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3 Autocorrelation  
 
Autocorrelation refers to the correlation of a time series with its own past and future values.  

Autocorrelation is also sometimes called “lagged correlation” or “serial correlation”, which 
refers to the correlation between members of a series of numbers arranged in time.  Positive 
autocorrelation is a specific form of “persistence”, a tendency for a system to remain in the same 
state from one observation to the next.   For example, it more likely to rain today if it rained 
yesterday than if it did not rain yesterday. Geophysical time series are frequently autocorrelated 
because of inertia or carryover processes in the physical system. The slow movement of large-
scale low pressure systems across the earth might impart persistence to daily rainfall at some 
specific location because that location is influenced by the low for several days.  The slow 
drainage of groundwater might impart persistence to successive annual flows of a river.  Use of 
stored photosynthates might impart persistence to annual values of tree-ring indices.  
Autocorrelation can complicate the application of statistical tests by reducing the number of 
independent observations.  Autocorrelation can also complicate the identification of significant 
covariance or correlation between time series (e.g., precipitation with a tree-ring series).  
Autocorrelation can be exploited for predictions: an autocorrelated time series is predictable, 
probabilistically, because future values depend on current and past values.  Three tools for 
assessing the autocorrelation of a time series are (1) the time series plot, (2) the lagged scatterplot, 
and (3) the autocorrelation function. 

 

3.1 Time series plot 
Positively autocorrelated series are sometimes called persistent because positive departures 

from the mean tend to be followed by positive departures from the mean, and negative departures 
from the mean tend to be followed by negative departures (Figure 3.1).  In contrast, negative 
autocorrelation is characterized by a tendency for positive departures to follow negative 
departures, and vice versa.  Positive autocorrelation might show up in a time series plot as 
unusually long runs, or stretches, of several consecutive observations above or below the mean.   
Negative autocorrelation might show up as an unusually low incidence of such runs.  Because the 
“departures” for computing autocorrelation are relative the mean, a horizontal line plotted at the 
sample mean is useful in evaluating autocorrelation with the time series plot.  

Visual assessment of autocorrelation from the time series plot is subjective and depends 
considerably on experience.  Statistical tests based on the observed number of runs above and 
below the mean are available (e.g., Draper and Smith 1981), though none are covered in this 
course.  It is a good idea, however, to look at the time series plot as a first step in analysis of 
persistence.  If nothing else, this inspection might show that the persistence is much more 
prevalent in some parts of the series than in others. 

  
 

3.2 Lagged scatterplot 
The simplest graphical summary of autocorrelation in a time series is the lagged scatterplot, 

which is a scatterplot of the time series against itself offset in time by one to several time steps 
(Figure 3.2).  Let the time series of length N be , 1,...,ix i N= .   The lagged scatterplot for lag k 
is a scatterplot of the last N k− observations against the first N k− observations.  For example, 
for lag-1, observations 2 3,, , Nx x x are plotted against observations 1 2, 1, , Nx x x − . 
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 A random scattering of points in the lagged scatterplot indicates a lack of autocorrelation.  
Such a series is also sometimes called “random”, meaning that the value at time t is independent 
of the value at other times.   Alignment from lower left to upper right in the lagged scatterplot 
indicates positive autocorrelation.  Alignment from upper left to lower right indicates negative 
autocorrelation.   

 
 
 

 
Figure 3.1.  Time series plot illustrating signatures of persistence.  Tendency for highs 
to follow highs or lows to follow lows (circled segments) characterize series with 
persistence, or positive autocorrelation.   
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Figure 3.2.  Lagged scatterplots of tree-ring series MEAF.  These are scatterplots of the 
series in Figure 3.1 with itself offset by 1, 2, 3 and 4 years.  Annotated above a plot is the 
correlation coefficient, the sample size, and the threshold level of correlation needed to 
reject the null hypothesis of zero population correlation with 95 percent significance 
(α=0.05).  The threshold is exceeded at lags 1, 2, and 4, but not at lag 3.  At an offset of 3 
years, the juxtaposition of high-growth 1999 with low-growth 2002 exerts high influence 
(point in red rectangle). 
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An attribute of the lagged scatterplot is that it can display autocorrelation regardless of the 
form of the dependence on past values.  An assumption of linear dependence is not necessary.  
An organized curvature in the pattern of dots might suggest nonlinear dependence between time-
separated values.  Such nonlinear dependence might not be effectively summarized by other 
methods (e.g., the autocorrelation function [acf], which is described later).  Another attribute is 
that the lagged scatterplot can show if the autocorrelation is characteristic of the bulk of the data 
or is driven by one or a few outliers.  The scatterplot in Figure 3.2 for lag-3 (lower left plot), for 
example, has a distinct lower-left to upper-right slant supporting positive lag-3 autocorrelation, 
but an outlier (highlighted) probably keeps the lag-3 autocorrelation from reaching statistical 
significance. Influence of outliers would not be detectable from the acf alone.   

