
Notes_2, GEOS 585A, Spring 2019 1 

2 Probability distribution 
The probability distribution of a time series describes the probability that an observation 

falls into a specified range of values.  An empirical probability distribution for a time series can 
be arrived at by sorting and ranking the values of the series.  Quantiles and percentiles are useful 
statistics that can be taken directly from the empirical probability distribution.  Many parametric 
statistical tests assume the time series is a sample from a population with a particular population 
probability distribution.  Often the population is assumed to be normal.  This chapter presents 
some basic definitions, statistics and plots related to the probability distribution.  In addition, a 
test (Lilliefors test) is introduced for testing whether a sample comes from a normal distribution 
with unspecified mean and variance. 

2.1 Definitions 
Time series  

A time series is a set of observations ordered in time.   We will consider only time series 
observed at a discrete set of evenly spaced time intervals:  tx  at times 1, 2,...,t N= , where N  is 
the length of the time series.  Annual indices of tree-ring width are one example of a time series 
(Figure 2.1).    

 

 
 
Random variable  

A random variable is a function that assigns real numbers to the points in a sample space.  
The random variable is usually denoted by a capital letter (e.g., X ), and the value it takes by a 
small letter (e.g., x ). 

 
Probability function (also called probability density function)  

The probability function of the random variable X , denoted by ( )f x   is the function that 
gives the probability of X taking the value x , for any real number x : 

 
 ( ) ( )f x P X x= =  (1) 
The most commonly used theoretical distribution is the normal distribution.  Its probability 

density function (pdf) is given by:  
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Figure 2.1.  Time series plot of MEAF tree-ring index for period 1901-2007. Each 
observation is a dimensionless index of tree-ring width for a year.  Horizontal line is the 
1901-2007 mean. Higher values indicate wide rings and lower values narrow rings. This 
time series has a uniform time step of one year.   
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where µ  andσ  are the population mean and standard deviation of X .  The standard normal 
distribution is the normal distribution with µ = 0 andσ =1.  A plot of the standard normal pdf is a 
bell-shaped curve (Figure 2.2).   

 
 
 

Distribution function (also called cumulative distribution function (cdf)) 
The distribution function of a random variable X is the function that gives the probability 

of X  being less than or equal to a real number x : 
 ( ) ( ) ( )

u x
F x p X x f u

≤

= ≤ =∑  (3) 

 
For a theoretical distribution, the cdf can be computed as the integral of the probability density 
function. The cdf of standard normal has an “S-shaped” form (Figure 2.3). 

 
 

Empirical distribution function, or empirical cdf 
Let 1 2, ,..., nx x x  be a sample of some random variable.  The empirical distribution 

function ( )S x is a function of x, which equals the decimal fraction of the observations that are 
less than or equal to cx  for .cx∞ < < ∞  
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Figure2.2. Probability density function of 
standard normal distribution.  Sixty-eight 
percent of the population is within ±1.0 of 
zero.  Ninety-five percent is within ±1.96 of 
zero. 
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Figure2.3. Cumulative distribution function 
(cdf) of standard normal distribution. 
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Statistical and deterministic   
A time series is deterministic if its future behavior can be exactly predicted from its past 

behavior.  Otherwise the time series is statistical.  The future behavior of a statistical time series 
can be predicted only in probabilistic terms.  We will consider only statistical time series. 

 
Process  

A statistical time series can theoretically be viewed as generated by some underlying 
statistical process.  Sometimes the term stochastic is used instead of statistical; the two terms are 
synonyms. The process might be represented as a mathematical model.  The time series can be 
considered a single realization of the generating process. 

 
 

Stationarity 
The process can be viewed as potentially generating an infinite number of time series.  

The observed series tx is just one possible realization.  The value of the series tx at any time 
t i= can be considered a realization of a random variable iX , with a probability density 
function ( )ip x .  Any set of iX at different times, say {

1
, ...,

rj jX X }, has a joint probability density 
function.  If the joint probability density function is independent of time, the process is said to be 
strictly stationary.  Many statistical procedures assume at least weak stationarity, which means 
that the mean, variance, and autocovariance function are independent of time.  For Gaussian 
processes, weak stationarity implies strict stationarity. 

