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1 Organizing time series in Matlab structures 
A time series is broadly defined as any series of measurements taken at different times. 

Some basic descriptive categories of time series are 1) long vs short, 2) even time-step vs uneven 

time-step, 3) discrete vs continuous, 4) periodic vs aperiodic, 5) stationary vs nonstationary, and 

6) univariate vs multivariate. These properties as well as the temporal overlap of multiple series, 

must be considered in selecting a dataset for analysis in this course. You will analyze your own 

time series in the course. The first steps are to select those series and to store them in structures in 

a mat file. Uniformity in storage at the outset is convenient for this class so that attention can 

then be focused on understanding time series methods rather debugging computer code to ready 

the data for analysis. A structure is a Matlab variable similar to a database in that the contents are 

accessed by textual field designators. A structure can store data of different forms. For example, 

one field might be a numeric time series matrix, another might be text describing the source of 

data, etc. In the first assignment you will run a Matlab script that reads your time series and 

metadata from ascii text files you prepare beforehand and stores the data in Matlab structures in a 

single mat file. In subsequent assignments you will apply time series methods to the data by 

running Matlab scripts and functions that load the mat file and operate on those structures. 

  How do you put your data put into Matlab structures? A Matlab programmer would do 

this with a dedicated script that converts data directly from assorted diverse original data files and 

stores the converted data in fields of structures. Because no programming experience is assumed 

for the course, you will use a two-step procedure. First is organizing the time series in tab-

delimited ascii txt files using Microsoft Excel, and the metadata in ascii txt files using a text 

editor. You copy/paste the time series from some source into Excel, and save one version of the 

Excel file as “text (tab delimited)”.  You prepare the metadata files with a text editor, such as 

Notepad++. This lesson describes the preparation of your time series and metadata, and 

introduces computation and graphics with Matlab. These notes are supplemented by two files: 

appendixa.pdf, which describes Matlab, the toolboxes needed, and how the software might 

be accessed; and appendixb.pdf, which has instructions for formatting and submitting 

assignments.  

1.1 Data types: V1, V2, V3 

You must prepare three sets of time series: V1, V2 and V3.  Some analyses will treat V1 

data as “response” variables and V2 data as “stimulus” variables.   In systems terminology, V1 

series might be output and V2 series might be input.  This arrangement assumes some kind of 

natural causal relationship.  For example, in a dendroclimatology context, precipitation might be 

considered V2 data and tree-ring indices V1 data because precipitations “affects” tree growth in a 

causal sense. An important consideration in choosing V2 and V1 time series are this expected 

causality and that V1 and V2 series must overlap in time sufficiently to examine multivariate 

relationships. Another important consideration is that the V1 and V2 data should be reasonably 

stationary in the mean and variance. Obvious trend or strict periodicity (e.g., seasonality) should 

be removed from the V1 and V2 time series before storing those series.   

The V3 data, in contrast, is expected to have some sort of trend that you wish to remove 

before subsequent analysis. Examples of data choices in dendroclimatology are: 

 

V1 = tree-ring chronologies 

V2 = annual precipitation 

V3 = measured ring widths for selected cores 
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Examples of choices in hydrology are: 

 

V1 = gauged total flow for the water year 

V2 = water-year total precipitation at stations 

V3 = gauged total flow for rivers with anthropogenic influence increasing over time 

 

Examples of choices in climatology are: 

 

V1 = Station Palmer drought severity index  

V2 = Station temperature or precipitation  

V3 = Global surface temperature 

 

The designation of V2 as “input” and V1 as “output” is nominal. If your own time series 

do not fall naturally into a physical causal system, you can arbitrarily group one set of time series 

as “input” series and another group as “output” series.  The important thing to keep in mind is 

that series from V1 will be compared with those in V2 in multivariate analysis (e.g., regression).  

Choose V1 and V2 so that at least one of the series in V1 is likely to be correlated with at least 

one of the series in V2.  

1.2 Number of series in V1, V2, V3 

Include at least 3 series in each of V1, V2 and V2.  More than 3 is acceptable, but to 

avoid clutter in the GUI menus generated by the scripts, include no more than 12 series in any of 

the structures. I suggest pick a small number of series you really want to understand better rather 

than a large number of series you might be curious about. 

