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10. Lagged Correlation 
Lagged relationships are characteristic of many natural physical systems. Lagged 

correlation refers to the correlation between time series shifted in time relative to one another. 
Lagged correlation is important in studying the relationship between time series for two reasons. 
First, one series may have a delayed response to the other series, or perhaps a delayed response to 
a common stimulus that affects both series. Second, the response of one series to the other series 
or an outside stimulus may be “smeared” in time, such that a stimulus restricted to one 
observation elicits a response at multiple observations. For example, because of storage in 
reservoirs, glaciers, etc., the volume discharge of a river in one year may depend on precipitation 
in the several preceding years. Or because of changes in crown density and photosynthate storage, 
the width of a tree-ring in one year may depend on climate of several preceding years. The simple 
correlation coefficient between the two series properly aligned in time is inadequate to 
characterize the relationship in such situations. Useful functions we will examine as alternative to 
the simple correlation coefficient are the cross-correlation function and the impulse response 
function. The cross-correlation function is the correlation between the series shifted against one 
another as a function of number of observations of the offset. If the individual series are 
autocorrelated, the estimated cross-correlation function may be distorted and misleading as a 
measure of the lagged relationship. We will look at two approaches to clarifying the pattern of 
cross-correlations. One is to remove the persistence from, or prewhiten, the two series before 
cross-correlation estimation. In this approach, the two series are essentially regarded on an “equal 
footing.” An alternative is the “systems” approach, in which one series is viewed as input to and 
the other series as output from a dynamic linear system. The lagged response is estimated through 
the “impulse response function,” which is the response of the output at current and future times to 
a hypothetical “pulse” of input restricted to the current time. Estimation of the impulse response 
function involves application of the same filter to the input and output series, followed by cross-
correlation of the filtered series. The filter is designed such that it whitens the input series.   

 

10.1 Cross-Correlation Function 
 
The cross-correlation function (ccf) of time series is the product-moment correlation as a 

function of lag, or time-offset, between the series. It is helpful to begin defining the ccf with a 
definition of the cross-covariance function (ccvf). Consider N pairs of observations on two time 
series,  and t tu y . Following Chatfield (2004, p. 158), the sample ccvf is given by  
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where N is the series length, u and y are the sample means, and k is the lag. The sample cross-
correlation function (ccf) is the ccvf scaled by the variances of the two series:  
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Where ( )0uuc  and (0)yyc  are the sample variances of 

tu and ty .    
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In a previous chapter we studied the autocovariance function (acvf) and autocorrelation function 
(acf), and learned that these are symmetrical functions (value at lag k equals value at lag k− ). In 
contrast, the ccvf and ccf are asymmetrical functions. The asymmetry brings about the need for 
the two parts of equation (1). The cross-correlation function as described by equation (1) can be 
described in terms of “lead” and “lag” relationships.  The first part of the equation applies to 

ty shifted forward relative to tu .  With this direction of shift, tu  is said to “lead” ty .  This is 
equivalent to saying that ty  “lags” tu .  The second part of equation (1) describes the reverse 
situation, and summarizes lagged correlations when ty  “leads” tu  ( tu  “lags” ty ).    

Consider the two time series of annual tree-ring index plotted in Figure 1.  The plots 
suggest the series are positively correlated, but the year-to-year variations are too noisy to 
visually judge whether one series tends to lead or lag the other. Both series, however, appear to be 
positively autocorrelated, as positive departures from the mean tend to follow positive departures, 
and negative departures tend to follow negative departures. 

 
 
The autocovariance functions (acvf’s) of the two series and the cross-correlation function (ccf) 
between them are plotted in Figure 2. The acvf is just the autocorrelation function (acf) multiplied 
by the variance, and so the acvf and acf have exactly the same shape but different scaling. The 
acvf is symmetric, as evidenced by acvf (k) equaling acvf (-k). The plotted acvf’s in Figure 2 are 
consistent with positive autocorrelation in both series, as positive acvf at some lag k would re-
scale to positive autocorrelation, but the statistical significance cannot be judged from these plots. 
The autocovariance at lag 0k = is identically the variance, such that we can see from the top plots 
in Figure 2 alone that the variance of u is slightly greater than the variance of y.  