  Chatfield (2004) introduces the idea of stationarity from an intuitive point of view:  
“Broadly speaking, a time series is said to be stationary if there is no systematic change in mean 
(no trend), if there is no systematic change in variance and if strictly periodic variations have 
been removed.  In other words, the properties of one section of the data are much like those of 
any other section.”  Such an intuitive view basically amounts to observing that the properties of 
the series appear to be consistent with a stationary generating process or model.  

 

2.2 DESCRIPTIVE STATISTICS 
 

Sample mean, variance, standard deviation  
Let 1 2, ,..., Nx x x  be a time series of length N.   The mean, variance, and standard 

deviation are defined by 
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Figure 2.4.  Histogram of MEAF tree-ring index.  Data 
covers 350 years 1658-2007.  Smooth red line is theoretical 
pdf of normal distribution with same mean and standard 
deviation as the tree-ring index.  

 

The sample standard deviation and variance are sometimes written with 1N −  replacing N in 
the denominators of  (5) and (6) so that the sample statistics are unbiased estimators of the 
population parameters. 

 
 

Sample skewness 
The shape of a data distribution loosely refers to its symmetry in a histogram, or bar plot 

of number observations falling into various ranges of data values.  A statistic summarizing the 
shape in terms of symmetry of the histogram is the sample skewnesss.  Skewness is defined as the 
third central moment (the average cubed departure from the mean) divided by the cube of the 
standard deviation: 
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If 0g = , the distribution is symmetric around x .  If 0g > , the distribution has positive 
skew, or is skewed to the right.  If 0g < , the distribution has negative skew, or is skewed to the 
left.  An alternative description of skew is given by the relative positions of the mean and mode.  
The mode is the most common value, or the peak in the histogram.  Mean greater than mode is 
positive skew; mean less than mode is negative skew (Panofsky and Brier, 1968).   In general for 
positive skew, mean>median>mode.  The opposite is true for negative skew: 
mean<median<mode.  Figure 2.4 shows the histogram of a time series with slight positive skew.  

 
 
Location and spread 

 The location is the 
“center” of the data.  The data 
typically clusters around some 
point that defines this center.  
The mean and median are two 
commonly used measures of 
location.   The spread describes 
the variability of the data.  The 
standard deviation is one 
measure of the spread.  Another 
is the interquartile range, 
which is the difference between 
the 75th and 25th percentiles of 
the data.  The interquartile 
range is a robust measure of the 
spread because it is unaffected 
by changes in the upper and 

lower 25% of the data.  A measure of spread extremely sensitive to individual observations is the 
range – the difference between the highest and lowest value.  Measures of spread are illustrated 
in a time series plot of a tree-ring index (Figure 2.5).   
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Figure 2.5.  Measures of spread illustrated in time series plot of MEAF tree-ring index, 
1901-2007. Plotted series same as in Figure 2.1.  Range extends from highest to lowest 
value.  Interquartile range (iqr) covers the middle 50% of observations (all except the 
highest 25% and lowest 25%).  Standard deviation is computed from squared 
departures from mean; in this plot the purple band delineates observations within ±1 
standard deviation of the mean.  For a normal distribution, 68% of the observations 
would fall within ±1 standard deviation of the mean.  It is therefore expected that for 
normally distributed data the iqr would be narrower than the band marking ±1 
standard deviations from the mean. In that sense, the MEAF is consistent with a 
normally distributed time series. 
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2.3  Basic Plots 
This section introduces plots useful for an initial look at a time series and for analyzing 

location, spread and shape of the data distribution.  Some useful plots are listed in Table 2.1. 
 

 
Table 2.1 Basic plots useful for time series distribution assessment 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Time plot.   The series plot (Figure 2.1, 2.5) is the single most important plot in time series 
analysis.  Unlike the other plots described in this chapter, the time series plot retains the time-
sequence of observations, and so graphically shows such features as persistence, trend in mean 
and trend in variance.    

