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12 Validating the Regression Model 
 

Regression R-squared, even if adjusted for loss of degrees of freedom due to the number of 
predictors in the model, can give a misleading, overly optimistic view of accuracy of prediction 
when the model is applied outside the calibration period. Application outside the calibration 
period is the rule rather than the exception in dendroclimatology. The calibration-period statistics 
are typically biased because the model is “tuned” for maximum agreement in the calibration 
period.   Sometimes too large a pool of potential predictors is used in automated procedures to 
select final predictors.  Another possible problem is that the calibration period may be anomalous 
in terms of the relationships between the variables: modeled relationships may hold up for some 
periods of time but not for others.  It is advisable therefore to “validate” the regression model by 
testing the model on data not used to fit the model. Several approaches to validation are available.  
Among these are cross-validation and split-sample validation. In cross-validation, a series of 
regression models is fit, each time deleting a different observation from the calibration set and 
using the model to predict the predictand for the deleted observation. The merged series of 
predictions for deleted observations is then checked for accuracy against the observed data. In 
split-sample calibration, the model is fit to some portion of the data (say, the second half), and 
accuracy is measured on the predictions for the other half of the data. The calibration and 
validation periods are then exchanged and the process repeated. In any regression problem it is 
also important to keep in mind that modeled relationships may not be valid for periods when the 
predictors are outside their ranges for the calibration period: the multivariate distribution of the 
predictors for some observations outside the calibration period may have no analog in the 
calibration period. The distinction of predictions as extrapolations versus interpolations is useful 
in flagging such occurrences. 

 

12.1 Validation 
 
Validation strategies.  Four methods of validation of the regression model are described in 

this section: proxy-validation, withheld-data validation, split-sample validation, and cross-
validation. The most appropriate method for any particular study will depend on the data and 
purpose of analysis.   

 
Proxy-validation. The term “proxy-validation” as used here refers to any sort of qualitative or 

quantitative comparison of the predictions from the regression model with some variable other 
than the actual predictand used in the regression model. As with all validation methods, the 
comparison is restricted to some period outside the period used to calibrate the regression model. 
Consider a regression and reconstruction of annual precipitation at some climatic station from 
tree rings that happens to show several decades of low precipitation in the 1700s. Qualitative 
proxy-validation might be supporting newspaper records of low lake levels. Somewhat more 
quantitative proxy validation would be reference to lows in the 1700s in smoothed plots of 
measured lake level. Quantitative proxy-validation might consist of correlation coefficients of 
measured lake levels with the reconstructed time series of precipitation. Proxy-validation often 
consists of graphical or statistical comparison of reconstructions with previous reconstructions 
using the same or a related predictand (e.g., Woodhouse et al. 2006, Meko et al. 2007).   

Withheld-data validation. This method is validation in the purest sense, and consists of 
withholding some predictand data from the calibration of the reconstruction model and using that 
data to check performance of the regression model. The term “withheld-data validation” is coined 
here to distinguish this method from the less optimal variants, split-sample validation and cross-
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validation. This method is “validation” in the truest sense because the calibration and validation 
sets are completely independent. To assure independence, validation data must in no way enter 
into the calibration of the regression model – not even in screening to identify the “best” predictor 
or form of model (e.g., lags). A practical difficulty of applying withheld-data validation is the 
lack of sufficient length of high-quality predictand data. For example, consider a hypothetical 
tree-ring reconstruction problem in which 100 years of precipitation data are available for the 
reconstruction of 500 years of precipitation from tree rings. Withheld-data validation might in this 
case consist of using the most recent 50 years of data to calibrate the regression model to be used 
for the long-term reconstruction, and reserving the first 50 years of data for validating the model. 
But a researcher would generally prefer to use the longest possible calibration period (100 yr), in 
hopes of including the most representative high-frequency and low-frequency components of 
variability of the predictand in the calibration.   