1.3 Length and time-step 

The number of observations in a time series is the “length,” of the series. Sample length 

is important for some time series applications. To avoid problems, the time series selected for the 

course should generally cover at least 30 observations and preferably 50 or more observations. 

Moreover for bivariate analysis it is necessary that some time series in V1 overlap some series in 

V2 by at least 30 observations. The series in V3 need not overlap series in V1 and V2.  Moreover, 

it is not necessary that the individual series in V3 overlap in time with one another. 

The interval between observations is the “time-step.”  Time series selected for the course 

should have a constant time step with an interval of one. Such series are also called “evenly 

spaced.” For example, annual precipitation measured for years 1920, 1921, 1922, 1923 and 1924 

has a length of 5 with a constant time step of one year. Tree-ring width chronologies have a 

natural constant time step of one year.  For some time series the time step might be constant but 

not equal to one year. It is acceptable to have data at time steps other than one year (e.g., second, 

day, week, quarter), as long as all of your time series (V1, V2, V3) have the same time step and 

that time-step is constant.  

Some types of data can be aggregated in time into constant time steps equal to multiple 

years. For example, paleoclimatic measurements from ocean cores might represent successive 

1000-year blocks of time.  In that case, “times” 1, 2, 3, etc., increment by one, but each time is 

understood to correspond to a block of 1000 years:  times 1, 2 and 3 would be the first, second 

and third 1000 year block of time.  

Unevenly spaced time series are not directly amenable to analysis with the methods of 

this course, and should be avoided. An example of an unevenly spaced time series is the weight 

of a person measured each time he visits the doctor. Typically these visits are not at regular 

intervals, despite the recommendations of the doctor.  
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1.4 Discrete vs continuous 

The terms “discrete” and “continuous” as used here refer to the values of the time series, 

rather than to the sampling frequency. The sense used is therefore “discrete-valued” vs 

“continuous-valued”. A continuous time series can assume any real number, or any number along 

a number line or axis. Real numbers can be positive, negative, large or small. They can be whole 

numbers or fractions. The range may of course be limited depending on the actual data. For 

example measured annual precipitation cannot be negative, and will fall within some reasonable 

upper limit imposed by climate. In contrast a discrete time series can assume only some specified 

subset of numbers. The most extreme case of a discrete time series is a binary series, which must 

be either 0 or 1. An example of a binary series is whether a tree ring series for a particular tree 

records a fire or not in each years. Categorical time series include binary series, but can assume 

some larger number of values, which may be integers coding some trait (e.g., 1=short 2=medium, 

3=tall)., which includes all rational and irrational numbers.  

Discrete time series also include “counts,” such as the number of events each year. A 

discrete series can therefore take on few or many different values depending on the type of data. 

A special category of counting time series is the “point process.” Point processes are times of 

events, such as earthquakes, lightning strikes, or fires. The events occur as a function of time, and 

may be rare (few “times” record an event). Some interesting properties of point processes are the 

intervals, or gaps of time, between events, and the number of events in specified intervals of time. 

, and. An example is the number of lightning strikes per second over a one-hour period. Point 

processes can be studied with a particular suite of analytical methods (Brillinger 1994), but are 

not well suited for the methods used in this course (i.e., avoid them).   

For this course it is best to choose continuous time series or discrete time series that can 

assume a wide range of values. In practice, limitations of measurement systems can blur the 

distinction between continuous and discrete. For example, air temperature is a continuous time 

series but in practice can only assume a specified limited number of possible values because 

because a) the temperature as measured by a common indoor or outdoor thermometer can be read 

to only about a tenth if a degree, and b) physical processes result in air temperature not falling 

outside some reasonable observed range. The main points are is to avoid for this course binary 

series, point processes, or discrete series that can assume only a few possible values.   