 
 
Quantile plot.   The f quantile is the data value below which approximately a decimal fraction 

f of the data is found.  That data value is denoted q(f).  Each data point can be assigned an f-value.  
Let a time series x of length n be sorted from smallest to largest values, such that the sorted values 
have rank 1, 2,...,i n= .  The f-value for each observation is computed as 

  

 0.5
i

if
n
−

=   

 
This equation gives the quantile for any observation.  For example, if the series has 99 

observations ( 99n = ), the smallest ranking data, with  1
1 0.5 0.0051

99
f −
= = , is the “0.0051 

quantile.”     The middle-ranking, or 50th ranking value ( 50i = ) has 50
50 0.5 49.5 0.50

99 99
f −

= = = , 

and is the 0.50 quantile. 
The 0.5 quantile is also called the median.   The 0.25 and 0.75 quantiles are called the lower 

and upper quartiles.  The interquartile range (Figure 2.5) is defined as the difference between the 
upper and lower quartiles: 

 (.75) (.25)r q q= −   
Half of the observations lie between the upper and lower quartiles. 

 
Name of plot 

 
Key Information 

Matlab 
Functions 

Time plot Sequence, persistence 
 

plot 

 Quantile plot Non-exceedance 
probability 
 

cdfplot 

Box plot Location, spread,  shape boxplot 
Quantile-quantile plot 
(q-q plot) 

Relative shape qqplot 

Normal probability plot Normality normplot 
Histogram  Shape   hist, histfit 
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Quantiles for f-values not corresponding exactly to an observation can be linearly interpolated 
from flanking quantiles that do correspond to observations.  Figure 2.6 shows a sample quantile 
plot, with interpolation of the 0.25 quantile.   Note that the quantile plot has exactly the same 
information as the cdf.  The only difference is that the probability axis for the quantile plot is the 
abscissa instead of the ordinate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
Box plot.   A box plot summarizes the data distribution primarily in terms of the median, the 

upper quartile, and lower quartile (Figure 2.7).  The “box” by definition extends from the upper to 
lower quartile.  Within the box is a dot or line marking the median. The width of the box, or the 
distance between the upper and lower quartiles, is equal to the interquartile range, and is a 
measure of spread.  The median is a measure of location, and the relative distances of the median 
from the upper and lower quartiles is a measure of symmetry “in the middle” of the distribution.  
For example, the median is approximately in the middle of the box for a symmetric distribution, 
and is positioned toward the lower part of the box for a positively skewed distribution.   

“Whiskers” are drawn outside the box at what are called the “adjacent values.”  The upper 
adjacent value is the largest observation that does not exceed the upper quartile plus1.5r , where 
r is the interquartile range.  The lower adjacent value is the smallest observation than is not less 
than the lower quartile minus1.5r .   If no data fall outside this 1.5r buffer around the box, the 
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Figure 2.6.  Quantile plot of a tree-ring index time series.  The quantile plot is an empirical 
distribution function (see Figure 2.3) with the x and y axes exchanged.  Accordingly, the 
quantile plot is also a plot of “non-exceedance probability”.  For these data, the probability is 
0.25 that the index is less than or equal to 0.62 (index “not exceeding” 0.62). Conversely, the 
probability is 0.75 that the index exceeds 0.62.  “S” shaped quantile plots, such as here, are 
characteristic of bell-shaped distributions, in which values tend to cluster toward a central 
value. 

 



Notes_2, GEOS 585A, Spring 2019 8 

whiskers mark the data extremes.  The whiskers also give information about symmetry in the tails 
of the distribution.  For example, if the distance from the top of the box to the upper whisker 
exceeds the distance from the bottom of the box to the lower whisker, the distribution is 
positively skewed in the tails.  Skewness in the tails may be different from skewness in the 
middle of the distribution.  For example, a distribution can be positively skewed in the middle and 
negatively skewed in the tails. 