Split-sample validation. This method consists of using the full available predictand data for 
the final regression and reconstruction, and using subsets of the full period for separate 
calibration-validation exercises (Snee 1977). For validation, the full length of predictand data is 
split into paired segments, one used to calibrate the model and the other to validate. One approach 
is to calibrate on half the data and validate on the other half, and then repeat the exercise with the 
calibration and validation periods exchanged (e.g., Meko and Graybill 1995). This approach gives 
two sets of validation statistics (see below), one for each sub-period of validation. Split-sample 
validation can be extended as needed to more than two sub-periods.   

Split-sample validation of has the advantage over withheld-data validation in that all of the 
predictand data is available for the final reconstruction models.  Split-sample validation moreover 
gives some information on the accuracy of reconstruction of low-frequency features of variation 
of the predictand.  For example, the RE statistic (see below) from split-sample validation is 
sensitive to ability to track changes in the sub-period mean of the predictand.  This sensitivity 
would of course depend on the various selected sub-periods of the split-level validation having 
appreciably different means of the predictand.  Split-sample validation might be problematic 
when available time series of the predictand are short – say less than 50 observations.  In such 
cases half of the available data may be pushing the limits for robust modeling of regression 
relationships.  

A weakness of split-sample validation is that the model “validated” is different than the model 
actually used for the long-term reconstruction.  A potential weakness is that the validation and 
calibrations data segments may not be independent.  The principle behind validation is that the 
model is validated with data that does not enter in any way into the calibration of the model. This 
principle is violated if the validation period is used for such purposes as screening the predictor 
data to decide on which predictor variable are to be included in the calibration period.  For 
example, a clear violation occurs in the following sequence: 1) full period used to select a subset 
of tree-ring variables most highly correlated with precipitation (the predictand for regression), 2) 
full period used to calibrate and reconstruct precipitation, 3) same subset of selected tree-ring 
variables used as predictors in the calibration segments of split-sample validation modeling. In 
this sequence of operations the researcher has essentially “peeked” at the validation data and used 
its relationships in designing the calibration model.  

Cross-validation. In this method a series of iterative steps is followed to build a time series of 
estimates of predictand that can be used to validate a model calibrated on the full period of 
predictand (Michaelsen 1987). A different subset of observations is successively omitted from the 
calibration at each step, and the remaining data are used to calibrate a model that is then applied 
to reconstruct the central value of the omitted segment. This procedure eventually results in a 
complete (full-period) set of predicted values, each of which was generated by a model 
independent of the predicted value.   

At the extreme of one observation omitted at a time, the method is “leave-one-out” cross-
validation, as described by Michaelsen (1987) and to the predicted-residual-sum-of squares 
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procedure, or PRESS procedure as described by Weisberg (1985). Say the full available period 
for calibration is length of n years. Models are repeatedly estimated using data sets of 1n − years, 
each time omitting a different observation from calibration and using the estimated model to 
generate a predicted value of the predictand for the deleted observation. At the end of this 
procedure, a time series of n predictions assembled from the deleted observations is compared 
with the observed predictand to compute validation statistics of model accuracy and error. 

An obvious attraction of cross-validation is the ability to apply validation when the available 
time series of predictand is short. An advantage over split-sample validation is that the models 
validated are nearly the same as the model used for reconstruction -- differing by one observation 
or a few observations in the data used for calibration. A shortcoming, especially when just a few 
observations are omitted at a time, is the inability to check accuracy of reconstructed low-
frequency fluctuations, such as a shift in mean. Some special precautions may also be necessary 
to ensure the independence of calibration and validation subsets.  For example, if time series are 
autocorrelated, or if lags are used in the regression model, more than one observation must be 
omitted at a time (e.g., Meko 1997).  

 
Validation statistics.  Validation statistics measure the error or accuracy of the prediction for 

the validation period. The statistics can generally be expressed as functions of just a few simple 
terms, or building blocks. We begin by defining the building blocks.  