The ccf as plotted indicates that tu  and ty  are significantly positively correlated at 
lag 0k = . The horizontal dashed line in Figure 2 marks the upper 99% confidence level for 
significance of the ccf. This confidence interval relies on several simplifying assumptions and can 
be computed from the sample size alone. For a two-tailed test, the approximate 99% confidence 
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Figure 1.  Time series plots of standard tree-ring index at two California sites for the period 

1891-1990. Species are western juniper (KAIS = Kaiser Pass) and foxtail pine (KERN – Kern 
Composite). The series represent annual variations in tree growth as reflected by width of the 
annual rings. Both sites are in the southern part of the Sierra Nevada range.  
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interval ( )0.01α = is 0 2.58 N± , where N is the sample size. The value 2.58 is the 0.995 
probability-point of the cdf of the normal distribution. This confidence interval relies on 
assumptions that 1) the processes generating tu and tv are uncorrelated, 2) the processes are not 
autocorrelated, 3) the populations are normally distributed, and 4) the sample size is large. Under 
those assumptions, the sample cross-correlations are ~ N(0,1/ )N , or normally distributed with 
mean zero and variance1 / N . A ccf estimate outside the confidence interval is deemed 
“significant” in that the null hypothesis that the true ccf at that lag is zero must be rejected against 
the alternative hypothesis that the true ccf is non-zero.   

The 99% confidence level for the ccf plotted in Figure 2 is a horizontal line and easy to 
calculate, but that simple interval relies on the stated assumptions. The first assumption, that the 
processes generating tu and tv are uncorrelated, is central to the null hypothesis, but the 
assumptions on normality and absence of autocorrelation are problematic. Geophysical time 
series often come from dynamic systems, which tend to impart autocorrelation. Moreover, the 
time series themselves may not be normally distributed, such that the sample autocorrelations 
may not be assumed to come from a normal distribution. Angell (1981) circumvents these two 
problems by computed an effective sample size, adjusted downward depending on the sample 
autocorrelations of tu and tv , and applying a Fisher’s Z transform (Panofsky 1958) to the sample 
cross-correlations before testing their significance with a normal distribution.  The equation for 
the effective sample size, derived by simplifying Bartlett’s equation (Box and Jenkins 1976), is 
attributed by Angell (1981) to Quenouille (1952), and is as follows: 

   
 ( )1, 1, 2, 2, , ,' / 1 2 2 2u v u v K u K vN N r r r r r r= + + + + ,  (3) 

where , , and i u i vr r  are the autocorrelations of time series tu and tv at lag i, N is the length of the 
time series, and K is the maximum lag of autocorrelation used in the adjustment. In his example, 
Angell (1981) sets K to the highest lag for which the product of sample autocorrelations is non-
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Figure 2.  Sample autocovariance and cross-correlation functions for time series plotted in 
Figure 1. Autocorrelation at lag k can be computed by dividing the acvf (k) by acvf (0). For 
example, the autocorrelation coefficient at lag 1 for series u is about 0.3/0/5 =0.6. Horizontal red 
dashed line in ccf plot is a 99% confidence interval. 
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negligible. Another reasonable approach might be to set K to the highest lag before the 
autocorrelation of either tu or tv becomes non-positive.  
 Angell (1981) then computes the sample cross-correlations ( ),u vr k , applies the Fisher Z-
transform 

 ( ) ( )( ) ( )( ), ,
1 ln 1 ln 1 ,
2 u v u vz k r k r k = + − +    (4) 

and tests the significance of z by referring to a normal distribution with mean 0 and variance 

 2 1
' 4z N

σ =
−

  (5) 

Non-normality can alternatively be handled by transformation of the series to normality, 
followed by application of techniques suited for normally distributed variables. Violations of 
normality, and of other assumptions, can also be dealt with by Monte Carlo techniques, which do 
not rely on an assumed theoretical distribution of the lagged correlations. A Monte Carlo 
approach would consist of generating many (e.g., 10,000) simulated time series of tu with the 
same distribution and autocorrelation properties as the observed tu , and using the cdf of lagged 
correlations of  tv with those simulated series to place empirical confidence intervals on the 
lagged correlations of observed  tu and tv . For more information on Monte Carlo methods, which 
are not addressed in this chapter, the reader is referred elsewhere (e.g., Martinez and Martinez 
2002, p 191; Salas et al. 1980, p 97; Haan 202, p. 331).   