Any points lying outside the 1.5r buffer around the box are marked by individual symbols as 
“outliers”.  These points are outliers in comparison to what is expected from a normal distribution 
with the same mean and variance as the data sample.  For a standard normal distribution, the 
median and mean are both zero, and: 

 .25 0.67449q = −  
 0.75 0.67449q =  
 .75 0.25 1.349r q q= − =  

Where .25q and .75q are the first and third quartiles, and r is the interquartile range.  From the 
preceding paragraph, we see that the whiskers for a standard normal distribution are at data 
values: 
 

Upper whisker = 2.698 
Lower whisker = -2.698 
 
And from the cdf of the standard normal distribution, we see that the probability of a lower 

value than 2.698x = − is  
 ( 2.698) 0.0035p X < − ≈  
 
This result shows that for a normal distribution, roughly 0.35 percent of the data is expected to 

fall below the lower whisker.  By symmetry, 0.35 percent of the data are expected above the 
upper whisker.   These data values are classified as outliers.  Exactly how many outliers might be 
expected in a sample of normally distributed data depends on the sample size.  For example, with 
a sample size of 100, we expect no outliers, as 0.35 percent of 100 is much less than 1.  With a 
sample size of 10,000, however, we would expect 35 positive outliers and 35 negative outliers for 
a normal distribution.  It is therefore not surprising to find some outliers in box plots of very large 
data sample, and the existence of a few outliers in samples much larger than 100 does not 
necessarily indicate lack of normality. 

A “notched” boxplot is an extension to the simple boxplot intended to show the uncertainty in 
the median by the width of a notch on the side of the box.  “Notched” boxplots plotted side by 
side can give some indication of the significance of differences in medians of two samples.  
Given a sample of data with N observations and interquartile range R , how wide should the 
notch in the box plot be for a) 95 percent confidence interval about the median, and b) visual 
assessment of whether two medians are statistically different at the 95 percent level?  The 
Gaussian-based asymptotic approximation of the standard deviation s of the median M is given 
by 

 1.25 /1.35s R N=   
 
This approximation “can be shown to be reasonably broadly applicable to other distributions.”  

The approximation holds especially if the middle of the distribution is shaped approximately like 
the Gaussian. 

Because 1.96 standard deviations encloses 95% of a normal distribution, a notch about the 
median for a 95 % confidence interval can be drawn at  

 1.96M s= ±   
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For a “gap gauge” which would indicate significant differences in medians at the 95% level, 
1.96 would generally be much too stringent.  A better choice is for the notch at 

 1.7M s= ±   
which is the width of notches drawn by Matlab. 

McGill et al. (1978) stress that there are no hard and fast rules for notch width for comparing 
medians of two groups.  The choice depends also on the standard deviations of the groups.  If the 
standard deviations are vastly different, 1.96M s= ±  is appropriate, while, while if the standard 
deviations are nearly equal, 1.3896M s= ± is appropriate.  McGill et al. (1978) selected 

1.7M s= ± as a compromise. 

 
 
 
Quantile-quantile plot (q-q plot).  The q-q plot compares the quantiles of two variables.  If 

the variables come from the same type of distribution (e.g., normal), the qq-plot is a straight line.   
This is true even if the parameters of the distributions (e.g., mean , variance) differ.  To help in 
evaluating the q-q plot, a straight line is usually drawn for reference on the plot.  In Matlab, this 
line is drawn through the 0.25 and 0.75 quantiles, and is extended.  A q-q plot of the second half 
(175 years) of the MEAF tree-ring index against the first half (Figure 2.8A) shows large departure 