1.5 Periodic vs aperiodic 

A purely periodic time series has statistical properties conditional on the time position of 

the observation relative to the starting observation time of some physically driven cycle.  Monthly 

climatic series of air temperature observed over multiple years, for example, will be higher in 

winter than in summer, and will exhibit a well-defined 12-month cycle. Insolation changes 

associated with the earth’s orbit around the sun drive the cycle. Likewise, hourly air temperature 

measured over a many days will typically have highs in the afternoon, lows in the early morning, 

and a 24-hour cycle. The rotation of the earth and the resulting changes in exposure to solar 

radiation drive the cycle. Such time series can be called “periodic,” or “seasonal,”, in that a 

significant part of their variation is driven by a recognized cyclical physical processs. 

Except for demonstrating periodicity, you should avoid periodic time series in your 

selection of data for the course. Such data is fine for the V3 dataset, but not for V1 and V2. If you 

want to use a periodic time series in the V1 or V2 data, you should first adjust the series to 

remove the periodic component. Adjustment can be by sampling, aggregation, or explicit removal 

of the seasonal component. The sampling approach is to use samples of the time series at some 

set phase, or position, of the cycle. For example, instead of using a monthly time series of 1200 

values of monthly temperature extending over a 100 year period, you can use only the 100 values 
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corresponding to the month of January. The sacrifice is that the length of the series to be analyzed 

is 1/12 the length of the original series  

The aggregation approach is to sum or average the seasonal series to remove the seasonal 

component. For example, instead of monthly air temperature, you could use the air temperature 

averaged over the 12 months of the year.  Or, a hybrid of sampling and aggregation is to use the 

time series of monthly precipitation averaged over some group of months (e.g., summer mean 

temperature). The aggregation approach also necessarily results in a reduction of series lengths. 

Finally, the seasonal dependence can be statistically removed from the seasonal time 

series. For example, a time series of monthly air temperature could be expressed as departures 

from the individual monthly long-term means. This approach has the advantage over sampling 

and aggregation of retaining the original sample length. 

Regardless of how you might prepare remove seasonality, the resulting time series should 

have a unit time step (time step of one) for use in the course. For the examples of monthly 

temperature series reduced by sampling or aggregation, the time step would be 1 years, and you 

could use the calendar year as the time variable (e.g., 1900, 1901, 1902, …). For the example of 

monthly temperature adjusted by subtracting the long-term mean, you would use a sequential 

monthly time variable. For example, the times 1-12 would correspond to months Jan-Dec of year 

1, times 13-24 to months Jan-Dec of year 2, etc.  

 

1.6 Stationary vs nonstationary 

While stationarity has a specific statistical definition that will be discussed later, it is 

sufficient for practical purposes at this data-selection step to consider as “stationary” any time 

series that has no obvious temporally-changing mean level. Stationary time series are preferred 

for V1 and V2 datasets in this course because some the methods that will be applied to the V1 

and V2 data assume stationarity. On the other hand, feel free to include series with obvious trend 

in dataset V3.  

1.7 Univariate vs multivariate 

Univariate refers to a single time series and multivariate to several time series. This is an 

introductory course, and as such focuses primarily on univariate methods, with a particular time 

series method applied to one time series at a time. However, correlation analysis moves to the 

category of “bivariate” time series (analysis treats two series), and the regression modeling is 

multivariate in the sense the predictor data for regression is a set of several time series.  

1.8 Input format of time series 

Organize and save the time series for V1, V2, and V3 in three tab-delimited ascii txt 

files. The easiest way to do this is with Excel, which allows you to “save as” text (tab delimited).  

Matlab function geosa1 will subsequently be used to read the tab-delimited data and store it in 

Matlab structures. Say you are entering or copy/pasting the time series into an Excel spreadsheet.  

Column 1 should hold the time variable (e.g., the year), and the remaining columns should hold 

the time series. The time variable in column 1 should increase down the column – in other words, 

the earliest times are towards the top rows, and the most recent times towards the bottom rows.   