The significant cross-correlations in Figure 2 extend over several lags, such that tu  is 
significantly correlated with ty  shifted several lags forward and backwards.  If the ccf in Figure 2 
were significant at only zero and positive lags, it could be said that ty  tended to “lag” tu . Such a 
pattern with input tu  and output ty  would be consistent with a “causal” system. The plotted ccf 
in Figure 2 is significant different from zero at negative as well as non-negative lags, and 
consequently is not consistent with a causal system. This is not surprising for these data, which 
are two tree-ring series with no physically causal relationship to imply that variations in one 
series should in any sense “drive” variations in the other.  

The ccf at a particular lag can be regarded as a correlation coefficient between two time 
series, one of which just happens to be shifted some number of time units. Just as the bivariate 
relationship for any two variables can be examined with a scatterplot, the bivariate relationship 
posed by the ccf can be examined with lagged scatterplots. Such plots might indicate oddities in 
the data – for example, that the ccf at a particular lag is driven by one or two outlier values of the 
time series. Lagged scatterplots for the two time series used as an example above are plotted in 
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Figure 3.  The plots show ( )ty  in year t  plotted against ( )tu  in years , 1, 2, and 3t t t t− − − .   

 
Like the ccf, the scatterplots show the strongest relationship at lag 0.  Correlation at lag 0 
(r=0.57) is by definition the value of the cross-correlation function at lag 0 (compare correlation 
coefficient for lag 0 in Figure 3 with lag-0 cross-correlation in Figure 2). The computed 
correlation coefficients ( )r  in Figure 3 can be compared with the threshold correlation required 
for significance at the 99% confidence level, .99r . The scatterplots indicate significant correlations 
at lags 0, 1, 2k = − − , which is consistent with the ccf plot in Figure 2. An exact match of lags with 
significant correlation will not generally be found in comparing the lagged scatterplots with the 
ccf plot because the significance thresholds in the scatterplots have been adjusted for 
autocorrelation in the individual series (see previous lecture). For example, the 99% confidence 
level is at ( ), 0.26u yr k =  in the ccf (Figure 2), and at .99 0.30r =  in the scatterplots of Figure 3  
 

10.2 Prewhitening to clarify lagged relationships  
As already mentioned, lagged correlations between time series can be misleading as 

evidence of lagged relationships and dependence, especially if the individual time series are 
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Figure 3.  Lagged scatterplots of KERN tree-ring index on KAIS tree-ring index, 1891-1990. 
Annotated at the top of the axes are the correlations ( )r , sample size ( )N , effective sample size 

( )'N and the level of correlation required for significance at 0.01α = for a two-tailed test with 

null hypothesis of zero correlation. This critical level of correlation, denoted 99r  for “99 percent 
significance level”, follows Haan (2002). The effective sample size is sample size adjusted for 
autocorrelation (Dawdy and Matalas 1964).   
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autocorrelated. Jenkins and Watts (1968) suggest that to clarify lagged relationships the 
individual series both be prewhitened before estimating the ccf. In contrast to the systems 
approach described later, this approach to lagged relationships treats time series on an “equal 
footing” (Chatfield 2004, p. 155). The systems approach, on the other hand, treats one series as an 
input to a hypothetical system and the other series as an output.  
 Prewhitening in the context of estimation of the ccf is intended to deal with the 
complicating effects of autocorrelation on the estimated ccf and its standard deviations.    
Referring to the estimators of the ccvf and ccf ( ( ) and ( )uy uyc k r k ), Chatfield (2004, p. 158) says: 

 
It can be shown that these estimators are asymptotically unbiased and consistent. However it can 
also be shown that estimators at neighbouring lags are themselves autocorrelated. Furthermore, it 
can be shown that the variances of sample cross-correlations depend on the autocorrelation 
functions of the two components. In general, the variances will be inflated. Thus even for 
moderately large values of N up to about 200, or even higher, it is possible for two series, which 
are actually unrelated, to give rise to apparently ‘large’ cross-correlation coefficients which are 
spurious, in that they arise solely from autocorrelations within the two series. Thus, if a test is 
required for non-zero correlation between two time series, then (at least) one of the series should 
first be filtered to convert it to (approximate) white noise. 
 