Fitted line.  A straight line can be fit to the points in a lagged scatterplot to facilitate 
evaluation linearity and strength of relationship of current with past values.  A series of lagged 
scatterplots at increasing lags (e.g., 1,2, 8k =  ) helps in assessing whether dependence is 
restricted to one or more lags.      

Correlation coefficient and 95% significance level.  The correlation coefficient for the 
scatterplot summarizes the strength of the linear relationship between present and past values.  It 
is helpful to compare the computed correlation coefficient with critical level of correlation 
required to reject the null hypothesis that the sample comes from a population with zero 
correlation at the indicated lag.  If a time series is completely random, and the sample size is 
large, the lagged-correlation coefficient is approximately normally distributed with mean 0 and 
variance 1/N (Chatfield 2004).  It follows that the approximate threshold, or critical, level of 
correlation for 95% significance ( 0.05)α =  is .95 0 2 /r N= ± , where N is the sample size.  
Accordingly, the required level of correlation for “significance” becomes very small at large 
sample size (Figure 3.3).  

 

3.3 Autocorrelation function 
(correlogram) 

An important guide to the persistence in 
a time series is given by the series of 
quantities called the sample autocorrelation 
coefficients, which measure the correlation 
between observations at different times.  
The set of autocorrelation coefficients 
arranged as a function of separation in time 
is the sample autocorrelation function, or the 
acf.  An analogy can be drawn between the 
autocorrelation coefficient and the product-
moment correlation coefficient.  Assume N 
pairs of observations on two variables x and 
y.  The correlation coefficient between x and 
y is given by 
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Figure 3.3.  Critical level of correlation 
coefficient (95 percent significance) as a function 
of sample size.  The critical level drops from 
r=0.20 for a sample size of 100 to r=0.02 for a 
sample size of 10,000.  
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where the summations are over the N observations.  
A similar idea can be applied to time series for which successive observations are correlated.  

Instead of two different time series, the correlation is computed between one time series and the 
same series lagged by one or more time units.  For the first-order autocorrelation, the lag is one 
time unit.  The first-order autocorrelation coefficient is the simple correlation coefficient of the 
first 1N − observations, , 1,2,..., 1tx t N= −  and the next 1N − observations, , 2,3,...,tx t N= .  
The correlation between tx and 1tx + is given by  
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where (1)x is the mean of the first 1N − observations and (2)x is the mean of the last 
1N − observations.  As the correlation coefficient given by (2) measures correlation between 

successive observations, it is called the autocorrelation coefficient or serial correlation 
coefficient.  

For N reasonably large, the denominator in equation (2) can be simplified by approximation.  
First, the difference between the sub-period means (1)x and (2)x can be ignored.  Second, the 
difference between summations over observations 1 to N-1 and 2 to N can be ignored.  
Accordingly, 1r can be approximated by 
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Equation (3) can be generalized to give the correlation between observations separated by k 

time steps:  
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 The quantity kr is called the autocorrelation coefficient at lag k.   The plot of the 

autocorrelation function as a function of lag is also called the correlogram.  
 
Link between acf and lagged scatterplot.   The correlation coefficients for the lagged 

scatterplots in Figure 3.2 have the same meaning as acf at various lags in Figure 3.4. Small 
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differences in computed values may show up because means and summations are not over exactly 
the same time intervals. This can be seen for lag k=1 by comparing equations (2) and (4).  