Row 1 should contain short (15 or fewer characters) headers, or variable labels.  These 

labels should not have any internal spaces, and should be identical to and in the same order as the 

labels in the metadata file (see below). The label for the time-variable should also exactly match 

the time label in row 3 of the metadata file. To avoid complications, include only letters and 

numbers in these labels. Avoid other characters (e.g., the “underscore”). Once all data have been 

entered in the xls file, save it as a text (tab delimited) txt that can be read by geosa1.        
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1.9 Missing data 

The data selected for V1, V2, and V3 should be continuous in the sense that there are no 

internal missing values. If you want to use time series that have missing values, fill in those 

missing values by some appropriate method before storing the data in V1, V2 or V3.      

The block of cells with time series in the xls file and tab-delimited txt file is a time 

series matrix. This matrix can have missing data (blanks, or some specified numeric code), but 

the missing data must be at the ends of the series, not internal. For example, if the block of data 

covers the years 1801-2006, one series might have valid data just for the portion 1830-1999, 

another for 1815-2001, etc. The cells without valid data must be filled with a missing-value code, 

which can be “NaN” (Matlab’s missing number indicator), or any numeric value that will not be 

confused with actual data (e.g., -999.0).  Geosa1 will convert the tab-delimited data to a 

standard form for use in exercises in the course, and will replace any missing-value code with 

“NaN”. 

1.10 File naming 

A separate tab-delimited txt data file must be prepared for each of the input data sets 

V1, V2, and V3 described in 1.1. Save those files with names V1Data.txt, V2Data.txt and 

V3Data.txt.   

 

Geosa1 will read the tab-delimited txt files V1Data.txt, V2Data.txt and 

V3Data.txt, extract the time series from those files, extract the metadata from the paired 

metadata files (see below), and store the combined information in a Matlab storage (mat) file 

(.mat file). Geosa1 will prompt you for your last name, and use your name in naming the output 

mat file. For example, if, when prompted by geosa1 for your last name, you enter “Lincoln”, the 

output file generated and saved by geosa1 will be “Lincoln.mat”. 

 

1.11 Supporting information for time series—the metadata 

Each of the three tab-delimited time-series files (V1Data.txt, V2Data.txt, 

V3Data.txt) files) should be accompanied by a txt metadata file. The metadata file has 

additional information on the time series in the data files. We require minimal metadata in this 

course, and the information is used only in labeling the graphics and data series in menus.   

Geosa1 requires these txt metadata files, so you must build them beforehand. Any text 

editor that produces ASCII output (e.g., notepad++) will do. The metadata txt files have a very 

simple structure, which you must follow exactly or else geosa1 will fail. Each txt file consists 

of three initial lines followed by one line of information for each time series. The three initial 

lines apply to all series in the paired ascii-delimited data file, and are: 

 
1 filename of the tab-delimited txt file with the time series  

2 time step for the data  

3 missing value code used in the tab-delimited txt file 

 

 Subsequent lines, one per time series, give the following information, with 

elements on a line separated by a dollar sign, “$”: 

 
1 short name, for labeling series, 15 or fewer characters 

2 long name of series, 40 or fewer chars 

3 y-axis label for variable (type of data), 20 fewer characters 

4 units of variable, 13 or fewer characters 
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 The short name should be sufficient for you to identify series in labeled plots, and 

must be exactly the same as the variable labels in the first row of the tab-delimited fie 

with the corresponding time series (see above). The long name can be more descriptive 

and can contain internal spaces, and special character, but avoid the underscore (“_”) 

which Matlab uses to mark subscripted test. The y-axis labels and the “units” descriptor 

should not contain internal spaces or underscores.  

 

1.12 Some examples of time series  

The most important summary plot in time series analysis is a simple line plot of the 

variable of interest as a function of time. This plot is called a “time series plot” or a “time plot.” 

Examples of such plot for a variety of types of time series are shown in Figures 1-11. The plots 

serve to illustrate some of the points raised in the preceding sections (see captions of figures). 

 

 

 
Figure 1. Batting average of major league Hall of Fame outfielder Roberto Clemente. Series is 

very short (N<30 observations), continuous-valued, and aperiodic, with a constant time step of 1 

year and apparent stationarity of mean. Continuous valued series can assume any real number. 

Batting average is computed as number of hits divided by number of attempts, or at-bats, such 

that the average cannot fall outside the range 0-1.0. Within that restricted range, the batting 

average can take on any value (possibilities are actually limited by the number of at-bats). 

