
Notes_5, GEOS 585A, Spring 2019 1 

5 Autoregressive-Moving-Average Modeling  
 

5.1 Purpose.   
Autoregressive-moving-average (ARMA) models are mathematical models of the persistence, 

or autocorrelation, in a time series. ARMA models are widely used in hydrology, 
dendrochronology, econometrics, and other fields. There are several possible reasons for fitting 
ARMA models to data. Modeling can contribute to understanding the physical system by 
revealing something about the physical process that builds persistence into the series. For 
example, a simple physical water-balance model with precipitation as input and including terms 
for evaporation, infiltration, and groundwater storage can be shown to yield a streamflow series 
as output that follows a particular form of ARMA model. ARMA models can also be used to 
predict behavior of a time series from past values alone. Such a prediction can be used as a 
baseline to evaluate the possible importance of other variables to the system. ARMA models are 
widely used for prediction of economic and industrial time series. Another use of ARMA models 
is simulation, in which synthetic series with the same autocorrelation structure as an observed 
series can be generated. Simulations can be especially useful for established confidence intervals 
for statistics and estimated time series quantities. ARMA models can also be used to remove 
persistence. In dendrochronology, for example, ARMA modeling is applied routinely to generate 
residual chronologies – time series of ring-width index whose dependence on past values has 
been removed. This operation, called prewhitening, is usually intended to remove biologically-
related persistence from the series so that the residual may be more suitable for studying the 
influence of climate and other outside environmental factors on tree growth. 

5.2 Mathematical Model  
ARMA models can be described by a series of equations. The equations are somewhat simpler 

if the time series is first reduced to zero-mean by subtracting the sample mean. Therefore, we will 
work with the mean-adjusted series  

 , 1,t ty Y Y t N= − =   (1) 
where tY is the original time series,Y is its sample mean, and ty is the mean-adjusted series. A 
subset of ARMA models are the so-called autoregressive, or AR models. An AR model expresses 
a time series as a linear function of its past values.  The order of the AR model tells how many 
lagged past values are included. The simplest AR model is the first-order autoregressive, or 
AR(1), model   

 1 1t t ty a y e−+ =  (2) 
where ty is the mean-adjusted series in year t, 1ty − is the series in the previous year, ta is the lag-1 
autoregressive coefficient1, and te is the noise. The noise also goes by various other names: the 
error, the random-shock, and the residual. The residuals te  are assumed to be random in time 
(not autocorrelated), and normally distributed. Be rewriting the equation for the AR(1) model as  

 1 1t t ty a y e−= − +  (3) 

                                                      
1 Some authors (e.g., Chatfield, 2004) write the equation for an AR(1) process in the form 

1 1t t ty a y e−= + , which implies a positive coefficient a1 for positive first-order autocorrelation. But as 
written in (2), positive autocorrelation goes with a negative coefficient a1. There is no confusion as long as 
the equation being used for describing the process is presented along with values of parameters. The 
convention used in this chapter follows Ljung (1995) and Matlab’s System Identification Toolbox. 
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we see that the AR(1) model has the form of a regression model in which ty is regressed on its 
previous value. In this form, a1 is analogous to the negative of the regression coefficient, and te to 
the regression residuals. The name autoregressive refers to the regression on self (auto).    

Higher-order autoregressive models include more lagged ty terms as predictors. For example, 
the second-order autoregressive model, AR(2), is given by  

 1 1 2 2t t t ty a y a y e− −+ + =  (4) 
where 1 2,a a are the autoregressive coefficients on lags 1 and 2. The thp order autoregressive 
model, AR(p) includes lagged terms on years 1t −  to t p− .    

The moving average (MA) model is a form of ARMA model in which the time series is 
regarded as a moving average (unevenly weighted) of a random shock series te . The first-order 
moving average, or MA(1), model is given by  

 1 1t t ty e c e −= +  (5) 
where 1,t te e − are the residuals at times t and t-1, and 1c is the first-order moving average 
coefficient. MA models of higher order than one include more lagged terms. For example, the 
second order moving average model, MA(2), is   

 1 1 2 2t t t ty e c e c e− −= + +  (6) 
The letter q is used for the order of the moving average model. The second-order moving average 
model is MA(q) with 2q = .    