 
Link between acf and autocovariance function (acvf).  Recall that the variance is the average 

squared departure from the mean.  By analogy the autocovariance of a time series is defined as 
the average product of departures at times t and t+k  
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where kc is the autocovariance coefficient at lag k.  The autocovariance at lag zero, 0c , is the 
variance.  By combining equations (4) and (5), the autocorrelation at lag k can be written in terms 
of the autocovariance:  

 0k kr c c=  (6) 
 
Alternative equation for autocovariance function.  Equation (5) is a biased (though 

asymptotically unbiased) estimator of the population covariance.  The acvf is sometimes 
computed with the alternative equation  
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The acvf by (7) has a lower bias than the acvf by (5), but is conjectured to have a higher mean 
square error (Jenkins and Watts 1968, chapter 5).    

3.4 Testing for randomness with the correlogram 
 The first question that can be answered with the correlogram is whether the series is 

random or not.  For a random series, lagged values of the series are uncorrelated and we expect 
that 0kr ≅ .  It can be shown that if 1...., Nx x  are independent and identically distributed random 
variables with arbitrary mean, the expected value of kr is  

 ( ) 1kE r N= −  (8) 
the variance of kr is  

 Var( ) 1/kr N  (9) 
and kr is asymptotically normally distributed under the assumption of weak stationarity.  The 95% 
confidence limits for the correlogram is therefore 1/ 2N N− ± , and is often further 
approximated to 0 2 N± .  Thus, for example, if a series has length 100, the approximate 95% 
confidence limit is 2 100 0.20± = ± .  Any given kr has a 5% chance of being outside the 95% 
confidence limits, so that one value outside the limits might be expected in a correlogram plotted 
out to lag 20 even if the time series is drawn from a random (not autocorrelated) population. 

 Factors that must be considered in judging whether a sample autocorrelation outside the 
confidence limits indicates an autocorrelated process or population are (1) how many lags are 
examined, (2) the magnitude of kr , and (3) at what lag k  the large coefficient occurs. First, if a 
sample acf is plotted out to a large k, the likelihood increases that some large kr will occur by 
chance alone. Second, a very large kr far outside a specified confidence interval is less likely to 
occur by chance than a small kr barely outside the confidence interval.  Third, for most physical 
systems, a large kr at a low lag (e.g., 1k = ) is more likely “real,” or reflecting a physical lag in 
response, than an isolated large kr  at some higher lag. 
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3.5 Large-lag standard error 
While the confidence bands described above are horizontal lines above and below zero on the 

correlogram, the confidence bands you see in the assignment script may appear to be narrowest at 
lag 1 and to widen slightly at higher lags.  That is because the confidence bands produced by the 
script are the so-called “large-lag” standard errors of kr (Anderson 1976, p. 8).  Successive values 
of kr can be highly correlated, so that an individual kr might be large simply because the value at 
the next lower lag, 1kr − , is large.  This interdependence makes it difficult to assess just at how 
many lags the correlogram is significant.  The large-lag standard error adjusts for the 
interdependence.  The variance of kr , with the adjustment, is given by  

 2
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k i
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where K k< . The square root of the variance quantity given by (10) is called the large-lag 
standard error of kr (Anderson 1976, p. 8).   Comparison of (10) with (9) shows that the 
adjustment is due to the summation term, and that the variance of the autocorrelation coefficient 
at any given lag depends on the sample size as well as on the estimated autocorrelation 
coefficients at shorter lags.  For example, the variance of the lag-3 autocorrelation coefficient, 

( )3Var r , is greater than 1/ N by an amount that depends on the autocorrelation coefficients at 
lags 1 and 2.  Likewise, the variance of the lag-10 autocorrelation coefficient, ( )10Var r , depends 
on the autocorrelation coefficients at lags 1-9.   Assessment of the significance of lag-k 
autocorrelation by the large-lag standard error essentially assumes that the theoretical 
autocorrelation has “died out” by lag k, but does not assume that the lower-lag theoretical 
autocorrelations are zero (Box and Jenkins 1976, p. 35). Thus the null hypothesis is NOT that the 
series is random, as lower-lag autocorrelations in the generating process may be non-zero.   
 An example for a tree-ring index time series illustrates the slight difference between the 
confidence interval computed from the large-lag standard error and computed by the rough 
approximation 2 N± , where N is the sample size (Figure 3.4).  The alternative confidence 
intervals differ because the null hypotheses differ.  Thus, the autocorrelation at lag 5, say, is 
judged significant under the null hypothesis that the series is random, but is not judged significant 
if the theoretical autocorrelation function is considered to not have died out until lag 5.  
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3.6 Hypothesis test on r1 