Judgements about stationarity are necessarily subjective, and more so the shorter the time series. 

Source of data: Baseball-reference.com 
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Figure 2. Tree-ring index site chronology for Lion Canyon, California. Index is interpreted as decimal 

proportion of normal growth, such that an index of 1.0 is “normal.” Series is long (N>>50 observations), 

continuous-valued, and aperiodic, with a constant time step of 1 year and apparent stationarity of mean. 

“Long” and “short” are subjective judgements, but for purposes of illustrating time series methods in the 

course, series longer than 50 years are ideal, and longer than 30 years are preferred. Source of data: 

dendrohydrology project for California Dept. of Water Resources, D. Meko and C. Woodhouse, PIs. 

 

 
Figure 3. Tree-ring width measurements from a single tree at Lion Canyon, California. Series is 

long (N>>50 observations), continuous-valued, and aperiodic, and nonstationary, with a constant 

time step of 1 year. The steady decline in level suggests nonstationarity, or systematic change over 

time, of mean. The decrease in spread suggests nonstationarity of variance as well. Source of 

data: dendrohydrology project for California Dept. of Water Resources, D. Meko and C. 

Woodhouse, PIs. 
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Figure 4. Minimum daily temperatures at Tucson, Arizona, over a period of 7 consecutive years. 

Series is long (N>>50 observations), continuous-valued, and periodic, with a constant time step of 

1 day. Note that days are numbered consecutively from 1, such that the last values is day 2551. 

The annual cycle, or “period,” is obvious: lowest daily minimums occur in mid-winter (red line is 

Jan 1) and highest daily minimums in mid-summer. The seasonal cycle also makes the series 

strictly nonstationarity of mean, as the expected mean of the series is conditional on day of year. 

However, aside from the cycle, no gradual change in mean level is evident. Source of data: PRISM 

Data Explorer (http://www.prism.oregonstate.edu/). 

 

 

 
Figure 5. Long-term means of monthly mean daily minimum temperature at Tucson, Arizona. 

Source: This plot summarizes the annual cycle present in the series plotted in the preceding 

figure. The plotted data is not, however, itself a time series, as the points do not represent 

observations at a sequence of times. The plot is a statistical summary of a time series (means 

computed over the 30 years 1981-2010). Source of data: PRISM Data Explorer 

(http://www.prism.oregonstate.edu/). 
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Figure 6. Monthly average atmospheric CO2 concentration measured at Mauna Loa, March 

1958 to November 2016. Series is long (N>>50 observations), continuous-valued, periodic, 

and nonstationary, with a constant time step of 1 month. An annual cycle related to 

photosynthesis by vegetation is imposed on a gradual trend in mean due to increasing CO2 

releases from industrialization, etc. Note that the time axis is sequential month, with month 

1 corresponding to February, 1958. Source of data: Global Monitoring Division, Earth 

System Research Laboratory 

(ftp://aftp.cmdl.noaa.gov/products/trends/co2/co2_mm_mlo.txt). 

 

 

 
Figure 7. Yearly mean sunspot number, 1700-2016. Series is long (N>>50 observations), 

continuous-valued and quasi-periodic, with a constant time step of 1 year. The qualifier “quasi” 

describes the irregularity of the sunspot cycle, whose average period is near 11 years. 

Moreover, unlike the annual cycle in daily minimum temperature, the physical reason for such 

variation in solar activity is unclear. The yearly mean total sunspot number is computed as the 

simple arithmetic mean of the daily total sunspot number over all days of each year. Source of 

data: Silso, or “Sunspot information and long-term solar observations” 

(http://www.sidc.be/silso/home). 

 

https://www.esrl.noaa.gov/
https://www.esrl.noaa.gov/
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Figure 8. Presence or absence of fire scar in annual tree rings of a single tree in Siberia. Series is 

long (N>>50 observations), discrete-valued, stationary or not, with a constant time step of 1 year. 