We have seen that the autoregressive model includes lagged terms on the time series itself, 
and that the moving average model includes lagged terms on the noise or residuals. By including 
both types of lagged terms, we arrive at what are called autoregressive-moving-average, or 
ARMA, models. The order of the ARMA model is included in parentheses as ARMA(p,q), where 
p is the autoregressive order and q the moving-average order.  The simplest ARMA model is 

first-order autoregressive and first-order moving average, or ARMA(1,1): 
 1 1 1 1t t t ty a y e c e− −+ = +  (7) 
 

5.3 Steps in modeling    
ARMA modeling proceeds by a series of well-defined steps. The first step is to identify the 

model. Identification consists of specifying the appropriate structure (AR, MA or ARMA) and 
order of model.   Identification is sometimes done by looking at plots of the acf and partial 
autocorrelation function (pacf). Alternatively, identification can be done by an automated 
iterative procedure -- fitting many different possible model structures and orders and using a 
goodness-of-fit statistic to select the best model. 

The second step is to estimate the coefficients of the model. Coefficients of AR models can be 
estimated by least-squares regression. Estimation of parameters of MA and ARMA models 
usually requires a more complicated iteration procedure (Chatfield 2004). In practice, estimation 
is fairly transparent to the user, as it accomplished automatically by a computer program with 
little or no user interaction.  

The third step is to check the model. This step is also called diagnostic checking, or 
verification (Anderson 1976). Two important elements of checking are to ensure that the residuals 
of the model are random, and to ensure that the estimated parameters are statistically significant. 
Usually the fitting process is guided by the principal of parsimony, by which the “best” model is 
the simplest possible model – the model with the fewest parameters -- that adequately describes 
the data.   
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Identification by visual inspection of acf and pacf.  The classical method of model 
identification as described by Box and Jenkins (1970) is to judge the appropriate model structure 
and order from the appearance of the plotted acf and pacf. We have already discussed the acf, and 
know that the acf at lag k measures the correlation of the series with itself lagged k years. The 
partial autocorrelation function (pacf) at lag k is the autocorrelation of the residuals of 
an ( )AR 1k −  model fit to the time series. If the ( )AR 1k − model effectively whitens the time 
series, the pacf at lag k is zero. Identification of ARMA models from the acf and pacf plots is 
difficult and requires much experience for all but the simplest models. Let’s look at the diagnostic 
patterns for the two simplest models:  AR(1) and MA(1).   

The acf of an AR(1) process declines geometrically as a function of lag. For example, the acf 
of a series that follows an AR(1) process with coefficient 1 0.5a = is 2 3 4{0.5,0.5 ,0.5 ,0.5 }  at lags 
1-4. The pacf of the AR(1) process at lags 1k > is zero, because if the model is AR(1), all 
autocorrelation is removed by the AR(1) model. In summary, the diagnostic patterns of acf and 
pacf for an AR(1) model are: 

• Acf:  declines in geometric progression from its highest value at lag 1 
• Pacf: cuts off abruptly after lag 1 

 
The opposite types of patterns apply to an MA(1) process: 

• Acf:  cuts off abruptly after lag 1 
• Pacf:  declines in geometric progression from its highest value at lag 1 

 
The theoretical acf and pacf for two AR(1) processes with large and small autoregressive 

coefficients are shown in Figure 5.1. The acf and pacf in both cases follows the diagnostic 
patterns described above. The persistence is specified by the size of the coefficient. For an AR(1) 
model, the square of the autoregressive coefficient is analogous to R2 in regression. Accordingly, 
for a model with a1=-0.9 persistence explains 81% of the variance, and for a model with a1=-0.3 
persistence explains 9% of the variance. Note that the lower the coefficient of the AR(1) model 
the more quickly the decaying acf approaches zero.  

 

 
Figure 5.1. Theoretical autocorrelation function (acf) and partial 
autocorrelation function (pacf) of an AR(1) processes with high and 
low positive autocorrelation.   
 



Notes_5, GEOS 585A, Spring 2019 4 

 
 
The theroretical patterns of decay of the acf and pacf can be visually compared with the 

estimated acf and pacf of a time series to decide whether the series was likely generated by an 
AR(1) process. Because of sampling variability (noise) the classic AR(1) decay pattern may be 
difficult to identify in a short time series. Higher-order AR, MA, and ARMA processes also have 
characteristic theoretical patterns of decay of the acf and pacf. The acf and pacf decay patterns for 
such processes are more complicated that those of the AR(1) model. Generally the pacf cuts off 
after lag p for an AR(p) process, and the acf cuts of abruptly after lag q for an MA(q) process.   