 
Figure 2.7.  Boxplots and time series plot of tree-ring index for site MEAF.  (A) Boxplot 
for entire series.  (B) Notched boxplots for first and second halves of series.  (C) Time 
series plot of entire series.  Boxplot for entire series shows mild positive skew in middle of 
distribution (median toward lower half of box) and positive skew in tails.  Boxplots for 
halves emphasize the relative skewness of first half.  Notches that do not overlap indicate 
sub-period medians different at α=0.05. Greater skew in the first half is obvious from the 
time series plot, but the difference in medians is not noticeable.  In fact, median is 0.79 for 
first half and 0.96 for second half.   
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from the straight line toward the high-growth range of the data.  Specifically, the same quantile 
has a higher tree-ring index for the first half of the data than for the last half.  This departure 
reflects the difference in skew evident in the time series and box plots (Figure 2.7).  It is 
important, however to consider random sampling variability in the interpretation of q-q plots.  
The departures in plots in Figure 2.8 B-D are due to sampling variability, as all series were drawn 
from the normal distributions.    

 

 
 
Normal-probability plot.  In the normal probability plot, the quantiles of a normally 

distributed variable with the same mean and variance as the data are plotted against the quantiles 
of the data.  The y-axis is labeled with the f-values for the theoretical (normal) distribution rather 
than with the quantiles of the normal variate.    The interpretation is analogous to that for the q-q 
plot:  a straight line indicates the data come from a normal distribution. Curvature indicates 
departure from normality.   The straight line drawn for reference on the plot is again the line 

 
Figure 2.8.  Examples of quantile-quantile plots.  (A) First and last halves (175 years each) 
of MEAF tree-ring index (time series plot in Figure 2.7).  (B-D) pairs of 175-year samples 
from random normal distribution.    The random series for the ordinate (v2, v3, v4) were 
drawn from a random normal distribution with mean and standard deviation the same as 
that of the 1658-1832 tree-ring index. The random series for the abscissa (u2, u2, u4) were 
drawn from a random normal distribution with mean ½ that of the 1658-1832 tree-ring 
index and standard deviation twice that of the 1658-1832 tree-ring index.  Differences in 
mean and variance (or standard deviation) do not affect the q-q plot:  if two series come 
from the same form of distribution (e.g., normal), the q-q plot should fall along a straight 
line regardless of differences in the mean and variance. 
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connecting the 0.25 and 0.75 quantiles of the data.  Normal-probability plots highlight the 
positive skewness in the first half of the MEAF tree-ring series (Figure 2.9). 

 

 
 
 
Histogram with superposed normal PDF.  The histogram is a bar chart of frequency or 

number of observations in various data ranges.  A bell-shaped histogram is indicative of normally 
distributed data.  Visual interpretation of the histogram is aided by overplotting a properly scaled 
theoretical probability distribution for normal distribution with the same mean and variance as the 
sample series.   Such plots for the full-length MEAF tree-ring index clearly emphasize the 
positive skew of the data relative to normally distributed data (Figure 2.4).   

 
 

2.4 Lilliefors Test for Normality 
The Lilliefors test evaluates the hypothesis that the sample comes from a normal distribution 

with unspecified mean and variance against the alternative hypothesis that the sample does not 
come from a normal distribution.  The main difference from the well-known Kolmogorov-
Smirnov test (K-S test) is in the assumption about the mean and standard deviation of the normal 
distribution.  The K-S test assumes the mean and standard deviation of the population normal 
distribution are known; the Lilliefors test does not make this assumption.  In the analysis of 
empirical data, more often than not the mean and variance of the population normal distribution 
are unknown, and must be estimated from the data.  Hence the Lilliefors test is generally more 
relevant than the K-S test.   

The Lilliefors test statistic is computed from the maximum vertical offset of the empirical 
cdf’s of (1) the sample, after conversion to Z-scores, and (2) the standard normal distribution.  A 
sample is converted to Z-scores by subtracting the sample mean and dividing by the sample 
standard deviation, such that the mean of the Z-score series is 0 and the standard deviation is 1.0.  