The series is “discrete-valued” because it can take on only specific values -- 1 or 0 corresponding 

to fire scar or no fire scar. This series is more appropriately called a “point process” than a time 

series, with fire scars corresponding to “events.”  Quantities of interest in the study of such series 

include the frequency of events in a given time interval and the time between events. Stationarity 

is impossible to judge from the plot alone. Information on the process might, however, help in this 

assessment. For example, time-varying emphasis on fire suppression could impose non-

stationarity. Source of data: Erica Bigio, personal communication. 

 

 
Figure 9. Number of sampled trees fire-scarred each year at tree-ring site in Siberia. Series is 

long (N>>50 observations), discrete-valued, stationary or not, with a constant time step of 1 

year. This discrete-valued series can take on only integer values less than or equal to the 

number of trees sampled in given year. An obvious possible source of nonstationarity in this 

series might be time variation in the number of trees sampled. The series is an example of a 

“count” time series. Gaps of decades occur with zero number of events. Such a series is 

generally not amenable to study by the methods used in the course. Count series with a large 

number of possible values and non-zero counts in the vast majority of observations may, 

however, be suitable. Source of data: Erica Bigio, personal communication. 
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Figure 10. Quinn index of severity of El Nino events, 1525-1987. This is an example of a 

categorical time series. Series is long (N>>50 observations), discrete-valued, stationary or not, 

with a constant time step of 1 year. This series is an example of an ordered categorical time series. 

El Nino is determined to not occur (severity=0) or to occur with severity weak-moderate (1) to 

very strong (6). Severity is judged by a large number of subjective and objective measures (see 

reference below). A categorical series generally is not a good candidate for analysis by the 

methods in the course. The exception is when the categorical variable is “ordered”, as this El Nino 

severity index is, the number of categories is large and the time series is not dominated by a single 

category (e.g., no El Nino). Source of data: http://research.jisao.washington.edu/data_sets/quinn/). 

    

 

 
Figure 11. April 1 snow water equivalent at Huysink, California, snow course, 1937-2016. Series is 

long (N>>50 observations), continuous-valued, and aperiodic, with a constant time step of 1 year 

and apparent stationarity of mean. Snow water equivalent (SWE) is water content of the 

snowpack measured at specific times by weighing samples extracted in metal tubes on specific 

dates. A trait of this series is missing data: no data in 1958, 1992, 2011 and 2014. These are 

“internal” missing values, in contrast to data that may be missing from leading or trailing years 

when the series is stored in a multivariate time series matrix. The Matlab scripts for the course 

require that any internal missing data be estimated beforehand, such the time series to be used is 

unbroken by missing-data gaps. Source of data: National Science Foundation project on tree-ring 

signal for snow variables in watershed of the North Fork American River (D. Meko and R. 

Touchan, PIs). 
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1.13 Some sample input fles 

 

A simple example using fictional data will serve to illustrate the format and content of the 

input data for script geosa1.m. Consider a V1 data set consisting of 6 tree-ring index 

chronologies. Assume you have already stored these time series in a tab-delimited data file 

“V1Data.txt”. Your paired txt metadata file for the V1 series should be named 

V1Meta.txt, and might look like this:   

 
V1Data.txt                                                   

Year                                                                       

NaN                                                                           

MEAF-PSME $ Mesa Alta Fir PSME, standard index     $ Index $ Dimensionless 

MEAP-PIST $ Mesa Alta Pine PIST, standard index    $ Index $ Dimensionless 

BCWF-PSME $ Bear Can W Fir PSME, standard index    $ Index $ Dimensionless 

BCWP-PIST $ Bear Can W Pine PIST, standard index   $ Index $ Dimensionless 

FEN-PIPO  $ Fenton Lake PIPO, standard index       $ Index $ Dimensionless 

EAU-PSME  $ Echo Amphitheater PSME, standard index $ Index $ Dimensionless 

 

 

The first line tells geosa1.m the name of the tab-delimited txt file with the time 

series. The second line says the time step for all time series is a “Year”. This time label must 

exactly match the header in row 1/column 1 of the tab-delimited data file V1Data.txt.  The 

third line is “NaN”, meaning that any occurrence of “NaN” in the data file should be interpreted 

as missing data. Remaining lines list the individual V1 time series. For example, the first series 

has short name “MEAF-PSME”, long name “Mesa Alta Fir PSME,standard 

index”, and is an “Index” that is dimensionless – has units “Dimensionless”.   