   
Short memory and long memory processes.  Though the acf may die off very slowly for an 

AR(1) process with a high AR coefficient (Figure 5.1), the AR(1) process, and indeed all 
stationary AR, MA and ARMA processes are termed “short memory” processes. Such processes 
satisfy a condition of eventual dying off of the acf.  The condition is given by k

k Cρ λ< , where 

kρ is the theoretical autocorrelation at lag k, and C andλ are constants with 0 1λ< < (Chatfield 

2004, p. 261). For such processes, 
0
| |k

k
ρ

∞

=
∑ converges. On the other hand, there is another class of 

processes, called “long-memory” processes, for which
0
| |k

k
ρ

∞

=
∑  does not converge.  See Chatfield 

(2004, p. 260) for discussion of long-memory processes.   
 
Automated identification by the FPE criterion.  An alternative to use of characteristic 

decay patterns of the acf and pacf to identify ARMA models is to fit a large number of candidate 
models and choose the best model guided by a goodness-of-fit statistic. In this approach, a suite 
of candidate models are fit, and goodness-of-fit statistics are computed that penalize appropriately 
for excessive complexity. (Think of adjusted R2 in regression.) Akaike’s Final Prediction Error 
(FPE) and Information Theoretic Criterion (AIC) are two closely related alternative statistical 
measures of goodness-of-fit of an ARMA(p,q) model. Goodness of fit might be expected to be 
measured by some function of the variance of the model residuals: the fit improves as the 
residuals become smaller.  Both the FPE and AIC are functions of the variance of residuals. 
Another factor that must be considered, however, is the number of estimated parameters, 
n p q= + . This is so because by including enough parameters we can force a model to perfectly 
fit any data set. Measures of goodness of fit must therefore compensate for the artificial 
improvement in fit that comes from increasing complexity of model structure. The FPE is given 
by  

 1 *
1 /

n NFPE V
n N

+
=

−
 (8) 

where V is the variance of model residuals, N is the length of the time series, and n p q= + is the 
number of estimated parameters in the ARMA model. The FPE is computed for various candidate 
models, and the model with the lowest FPE is selected as the best-fit model. 

The AIC (Akaike Information Criterion) is another widely used goodness-of-fit measure, and 
is given by 

 2log 1 nAIC V
N

  = +    
 (9) 
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 As with the FPE, the best-fit model has minimum value of AIC.2 Neither the FPE nor the AIC 
directly addresses the question of the model residuals being without autocorrelation, as they 
ideally should be if the model has removed the persistence. A strategy for model identification by 
the FPE is to 1) iteratively fit several different models and find the model that gives 
approximately minimum FPE and 2) apply diagnostic checking (see below) to assure that the 
model does a good job of producing random residuals.     

 
Checking the model – are the residuals random?  A key question in ARMA modeling is 

whether the model effectively describes the persistence?  If the model describes the persistence 
well, the model residuals should be random –or uncorrelated in time – and the autocorrelation 
function (acf) of residuals should be zero at all lags except lag zero. Because of sampling 
variability, the acf will not be exactly zero, but should fluctuate close to zero.   

The acf of the residuals can be examined in two ways. First, the acf can be scanned to see if 
any individual coefficients fall outside some specified confidence interval around zero. 
Approximate confidence intervals can be computed. The correlogram of the true residuals (which 
are unknown) is such that kr is normally distributed with mean 

 ( ) 0kE r =  (10) 
and variance 

 1var( )kr N
=  (11) 

where kr is the autocorrelation coefficient of the ARMA residuals at lag k. The appropriate 
confidence interval for kr can be found by referring to the cdf of a normal distribution.  For 
example, the 0.975 probability point of the standard normal distribution is 1.963. The 95% 
confidence interval for kr  is therefore 0 1.96 / N± . For the 99% confidence interval, the 0.995 
probability point of the normal cdf is 2.57.  The 99% CI is therefore 0 2.57 / N± .  An 

kr outside this CI is evidence that the model residuals are not random.     
A subtle point that should be mentioned is that the correlogram of the estimated residuals of a 

fitted ARMA model has somewhat different properties than the correlogram of the true residuals 
– which are unknown because the true model is unknown. As a result, the above approximation 
(11) overestimates the width of the CI at low lags when applied to the acf of the residuals of a 
fitted model (Chatfield, 2004, p. 68). There is consequently some bias toward concluding that the 
model has effectively removed persistence. At large lags, however, the approximation is close.  