The first-order autocorrelation coefficient is especially important because for physical systems 
dependence on past values is likely to be strongest for the most recent past.  The first-order 
autocorrelation coefficient, 1r , can be tested against the null hypothesis that the corresponding 
population value 1 0ρ = .  The critical value of 1r  for a given significance level (e.g., 95%) 
depends on whether the test is one-tailed or two-tailed.   For the one-tailed hypothesis, the 
alternative hypothesis is usually that the true first-order autocorrelation is greater than zero: 

 1H : 0ρ >  (11) 
For the two-tailed test, the alternative hypothesis is that the true first-order autocorrelation is 

different from zero, with no specification of whether it is positive or negative: 
  1H : 0ρ ≠  (12) 
Which alternative hypothesis to use depends on the problem.  If there is some reason to expect 

positive autocorrelation (e.g., with tree rings, from carryover food storage in trees), the one-sided 
test is best.  Otherwise, the two-sided test is best. 

For the one-sided test, the World Meteorological Organization recommends that the 95% 
significance level for 1r be computed by 

 1,.95
1 1.645 2

1
Nr

N
− + −

=
−

 (13) 

where N is the sample size.   
More generally, following Salas et al. (1980), who refer to Andersen (1941), the probability 

limits on the correlogram of an independent series are 
 

 
Figure 3.4.  Sample autocorrelation with 95% confidence 
intervals for MEAF tree-ring index, 1900-2007.  Dotted line is 
simple approximate confidence interval at ± 2 / N , where N is 
the sample size.  Dashed line is large-lag standard error.  

 



Notes_3, GEOS 585A, Spring 2019 
 

9 

 

k

1 1.645 1(95%)   one sided

1 1.96 1r (95%)   two sided

k
N kr

N k

N k
N k

− + − −
=

−

− ± − −
=

−

 (14) 

 
 

where N is the sample size and k is the lag.  Equation (13) comes from substitution of k=1 into 
equation (14) for one-sided .kr   

3.7 Effective Sample Size 
If a time series of length N is autocorrelated, the number of independent observations is fewer 

than N .  Essentially, the series is not random in time, and the information in each observation is 
not totally separate from the information in other observations.  The reduction in number of 
independent observations has implications for hypothesis testing.  

Some standard statistical tests that depend on the assumption of random samples can still be 
applied to a time series despite the autocorrelation in the series.  The way of circumventing the 
problem of autocorrelation is to adjust the sample size for autocorrelation.  The number of 
independent samples after adjustment is fewer than the number of observations of the series.  
Below is an equation for computing so-called “effective” sample size, or sample size adjusted for 
autocorrelation.  More on the adjustment can be found elsewhere (WMO 1966; Dawdy and 
Matalas 1964).  The equation was derived based on the assumption that the autocorrelation in the 
series represents first-order autocorrelation (dependence on lag-1 only).  In other words, the 
governing process is first-order autoregressive, or Markov.  Computation of the effective sample 
size requires only the sample size and first-order sample autocorrelation coefficient.   The 
“effective” sample size is given by: 

 

 
( )
( )

1

1

1
'

1
r

N N
r

−
=

+
 (15) 

where N is the sample size, N’ is the effective samples size, and 1r is the first-order 
autocorrelation coefficient.  The ratio ( ) ( )1 11 1r r− + is a scaling factor multiplied by the original 
sample size to compute the effective sample size.   For example, an annual series with a sample 
size of 100 years and a first-order autocorrelation of 0.50 has an adjusted sample size of  
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The adjustment to effective sample size becomes less important the lower the autocorrelation, 
but a first-order autocorrelation coefficient as small as r1=0.10 results in a scaling to about 80 
percent of the original sample size (Figure 3.5). 
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Figure 3.5.  Scaling factor for computing effective 
sample size from original sample size for 
autocorrelated time series.  For a given first-order 
autocorrelation, the scaling factor is multiplied by the 
original time series.  
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