Chatfield goes on to suggest the systems approach, in which one time series, regarded as 
“input,” is prewhitened by a time series model. The other series is filtered by the same model, and 
correlations between the prewhitened input and filtered output are plotted and examined. He also 
mentions the alternative approach of prewhitening both time series by fitting them individually to 
time series models, and then examining the cross-correlations between the prewhitened series. 
This latter approach is suggested by Jenkins and Watts (1968) and Brockwell and Davis (2002), 
and consists of a non-systems, or “equal-footing” approach.  

10.3 “Equal-Footing” Approach 
 
As in section 10.1, we consider two time series, tu and ty . Each series is individually fit 

to a high-order autoregressive model (say, AR(10)), and each is then prewhitened by its 
respective model to generate the two prewhitened series tα and tβ .  The ccf is computed for 
these prewhitened series.  Because neither series is autocorrelated after prewhitening, we can 
apply the conventional non-adjusted confidence interval estimation for a correlation coefficient to 
test the significance of the ccf at various lags. The approximate variance of the cross-correlations 
is1/ N , where N is the number of observations.  An approximate 95% confidence interval for the 
ccf is therefore 0 1.96 / N±  , and an approximate 99% interval is 0 2.58 / N± .  

For the tree-ring example discussed previously, the ccf of the prewhitened series 
indicates that the series are significantly correlated at lag zero only (Figure 4).  This result is quite 
different from the ccf on the original series (Figure 2), and suggests no lag in the relationship 
between the two tree-ring series. The significant ccf values at non-zero lags in Figure 2 might 
therefore be considered artifacts resulting from autocorrelation in the individual series 

10.4 Systems Approach -- Impulse Response Function (IRF) 
As discussed above, autocorrelation in the individual time series makes direct use of the ccf to 

study lagged relationships problematic. Essentially, the questions asked of the ccf are 1) how 
strongly is one series related to another, 2) is the relationship simultaneous or distributed over 
several time steps, and 3) if distributed, how many lags are involved and what is their relative 
importance? 
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The prewhitening approach described in the preceding section treated each series on an equal 
footing in dealing with autocorrelation. These questions can also be addressed by a systems 

approach in which the series are regarded as input to and output from a linear dynamic system 
(Figure 5). Dynamic refers to the possible dependence of the output at time t on the input signal at 
many previous times.  For such a system, the hypothetical response to a unit pulse of input at time 

0t = is given by the impulse response function (IRF).   
For the tree-ring example, the IRF gives the hypothetical response of series KERN at times t, 

t+1, t+2, …. to a pulse of anomalous (above or below mean) “input” from series KAIS at time t.  
Of course in a tree-ring context this is an artificial conceptualized system, and is used here only to 
illustrate methods. A more natural input-output system might have precipitation as input and tree-
growth as output. The system ideally has the following properties: 

 
• time invariant:   response to an input signal does not depend on absolute time 
• linear:   output response to a linear combination of inputs is the same as the linear 

combination of the output responses to the individual inputs 
• causal: output at a certain time depends on the input up to that time only 
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Figure 4.   Sample autocovariance and cross-correlation functions for time series plotted in 

Figure 1 after each series has been prewhitened with an AR(10) model. Remainder of caption 
as in Figure 2.     
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The system sketched in Figure 5 is described by the equation 
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The summation as written, following the notation in Ljung (1987), does not allow a 
contemporaneous response, or a response at time t to an input at time t.  This can be remedied 
with no loss of generality by shifting the input one time step relative to the output (re-aligning the 
series) so that the summation effectively starts with k=0. Realignment can also insure that for a 
system with nominally assigned input and output, the output response does not preceed the input 
stimulus.   