A different approach to evaluating the randomness of the ARMA residuals is to look at the acf 
“as a whole” rather than at the individual 'kr s separately (Chatfield, 2004). The test is called the 
portmanteau lack-of-fit test, and the test statistic, the “Q” statistic, is  

 2

1

K

k
k

Q N r
=

= ∑  (12) 

The Q statistic, computed from the lowest K autocorrelations, say at lags 1, 2, 20k =  , 
follows a 2χ distribution with ( )K p q− − degrees of freedom, where p and q are the AR and MA 
orders of the model and N is the length of the time series. If the computed Q exceeds the value 

                                                      
2 The System Identification Toolbox in MATLAB© has functions for the FPE and the AIC.  

(Computational note:  MATLAB© computes the variance V used in the above equations with N-1 rather 
than N in the denominator of the sum-of-squares term.) 
3 The MATLAB© disttool function is a handy interactive graphics tool for getting probability points 
of the cdf for various distributions 
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from the 2χ  table for some specified significance level, the null hypothesis that the series of 
autocorrelations represents a random series is rejected at that level.   

 The p-value gives the probability of exceeding the computed Q by chance alone, given a 
random series of residuals. Thus non-random residuals give high Q and small p-value. As for 
hypothesis testing in general, the significance level is related to the p-value by  

  significance level (%) = 100(1 - )p  (13) 
A significance level greater than 99%, for example, corresponds to a p-value smaller than 0.01. 

 
Checking the model – are the estimated coefficients significantly different from zero?  

Besides the randomness of the residuals, we are concerned with the statistical significance of the 
ARMA model coefficients. The estimated coefficients should be significantly different than zero.  
If not, the model can probably be simplified. For example, an AR(2) model for which the second-
order coefficient is not significantly different from zero might be discarded in favor of an AR(1) 
model. Significance of the ARMA coefficients can be evaluated by comparing estimated 
parameters with their standard deviations. For an AR(1) model, the estimated first-order 
autoregressive coefficient, 1â , is normally distributed with variance  

 
( )2

1
1

ˆ1
ˆvar( )

a
a

N
−

=  (14) 

where N is the length of the time series. Assuming that 1α is normally distributed, the approximate 
95% confidence interval for 1â is two standard deviations around 1â : 

 1 1ˆ ˆ2 var( )a a±  (15) 
For example, if the time series has length 300 years, and the estimated AR(1) coefficient is 

1ˆ 0.60a = , the 95% confidence interval is  

 
( )

( )

1 1

1

2
1

2

ˆ ˆ95%  CI = 2 var( )

ˆ0.60 2 var( )

ˆ1
0.60 2

1 0.60 0.640.60 2 0.60 2
300 300

0.60 2 .00213 0.60 0.092

a a

a

a
N

±

= ±

−
= ±

−
= ± = ±

= ± = ±

 (16) 

The estimated parameter 1ˆ 0.60a = is therefore significant as the confidence band does not include 
zero and in fact is highly significant as the confidence band is far from zero. Equations are also 
available for the confidence bands around estimated parameters of an MA(1) model and higher-
order AR, MA, and ARMA models (e.g., Anderson 1975, p. 70). The estimated parameters 
should be compared with their standard deviations to check that the parameters are “significantly” 
different from zero.4 

 

5.4 Practical vs statistical significance of persistence   
Note from equation (14) that the variance of the estimated autoregressive coefficient for an 

AR(1) model is inversely proportional to the sample length. For long time series (e.g., many 
                                                      

4 The present function in the MATLAB© System Identification Toolbox is convenient for getting the 
standard deviations of estimated ARMA parameters 
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hundreds of observations), ARMA modeling may yield a model whose estimated parameters are 
very small, yet significantly different from zero. The persistence described by such a model might 
actually account for a tiny percentage of the variance of the original time series.  