 
Figure 2.9.  Normal probability plots for first and last halves of MEAF tree-ring index. If 
normally distributed, the sample should plot along the straight dashed line. At lower end of 
distribution (low-growth), both series are “pulled in” toward the center relative to a normally 
distributed series with the same mean and variance as the sample. The normal distribution 
would therefore have a longer tail on the left side than the sample.  At the higher end of the 
distribution (high growth), the data for 1658-1832 is stretched out relative to the normal 
distribution, reflecting the high values and skew noted previously in the first half of the series 
(see Figure 2.7).  The 1833-2007 segment, in contrasts, conforms well to a normal distribution 
over the high range. 
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The empirical cdf of this Z-score series is computed.  Similarly, the cdf of the standard normal 
distribution is obtained at the same probability points.  The maximum difference of the two cdf’s 
at any point is then computed.  Superimposing plots of the two cdf’s immediately reveals where 
the cdf’s differ most, and this is the point yielding the Lilliefors statistic.   

The Kolmogorov-Smirnov test is identical to the Lilliefors test except that no conversion to Z-
scores is made in the K-S test.  The Lilliefors test, first presented by Lilliefors (1967), is therefore 
a modification of the K-S test.  To apply the Lilliefors test, you must not just compute the 
statistic, but test its significance.  Exact tables of the quantiles of the test statistic are available; 
these tables have been computed from random numbers in computer simulations and are stored 
for reference in Matlab.  When you call a function in Matlab to test for normality, the computed 
value of the Lilliefors test statistic is compared with the internally stored quantiles of the statistic.   
The following description of the Lilliefors test is from Conover (1980, p. 357).  

 
DATA. Consider a random sample 

1 , 2 nx x x of size n, which might be an observed time 

series. Denote the distribution function of the random variable by ( )F x .  Compute the sample 
mean, x and sample standard deviation, s , and convert the sample to Z-scores: 

 1,2, ,i
i

x xZ i n
s
−

= =   (1) 

ASSUMPTION: The sample is a random sample.   For natural time series, we of course have 
just the observed sample, and often do not have the luxury of repeating the experiment and 
drawing repeated samples (running climate history over and over again?).  At any rate, we 
assume the observed series is a random sample.  One complication to keep in mind is that with 
autocorrelated time series (a later topic) the observations are not independent of one another, such 
that a time series of length n might actually represent fewer than n independent observations.   

 
HYPOTHESES:  

0 :H   ix comes from a normal distribution with unspecified mean and variance 

1 :H   ix does not come from a normal distribution 
 
TEST STATISTIC: The test statistic is the maximum vertical distance between the empirical 

distribution function of the Z-score series in equation (1) and the distribution function of the 
standard normal distribution.  Plot the cdf of the standard normal distribution and call it ( )*F x .  
Superimpose a plot of the empirical cdf of the Z-scores, and call it ( )S x .  The test statistic is the 
maximum vertical distance between the two plots, or  

 ( ) ( )*
1 supT F x S x= −  (2) 

DECISION RULE: reject 0H at the significance level α if 1T exceeds the 1 α− quantile in a 
table of quantiles of the Lilliefors test statistic for normality (e.g., p. 464, in Conover (1980)).   

 
EXAMPLE:  Lilliefors test applied to the 1658-1832 portion of the MEAF tree-ring series 

shows a maximum departure in cdf’s at a standardized value of about -0.167 in the tree-ring 
series (Figure 2.10).  From the plot alone, one cannot say whether this departure is significant.  
Reference must be made to a table based on Monte Carlo simulations.  That table indicates the 
departure is significant (α<0.05), and that the null hypothesis of normality must be rejected.  That 
conclusion is consistent with other graphical evaluations discussed previously.   
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2.5 Matlab 
 
The Matlab Statistics Toolbox has functions for statistics and plots used in this chapter.  The 

function are defined and described in the Matlab help. 
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Figure 2.10.  Graphical summary of the Lilliefors statistic applied to test for normality of a tree-
ring index.  Test series is the 1658-1832 portion of MEAF tree-ring series.   (Top) Empirical cdf’s 
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Lilliefors statistic.  For these data, the Lilliefors statistic is large enough to be significant (α<.05) 
such that the hypothesis of normality is rejected. 
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