The model represented by (6)gives the output as a linear combination of past (and possibly 
current) input.  The numbers { }( )g k are called the impulse response function (IRF). Generally, 
the IRF is unknown, and must be estimated from the data -- the input signal 

 ( ), 1, ,u t t N=   (7) 
and the output signal  

 ( ), 1,y t t N=  . (8) 
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systemu(t)
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Figure 5.  Input-output system with superposed noise. For example, 
input u(t) might be rainfall, output y(t) a tree-ring index, and v(t) a 
disturbance variable incorporating all other influences on the tree-
ring index. In the example used in class, one tree-ring chronology 
(KAIS) is used as the nominal input, and another chronology 
(KERN) as the nominal output (see Figure 1). 
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10.5 Estimation of the IRF   
 

The “systems” method for estimating the IRF to be described is based on reducing one of the 
series to white noise before computing its correlation with the other series.  Unlike in the “equal 
footing” approach described in section 10.3, only the input series is explicitly prewhitened.   

The systems method for clarifying the lagged relationships in the presence of 
autocorrelation amounts to passing the input and output series through a filter before computing 
the cross-correlation function.  The filter is chosen such that it reduces the input series to white 
noise (removes the autocorrelation).  The filtered input series is therefore called the 
“prewhitened” input. The output is passed through the same filter, but the filtered output will 
generally not be white noise because the filter has been designed specifically to prewhiten the 
input, not the output. The ccf between the prewhitened input and filtered output is an estimate of 
the IRF of the system. 

The filter for this operation is a high-order (e.g., order 10) autoregressive (AR) model fit 
to the input series. Figure 6 illustrates estimation of the IRF by this method for the tree-ring 
example. Before computing the ccf, we have prewhitened the input series with a 10th order 
autoregressive model and filtered the output series with that same model. The 10th order AR 
model has modified the input series so that its autocovariance is essentially zero through lag 10.  
The acvf of the output filtered by this same model is clearly affected, but has not been reduced to 
zero.  In other words, the filtered output is not white noise.     

The IRF, or the ccf between the prewhitened input and filtered output describes the 
lagged correlation structure disentangled from the influence of autocorrelation. The IRF in Figure 
6 indicates significant response is restricted to lag 0.  This result is in agreement with the results 
of the “equal footing” approach in section 10.3.     

The 99% confidence interval for the IRF is once again (as in Figure 2) a horizontal line at 
0 2.58 N± .  A constant CI is deemed applicable this estimated IRF because one of the series is 
now approximately white (Ljung 1987).  
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10.6 Summary Comments 
Several alternative methods of examining lagged bivariate relationships have been presented.  

A simple graphical approach is the lagged scatterplot, but this approach may become 
cumbersome when many scatterplots must be examined to cover the possibility of relationship at 
higher lags. Moreover, for autocorrelated series, the lagged correlations at various lags are 
interdependent. The cross-correlation function is a the basic tool for studying correlation as a 
function of lag, but the pattern of weights in the ccf of the original time series is again distorted 
when the individual series are autocorrelated. The autocorrelation can be dealt with by removing 
it prior to computation of the ccf. In the “equal footing” approach, both time series are 
prewhitened, such that separate AR models are fit to each series. In the “systems” approach, just 
the input is prewhitening, while the output is filtered with the same AR model fit to the input.   
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Figure 6.   Impulse response function estimated by correlation analysis. Series for analysis same as in Figure 

2. Top right is acvf of the input prewhitened with an AR(10) model. Top left is the acvf of the output (tree-ring 
series) filtered with that same model. Lower plot is the ccf between prewhitened input and filtered output.   
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An example with two tree-ring chronologies from the same geographical region was used to 

illustrate the methods. These chronologies are highly autocorrelated, and it is apparent from the 
results that the autocorrelation distorts the estimated “raw” cross-correlation function sufficiently 
that a cross-correlation analysis on the original series is not suitable for identifying lagged 
relationships between the series. The “equal footing” and “systems” approaches to studying the 
lagged relationship agree for this example in pointing to a contemporaneous (no lag) relationship. 

The more highly autocorrelated the time series (especially the input), the more important 
prewhitening and filtering become in studying lagged relationships between time series. If the 
input already happens to be white noise, the “systems” approach becomes pointless: an AR model 
fit to the input will have little effect, and the ccf of the original data will be virtually the same as 
the ccf and FIR (except for scaling) after filtering the data with the AR model. Likewise, if both 
series are white noise, the prewhitened series in the “equal footing” method will be approximately 
the same as the original series, and the ccf of the original data will differ negligibly from the ccf 
of the prewhitened data.    
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