For this example, files V1Data.txt and V1Meta.txt apply to the V1 data. You also 

need to prepare corresponding pairs of files for the V2 and V3 data.    

 

1.14 Running geosa1.m 

Geosa1 is a function that reads the ascii txt files of time series and metadata and stores 

the data in a mat file that is used in the rest of the course. Geosa1 will prompt you for your last 

name, and will give the mat file this name (e.g., Lincoln.mat).  Geosa1 stores all the data 

in this single mat file. Before running geosa1, make sure that the required input data files are in 

the current Matlab working directory (see appendixa.pdf). If you run into problems, detailed 

instructions for running geosa1 are found elsewhere (see “Running goesa1.m” in a1.pdf). 

  

1.15 Checking that the structure variable has been created and stored 

After running geosa1, you should have a mat file (e.g., Lincoln.mat) in your current 

working directory, and that mat file should hold vlist (a list of variables in the mat file), and a 

subset of time series structure variables V1, V2, V3. Say the mat file is named Lincoln.mat. 

Check out contents of the mat file by typing commands:  

 
>> what 

Shows a list of mat files in the command window. You should see Lincoln.mat in 

the list  
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>>clear 

>>load Lincoln.mat 

clears the workspace and loads the .mat file you have created.   

 
>> whos 

lists variables in the workspace.  You should see vlist and one or more of V1, V2, V3 

there now. 

 
>>vlist 

lists the contents of variable vlist 
 

>>V1 

Typing a variable’s name displays the contents of the variable in the command 

window.  Names are CASE SENSITIVE.  When you type V1, you see a list of all the 

fields in the structure variable V1.    

 
>>V1.id 

Type the structure followed by a period and a fieldname and you get the expanded 

contents of the field.  So, for example, lists the short series names, or ids 

 
>>V1.name 

lists the names long series names 

 
>>V1.tsm 

lists the time series themselves. 

 

Note that V1.tsm has only the time series data, not the vector of years. V1.time is the 

year vector. You can generate a quick time series plot of the first and third series, with 

a legend of ids, by entering this sequence of commands 

 
>>t=V1.time; 

>>x1=V1.tsm(:,1); 

>>x3=V1.tsm(:,3); 

>>plot(t,x1,'-',t,x3,'-'); 

>>ylabel(V1.label{1}); 

>>xlabel(V1.increment); 

>>legend(V1.id{1},V1.id{3}); 

 
The first three commands rename variables so that the plot syntax is less cluttered. The 

next commands plot the series and label the plot.  Entering the commands one by one at the 

command prompt is one way to use Matlab. A better way is to organize the commands in an ascii 

file called a “script” and then run the script from the command prompt. Using scripts avoids 

having to re-enter commands each time your want to repeat an analysis or modify some part of 

the analysis or the plots. The interactive tools at the top of the figure window are another way to 

change attributes of plots. Please refer to the Matlab help files for more information on graphics.  

Matlab functions, like scripts, are also ascii files containing commands, but are more 

general in that they may be applied to different problems by changing the input arguments. The 

plot command above is a function with input arguments the x-data, y data and line-type for the 

plot. Matlab has many built-in functions for data analysis, and you can extend this capability with 

your own functions or user-written functions available over the Web.  
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It is helpful to learn some basic elements of Matlab programming if you want to apply 

Matlab functions other than those covered in the course, or if you want to tailor your own data 

analysis. But you do not need to program in Matlab for this course. The script files and functions 

needed for all analyses have already been written and are provided for the course.   

1.16 Turning in assignments as figures and captions  

Assignments for the course consist of running Matlab scripts or functions demonstrating 

the time series methods and writing up brief interpretations of the results. Each assignment should 

be turned in as a pdf document with figures and captions only. The figures are generated by the 

Matlab scripts. The captions are your answers to the questions in the assignment.  Please refer to 

file appendixb.pdf (“Appendix B -- Submitting Assignments”) for instructions on preparing 

and submitting assignments.   
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