A measure of the practical significance of the autocorrelation, or persistence, in a time series 
is the percentage of the series variance that is reduced by fitting the series to an ARMA model. If 
the variance of the model residuals is much smaller than the variance of the original series, the 
ARMA model accounts for a large fraction of the variance, and a large part of the variance of the 
series is “due to persistence.” In contrast, if the variance of the residuals is almost as large as the 
original variance, then little variance has been removed by ARMA modeling, and the variance 
due to persistence is small. A simple measure of the fractional variance due to persistence is 

 

 2 var( )
1

var( )
t

p
t

e
R

y
= −  (17) 

where var( )ty is the variance of the original series, and var( )te is the variance of the residuals of 
the ARMA model.5 Whether any given value of 2

pR is practically significant is a matter of 
subjective judgment and depends on the problem. For example, in a time series of tree-ring index, 

2 0.50pR = would likely be considered practically significant, as half the variance of the original 

time series is explained by the modeled persistence. On the other hand, 2 0.01pR = might well be 
dismissed as practically insignificant, even though with many thousands of observations the small 
estimated AR coefficients might be “significantly” different from zero.  

 
Example.  To illustrate the steps in ARMA modeling consider the fitting of a model to a time 

series of tree-ring index (Figure 5.2). The tree-ring index covers several hundred years, but for 
illustrative purposes, only a portion of the record has been used in the modeling. The time series 
plot strongly suggests positive autocorrelation, as successive observations tend to persist above or 
below the sample mean. The series has a low-frequency spectrum, with much of the variance at 
wavelengths longer than 10 years. This shape of spectrum is broadly consistent with a positively 
autocorrelated series. The acf indicates significant positive autocorrelation out to a lag of 4 years, 
and the pacf “cuts off” after lag 4. These acf and pacf patterns alone are enough to suggest an 
AR(4) model.    

 
Fitting an AR(4) model to the data results in the equation  
 1 2 3 40.3754 0.2192 0.1199 0.2547t t t t t ty y y y y e− − − −− − + − =  (18) 

which is in the form of equation (4) extended to autoregressive order p=4.  Whether the 
coefficients are significantly different from zero can be evaluated by comparing the estimated 
coefficients with their standard deviations: 
 
a1:  -0.3754 (±0.0956) 
a2:  -0.2192 (±0.1036) 
a3:   0.1199 (±0.1035) 
a4:  -0.2547 (±0.0968) 
 
Since twice the standard deviation is an approximate 95% confidence interval for the estimated 
coefficients, all except a3 are significantly different from zero.  The AR(4) cannot therefore be 
ruled out because of insignificant coefficients, especially since the highest-order coefficient, a4, 
is significant.  

                                                      
5 The equation for the fractional percentage of variance due to persistence uses the one-step-ahead residuals 
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Of key importance is the “whiteness” of the residuals – are they non-autocorrelated? A acf plot 
for the tree-ring example reveals that none of the autocorrelations of the AR(4) model residuals 
are outside the 99% confidence interval around zero (Figure 5.3). This is a desired result, as 
effective ARMA modeling should explain the persistence and yield random residuals. Whiteness 
of residuals can alternatively be checked with the Portmanteau test (see equation (12)).  The null 
hypothesis for the test is all the autocorrelations of residuals for lags 1 to K are zero, where choice 
of K is up to the user. As annotated on Figure 5.3, for K=25 we cannot reject the null hypothesis.  
The p-value for the test is greater than 0.05 (p=0.37491), meaning the test is not significant at the 
0.05 α-level. In summary, review of the individual autocorrelations of residuals, the Portmanteau 
test on those residuals, and the error bars for the estimated AR parameters favor accepting the 
AR(4) model as an effective model for the persistence in the tree-ring series.   
 

 
Figure 5.2.  Diagnostic plots for ARMA modeling of a 108-year segment of a tree-ring index. Time series 
is for a Pinus strobiformis (Bear Canyon, Jemez Mtns, New Mexico) standard chronology. Top: time plot, 
1900-2007. Bottom left: autocorrelation function and partial autocorrelation function with 95% 
confidence interveal. Bottom right: spectrum.   
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5.5 Prewhitening 
Prewhitening refers to the removal of autocorrelation from a time series prior to using the time 

series in some application. In dendroclimatology standard indices of individual cores are 
prewhitened in generating “residual” chronologies (Cook 1985). Prewhitening can also be applied 
at the level of the site chronology to remove the persistence (Monserud 1986). In the context of 
ARMA modeling, the prewhitened series is equivalent to the ARMA residuals6.  As prewhitening 
aims at removal of persistence, there is an expected effect on the spectrum. Specifically, for a 
persistent (positively autocorrelated) time series, the spectrum of the prewhitened series should be 
flattened relative to the spectrum of the original series. A positively autocorrelated series has a 
low-frequency spectrum, while white noise – the objective of ARMA modeling – has a flat 
spectrum.     