 
  Validation errors.  All of the statistics described here are computed as some function of the 

validation error, which is the difference of the observed and predicted values:     
 ( ) ( )ˆ ˆ ,i i ie y y= −  (1) 

where iy and ( )ˆ iy  are the observed and predicted values of the predictand in year i, and the 
notation ( )i  indicates that data for year i were not used in fitting the model that generated the 
prediction ( )ˆ iy .  

 
Sum of squares of errors, validation (SSEv).    SSEv is the sum of the squared differences of 

the observed and predicted values:  
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where the summation is over the vn years making up the validation period. 
 
 
Mean squared error of validation (MSEv).  MSEv is the average squared error for the 

validation data, or the sum-of-squares of errors divided by the length of validation period:  

 vSSE
MSEv

vn
=  (3) 

The closer the predictions to the actual data, the smaller the MSEv. Recall that the calibration-
period equivalent of MSEv is the residual mean square, MSE, which was listed in the ANOVA 
table in the previous notes.  

 
Root mean squared error of validation (RMSEv).  The RMSEv is a measure of the average 

size of the prediction error for the validation period, and is computed as the square root of the 
mean squared error of validation:  
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RMSEv has the advantage over MSEv of being in the original units of the predictand. The 
calibration equivalent of RMSEv is es , the standard error of the estimate.  RMSEv will generally 
be greater than es because es reflects the “tuning” of the model to the data in the calibration 
period. The difference between RMSEv and es is a practical measure of the importance of this 
tuning of the model. If the difference is small, the model is said to be validated, or to verify well.  
What is meant by “small” is subjective.  For example, in a precipitation reconstruction intended 
for use in agriculture, a difference of 0.2 inches between RMSEv and es might be judged 
inconsequential if an error of 0.2 inches makes no appreciable difference to the health of the crop.     

 
Reduction of error (RE). RE is a specific example of a skill statistic (Wilkes 1995). Skill is 

relative accuracy, and its assessment requires specification of some reference prediction against 
which the accuracy of the predictions can be measured. This reference prediction in the case of 
RE is simply the calibration-period mean of the predictand cy . The calibration-period mean of the 
predictand is substituted as the predicted value for any year outside the calibration period.  
Following Fritts et al. (1990), RE is then given by 

 

 SSERE 1
SSE

v

ref

= −  (5) 

 
where SSEv is the sum of squares of validation errors as defined previously and  
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RE has a possible range of −∞  to 1. An RE of 1 indicates perfect prediction for the validation 
period, and can be achieved only if all the residuals are zero (i.e., SSE 0v = ). On the other hand, 
the minimum possible value of RE cannot specified, as RE can be negative and arbitrarily large if 
SSEv is much greater than SSEref. As a rule of thumb, a positive RE is accepted as evidence of 
some skill of prediction. In contrast, if RE 0≤ , the prediction or reconstruction is deemed to have 
no skill.   

Recall that the equation for computing the regression 2R is  

 2 SSE1
SST

R = −  (7) 

The similarity in form of the equations for 2R and RE (equations (7) and (5) suggests that RE be 
used as a validation equivalent of regression 2R , and that a value of RE “close to” the value of 

2R be considered as evidence of validation. The rational for this comparison is easily seen for 
leave-one-out cross-validation. In both equations, the numerator is a sum of squares of prediction 
errors, and the denominator if the sum of squares of departures of the observed values of the 
predictand from a constant. For leave-one-out cross-validation the constant is equal to the 
calibration-period mean for both equations (5) and (7). This is so because for leave-one-out cross-
validation the aggregate “validation” period is essentially the same as the calibration period: each 
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year of the calibration period is individually and separately used as a validation period in the 
iterative cross-validation, and the aggregate of these validation years is the “validation period.” 

