 Simple moving average
	8.4 Binomial filter
	8.5 Gaussian filter
	8.6 Hamming-window filter
	8.7 Effects of filtering on the time series and its spectrum
	8.8 References