The effect of prewhitening on the spectrum is clear for our tree-ring example (Figure 5.4). The 
original series has a low-frequency spectrum and the prewhitened series has a nearly flat 
spectrum. Note also that the spectrum of the prewhitened series is lower overall than that of the 
original series. The area under the spectrum is proportional to variance, and the removal of 
variance due to persistence will result in a spectrum with a smaller area. For the tree-ring series, a 
substantial fraction of the variance (more than 1/3) is due to persistence.    

The flattening of the spectrum, a frequency-domain effect, is reflected by changes in the time 
domain. For a series with positive autocorrelation, prewhitening acts to damp those time series 
features that are characteristic of persistence. Thus we expect that broad swings above and below 

                                                      
6 In practice, the original mean of the tree-ring index is usually restored, so the prewhitened chronology has 
the same mean as the standard chronology, rather than a mean of zero  

 
Figure 5.3.  Autocorrelation function of residuals of AR(4) model fit to 108-year tree-ring index.   
Annotated are the results of Portmanteau test and the percentage of variance due to modeled 
persistence.  

 



Notes_5, GEOS 585A, Spring 2019 10 

the mean (broad peaks and troughs) will be reduced in amplitude, or damped. The damping is 
evident in a zoomed portion of the time series for the tree-ring example (Figure 5.5). For 
example, the swing above the mean for the period 1983-1995 has been lessened in amplitude, and 
positive departures in 1989 and 1994 have been converted to negative departures. Specific 
differences in an original and prewhitened series can be readily explained by referring to the 
equation of the fitted ARMA model used to prewhiten. For the tree-ring example, the fitted 
AR(4) model is equation (18). Differences in the original and prewhitened index (Figure 5.5) 
derive directly from this equation.  Recall first of all that yt in the equation is a departure from the 
mean (red line in Figure 5.5). The residual is computed by summing over the departures of the 
original series from the mean for the previous 4 years, after multiplying those departures by the 
estimated ARMA coefficients. The prewhitened index for 1988 is therefore drawn closer to the 
mean because negative coefficients are applied to fairly large positive anomalies 1987, 1986, and 
1984.     

 
 

 

 

5.6 Simulation and Prediction 
In addition to helping describe persistence and remove it from a time series, ARMA modeling 

can also be used in simulation and prediction. A brief introduction to these topics is given here.  
More extensive treatment can be found elsewhere (e.g., Chatfield 2004, Wilks 1995). 

Simulation is the generation of synthetic time series with the same persistence properties as 
the observed series. Prediction is the extension of an observed series into the future based on past 
and present values. The AR(1)  model  

 1 1t t ty a y e−+ =  (19) 
Where ty is the departure of a time series from its mean, 1a is the autoregressive coefficient, and 

te is the noise term, can be rearranged as 
 1 1t t ty a y e−= − + . (20) 

The time series ty can be simulated from equation (20) by the following steps: 1) estimate the 
autoregressive parameter 1â   by modeling the time series as an AR(1) process, 2) generate a time 
series of random noise, te , by sampling from an appropriate distribution, 3) assume some starting 

 
Figure 5.5.  Zoomed time series 
segments of original and prewhitened 
tree-ring index. The full original series 
is plotted in Figure 5.2 (top).    

 

 
Figure 5.4 Spectra of original and prewhitened 
tree-ring index. Time series is a 108-yr tree-ring 
from New Mexico (see previous example). Dashed 
line is 95% confidence interval. 
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value for 1ty − , and 4) recursively generate a time series of ty using the estimated parameter in 
place of 1a  and adding the sampled noise. The appropriate distribution for the noise is typically a 
normal distribution with mean 0 and variance equal to the variance of the residuals from fitting 
the AR(1) model to the data.  