 
PRESS Statistic.  PRESS is an acronym for “predicted residual sum of squares” (Weisberg 

1985, p. 217). The PRESS procedure is equivalent to “leave-one-out” cross-validation, as 
described previously. The PRESS statistic is defined as   

 2
( )

1

ˆPRESS
n

i
i

e
=

=∑  (8) 

where ( )ˆ ie is the residual for observation i computed as the difference between the observed value 
of the predictand  and the prediction from a regression model calibrated on the set of 

1n − observations from which observation  i was excluded. The PRESS statistic is therefore 
identical to the sum of squares or residuals for validation, SSEv , defined in equation (2), which 
was described previously.    

 

12.2 Cross-validation stopping rule      
As described earlier, the automated entry of predictors into the regression equation runs the 

risk of over-fitting, as 2R is guaranteed to increase with each predictor entering the model. The 
adjusted 2R is one alternative criterion to identify when to halt entry of predictors (e.g., Meko et 
al. 1980), but the adjusted 2R has two major drawbacks. First, the theory behind adjusted 

2R assumes the predictors are independent, while in practice the predictors are often inter-
correlated. Consequently, entry of an additional predictor does not necessarily mean the loss of 
one degree of freedom for estimation of the model. Second, the adjusted 2R does not address the 
problem of selecting the predictors from a pool – sometimes a large pool – of potential predictors. 
If the pool of potential predictors is large, 2R can be seriously biased (high), and the bias will not 
be accounted by the adjustment for number of variables in the model used by the algorithm for 
adjusted 2R  (Rencher and Pun 1980).  

 An alternative method of guarding against over-fitting the regression model is to use cross-
validation as a guide for stopping the entry of additional predictors (Wilks 1995). By evaluating 
the performance of the model on data withheld from calibration at every step of the stepwise 
procedure, the level of complexity (number of predictors) above which the model is over-fit can 
be estimated. Graphs of change in calibration and validation accuracy statistics as a function of 
step in forward stepwise entry of predictors can be used as a guide for cutting off entry of 
predictors into the model. For example, in a graph of RMSEv against step in a model run out to 
many steps (e.g., 10 steps), the step at which the RMSEv is minimized (or approximately so) can 
can be accepted as the final step for the model. The same result would be achieved from a plot of 
RE against step, except that the maximum in RE indicates the “best” model.  

Extending the entry of predictors beyond the indicated steps amounts to “over-fitting” the 
model. Over-fitting refers to the tuning of the model to noise rather than to any real relationship 
between the variables. In the extreme, over-fitting is illustrated by a model whose number of 
predictors equals the number of observations for calibration: the model will explain 100% of the 
variance of the predictand even if the predictor data is merely random noise.   

 
 

12.3 Prediction (Reconstruction) 
Predictions are the values of the predictand obtained when the prediction equation 
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0 1 ,1 2 ,2 ,
ˆ ˆ ˆ ˆˆi i i K i Ky b b x b x b x= + + + +     (9) 

 
is applied outside the period used to fit the model. For example, in dendroclimatology, the tree-
ring indices (x’s) for the long-term record are substituted into equation (9) to get estimates of past 
climate. The prediction is called a reconstruction in this case because the estimates are extended 
into the past rather than the future. Once the regression model has been estimated, the generation 
of the reconstruction is a trivial mathematical step, but important assumptions are made in taking 
the step.   

First, the multivariate relationship between predictand and predictors in the calibration period 
is assumed to have applied in the past. This assumption might be violated for many possible 
reasons. For example, in a tree-ring reconstruction, the climate for the calibration period may 
have been much different than for the earlier period, such that a threshold of response was 
exceeded in the earlier period. Or the quality of the tree-ring data might have decreased back in 
time because of a drop-off in sample size (number of trees) in the chronologies. Many other data-
dependent scenarios could be envisioned that would invalidate the application of the regression 
data to reconstruct past climate. For time series in general, regardless of the physical system, it is 
important to statistically check the ability of the model to predict outside its calibration period or 
to validate the model, as described in the preceding section. 

         
 

12.4 Error bars for predictions 
 
A reconstruction should always be accompanied by some estimate of its uncertainty. The 

uncertainty is frequently summarized by error bars on a time series plot of the reconstruction.   
Error bars can be derived by different methods: 

 
1) Standard error of the estimate, es . Recall that es  is computed as the square root of the 
mean squared residuals, MSE. Following Wilks (1995, p. 176), the Gaussian assumption leads to 
an expected 95% confidence interval of roughly  

 1 ˆ 2t eCI y s±  (10) 
Confidence bands by this method are the same width for all reconstructed values. The 2 es± rule-
of- thumb is often a good approximation to the 95% confidence interval, especially if the sample 
size for calibration is large (Wilks 1995, p. 176). But because of uncertainty in the sample mean 
of the predictand and in the estimates of the regression coefficients, the prediction variance for 
data not used to fit the model is somewhat larger than indicated by MSE, and is not the same for 
all predicted values. This consideration gives rise to a slightly more precise estimate of prediction 
error called the standard error of prediction (see next section). Also note that the “2” in equation 
(10) is a rounded-off value of the 0.975 probability point on the cdf of the normal distribution 
(1.96 rounded to 2). Strictly speaking, the appropriate multiplier (2 in the example) should come 
from a “t” distribution with n-K-1 degrees of freedom, where n is the sample size for calibration 
and K is the number of predictors in the model (Weisberg 1985). The distinction will be 
important only for small sample sizes or models for which the number of predictors is 
dangerously close to the number of observations for calibration.   
 

2) Standard error of prediction, ŷs   This improved estimate of prediction error is 
proportional to es , but in addition takes into account the uncertainty in the estimated mean of the 
predictand and the in the estimates of the regression coefficients. Because of these additional 
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factors, the prediction error is larger when the predictor data are far from their calibration-period 
means, and vice versa. For simple linear regression, the standard error of the estimate and 
standard error of prediction are related as follows: 

 ( )

( )

1/ 2

2
*

ˆ
2

1

11y e n

i
i

x x
s s

n x x
=

 
 −
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∑
 (11) 

 
 
 

where es is the standard error of the estimate, n is the sample size (number of years) for the 
calibration period, ix is the value of the predictor in year i, x is the calibration-period mean of the 
predictor, *x is the value of the predictor in the reconstruction year in question, ŷs is the standard 
error of prediction for that year, and the summation in the denominator is over the n years of the 
calibration period.   

Note first that ŷ es s> , and that ŷs differs from es because of contributions from the two right-
most terms under the square root in equation (11). The first source of difference is uncertainty 
comes from the sample mean of the predictand not being exactly equal its expectation; this 
contribution can be made smaller by increasing the sample size. The second source is the 
uncertainty in the estimates of the regression constant and coefficient. The consequence of this 
term is that the prediction error is greater when the predictor is farther from its calibration-period 
mean. This feature is what causes the “flaring out” of the prediction intervals in a plot of the 
predicted values against the predictor values. More on this topic can be found in Weisberg (1985, 
p. 22, 229) and Wilks (1995, p. 176).    

The equation for the standard error of prediction in MLR is more complicated than given by 
equation (11), which applies to simple linear regression. This is so because ŷs depends on the 
variances and covariances of the estimated regression coefficients. The equation for ŷs in the 
multivariate case is best expressed in matrix terms. The MLR model, following Weisberg (1985, 
p. 229) can be written in vector-matrix form as 

  
 

column vector of predictand for calibration period
matrix of predictors (rows as observations) for calibration period, with leading column of 1's
column vector of regression coefficients, wi

= +
=
=
=

y Xβ e
y
X
β th regression constant first

column vector of regression residuals=e
 (12) 

 
If the model is used to predict data outside the calibration period, and the predictor data for 

some year to be predicted is given by the row vector *x  (with a leading “1”), the predicted value 
for that year is given by 

 * *
ˆˆ ,y = x β  (13) 

where β̂  is a column vector of the estimated regression coefficients. Assuming the linear model is 
correct, the estimate is an unbiased point estimate of the predictand for the year in question, the 
variance of the prediction is  
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where superscript “T” denotes transpose and 2  σ is generally estimated as the residual mean 
square, or 2

es . The estimated standard error of prediction is the square root of the above 
conditional variance 