For example, five simulations of the tree-ring index are plotted along with original time series 
in Figure 5.6. The simulations appear to effectively mimic the low-frequency behavior of the 
observed series. Any synchrony in timing of variations in the various series is due to chance 
alone, as the simulations have been randomly generated. A possible application of such series is 
to generate empirical (as opposed to theoretical) confidence intervals of the relationship between 
the observed time series and a climate variable. For such an application, many (e.g., 10,000) 
simulated tree-ring series of length 108 years can be generated, correlation coefficients computed 
between each simulation and the climate series, and 95% confidence interval for significant 
correlation established as the 0.025 and 0.975 probability points of the 10,000 sample 
correlations. If the correlation between the observed time series and the climate series is outside 
the confidence interval, a significant statistical relationship is inferred.   

 

 
 
Prediction differs from simulation in that the objective of prediction is to estimate the future 

value of the time series as accurately as possible from the current and past values. Unlike 
simulations, predictions utilize past values of the observed time series. A prediction form of the 
AR(1) model is  

 1 1ˆ ˆt ty a y −= −  (21) 

 
Figure 5.6.  Observed tree-ring index and five simulation by an AR(4) model.  Top plot is identical 
to that at top of Figure 5.2. 
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where the “^” indicates an estimate. The equation can be applied “one step ahead” to get estimate 
ˆty from observed 1ty − . A “k-step-ahead” AR(1) prediction can be made by recursive application 

of equation (21).  In recursive application, the observed y at time 1 is used to generate the 
estimated ŷ  at time 2. That estimate is then substituted as 1ty − to get the estimated ŷ at time 3, 
and so on. The k-step-ahead predictions eventually converge to zero as the prediction horizon, k, 
increases7.   
 Prediction is illustrated in Figure 5.7 for the tree-ring example. Recall that the index for 
the 108-year period 1900-2007 was fit with an AR(4) model, which explained about 1/3 the 
variance of the series. The segments of observed and predicted index beginning with 1990 are 
plotted in Figure 5.7.  The observed index ends in 2007, and for the years 1990-2007 the 
predicted values plotted are one-step-ahead predictions. For the AR(4) model, this means that the 
prediction for year t is made from observed index in the preceding four years. One-step-ahead 
predictions in general make use of observed data for times ( 1)t t≤ − to make the prediction for 
year t. The predictions plotted in Figure 5.7 for years beginning with 2009 are k-step-ahead 
predictions.  These predictions use observed index for times ( )t t k≤ − and predicted index for 
later times in making a prediction for time t. The predicted index for 2008 is a one-step-ahead 
prediction, for 2009 a 2-step-ahead prediction, for 2010 a 3-step-ahead prediction and so forth.  
The persistence in the data combined with the low-growth period starting about 2000 leads to 
predictions of below normal tree-ring index for the 10 years of prediction horizon beyond the end 
of the observed data. The predictions converge toward the mean as the horizon lengthens, 
however, because the influence of the past gradually fades.   

                                                      
7 Because the modeling assumes yt is a departure from the mean, this convergence in terms of the 

original time series is convergence toward the mean 
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5.7 Extension to nonstationary time series 
ARMA modeling assumes the time series is weakly stationary. With the appropriate 

modification, nonstationary series can also be studied with ARMA modeling. Trend defined as a 
deterministic function of time can be removed by curve-fitting prior to ARMA modeling. That is 
the approach in dendrochronology: a smooth curve describing the “growth trend” is removed in 
converting ring widths to ring indices. Periodic time series are a special case in which the trend is 
cyclical.  An example of a periodic series is a monthly time series of air temperature with its 
annual cycle. The mean for such a monthly series is clearly nonstationarity in that the mean varies 
by month. One way of handling such a series with ARMA modeling is to remove the annual cycle 
by expressing the monthly data as departures from their long-term monthly means. Another way 
is by applying periodic ARMA models, in which separate parameters are simultaneously 
estimated for each month of the year. Periodic ARMA models are discussed by Salas et al. 
(1980). 

A trend itself might be a stochastic feature of a time series. For example, a random walk time 
series wanders with a time-varying population mean.  The series does not tend to return to any 
specific preferred level. Such series can be detrended by first-differencing before ARMA 
modeling – a modeling approach called autoregressive-integrated-moving-average (ARIMA) 
modeling. Further discussion of ARIMA modeling can be found elsewhere (Anderson 1976; Box 
and Jenkins 1976; Salas et al. 1980) 

 
Figure 5.7.  Prediction of tree-ring index by AR(4) model. Predictions generated by model given 
by equation 18 in text.  Time series described in caption to Figure 5.2. 
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