 ( )ŷ * * *s =sepred | 1 hσ= +y x  (15) 
 

2) Root-mean-squared error of validation, RMSEv. Both the standard error of the estimate 
and the standard error of prediction suffer from the possible downward bias due to “tuning” of the 
model to calibration data. A way of circumventing this problem is to use as a measure of 
uncertainty a statistic based on validation data. For example, with leave-one-out cross-validation, 
or the PRESS procedure, vRMSE PRESS/ vn=  is the validation equivalent of the standard 
error of prediction, and if normality is assumed, can be used in the same way as described for 

es or ŷs to place confidence bands at a desired significance level around the predictions. For 
example, an approximate 95% confidence interval is vˆ 2 RMSEiy ± . Weisberg (1985, p. 230) 
recommends this approach as a “sensible estimate of average prediction error.” 

 
 

12.5 Interpolation vs extrapolation  
 
A regression equation is estimated on a data set called the construction data set, or calibration 

data set. For this construction set the predictors have a defined range. For example, in regressing 
annual precipitation on tree-ring indices, perhaps the tree-ring data for the calibration period are 
range between 0.4 and 1.8 -- or 40% to 180% of “normal” growth. The relationship between the 
predictand and predictors expressed by the regression equation applies strictly only when the 
predictors are “similar” to their values in the calibration period. If the form of the regression 
equation is not known a priori, then we have no information on the relationship outside the 
observed range for the predictor in the calibration period. When the model is applied to generate 
predictions outside the calibration period, an important question is how “different” can the 
predictor data be from its values in the calibration period before the predictions are considered 
invalid. When the predictors are acceptably similar to their values in the calibration period, the 
predictions are called interpolations. Otherwise, the predictions are called extrapolations. 
Extrapolations in a dendroclimatic reconstruction model present a dilemma: the most interesting 
observations are often extrapolations, while the regression model is strictly valid only for 
interpolations. A compromise to simply tossing out extrapolations is to flag them in the 
reconstruction (e.g., Meko and Graybill, 1995).   

Algorithm for identifying extrapolations.  Extrapolations are identified by locating the 
predictor data for any given prediction year relative to the multivariate “cloud” of the predictor 
data for the calibration period. Identification is trivial for the simple linear regression, as any 
prediction year for which the predictor is outside its range for the calibration period can be 
regarded as an extrapolation. For MLR, any prediction for which the predictor data fall outside 
the predictor “cloud” for the calibration period can be regarded as an extrapolation. 
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In MLR, extrapolations can be defined more specifically as observations that fall outside an 
ellipsoid that encloses the predictor values for the calibration period. This is an ellipsoid in p-
dimensional space, where p is then number of predictors. For the simple case of one predictor, the 
“ellipsoid” is one-dimensional, and any values of x outside the range of x for the calibration 
period would lead to an extrapolation. For MLR with two variables, the ellipsoid is an ellipse in 
the space defined by the axes for variables 1x and 2x .   

For the general case of an MLR regression with p predictors and an calibration period of n 
years, Weisberg (1985, p. 236) suggests an ellipsoid defined by constant values of the diagonal of 
the “hat” matrix H, defined in matrix algebra as 

 
 ( )−= T 1 TH X X X X  (16) 

 
where X is the n  by ( 1)p + time series matrix of predictors, with ones in the first column to 
allow for the constant of regression. For each prediction year with predictor values in the row 
vector *x , the scalar quantity 

 
 * * *( )h − Τ= T 1x X X x  (17) 

 
is computed, and any prediction for which   

 
 * max ,h h>  (18) 

 
where maxh is the largest iih in the diagonal of the hat matrix H, is regarded as an extrapolation. 
The row vector *x might be the predictor values for a year within or outside the n-observation 
calibration period, while the hat matrix itself is computed from calibration-period data only.       
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