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4  Spectrum  
 

The spectrum of a time series is the distribution of variance of the series as a function of 

frequency.  The object of spectral analysis is to estimate and study the spectrum. The spectrum 

contains no new information beyond that in the autocovariance function (acvf), and in fact the 

spectrum can be computed mathematically by transformation of the acvf. But the spectrum and 

acvf present the information on the variance of the time series from complementary viewpoints.  

The acf summarizes information in the time domain and the spectrum in the frequency domain.    

 

Why analyze the spectrum? 
The spectrum is of interest because many natural phenomena have variability concentrated in 

specific bands of wavelength or frequency, such that the variance of the series is “frequency-

dependent.” Understanding the frequency dependence may yield information about the 

underlying physical mechanisms.  Spectral analysis can help in this objective. A classic example 

from dendroclimatology is LaMarche’s (1974) application of spectral analysis to study 

differences in frequency properties of tree growth at the upper treeline and lower forest border in 

eastern Nevada. LaMarche found that lower frequencies dominated the variance at the upper 

treeline, while higher frequencies were more important at the lower treeline (Figure 4.1). From 

correlation analysis of frequency-stratified components of variability, he concluded that the low-

frequency variations reflected temperature fluctuations and the high-frequency fluctuations 

precipitation variations. A couple of years earlier, LaMarche and Fritts (1972) had first applied 

modern spectral analysis methods to study a possible solar-variability signal in tree rings. This 

topic received much attention from dendroclimatologists in subsequent years. Ed Cook followed 

up on the solar-tree ring connection in the late 20th century by applying spectral analysis methods 

to relate tree-ring variations at hundreds of sites in North America to an index of area covered by 

drought (Cook et al. 1997), and concluded that the data supports a bi-decadal rhythm in drought-

area, possibly driven by interacting solar and lunar influences near the double sunspot and lunar 

nodal periods.  

 

Figure 4.1.   Spectra of upper treeline (solid) and lower forest border 

(dashed) tree-ring chronologies (LaMarche 1974). 
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4.1 The frequency domain 

 

In the time domain, variations are studied as a function of time. For example, the time series 

plot of an annual tree-ring index displays variations in tree-growth from year to year, and the acf 

summarizes the persistence of a time series in terms of correlation between lagged values for 

different numbers of years of lag. In the frequency domain, the variance of a time series is studied 

as a function of frequency or wavelength. The main building blocks of variation in the frequency 

domain are sinusoids, or sines and cosines. In discussing the frequency domain, it is helpful to 

start with definitions pertaining to waves. For simplicity, we will use a time increment of one 

year. Consider the simple example of an annual time series ty generated by superimposing 

random normal noise on a cosine wave:   

 cos( )t t t ty R t z w z       (1) 

where t is time (years, for this example), tz is the random normal component in year t, tw is the 

sinusoidal component; and R, and  are the amplitude, angular frequency (radians per year), 

and phase of the sinusoidal component.   

The plot in Figure 4.2 shows a time series generated by model (1) with the following settings: 

 

     -time series length of 201 years 

     -sinusoidal component with wavelength 100 years, amplitude 1.0, and phase 0 degrees       

relative to time 0 

     -noise component from normal distribution with mean 0 and variance 0.01 

  

The peaks are the high points in the wave; the troughs are the low points. The wave varies 

around a mean of zero.  The vertical distance from zero to the peak is called the amplitude. The 

variance of a sinusoid is proportional to the square of its amplitude: 2var( ) 2tw R .    The phase 

 describes the offset in time of the peaks or troughs from some fixed point in time.  From the 

relationship between variance and amplitude, the sinusoidal component in this example has a 

variance of 50 times that of the noise (0.5 is 50 times 0.01). 

The angular frequency  describes the number of radians of the wave in a unit of time, where 

2  radians corresponds to a complete cycle of the wave (peak to peak). In practical applications, 

the frequency is often expressed by f, the number of cycles per time interval.  The relationship 

between the two frequency measures is given by  

 (2 )f    (2) 

The wavelength, or period, of the cosine wave is the distance from peak to peak, and is the 

inverse of the frequency 

 
1

f
   (3) 

Thus a frequency of one cycle per year corresponds to an angular frequency of 2 radians per 

year and a wavelength of 1 year.   

Because we have specified a wavelength of 100 years for the sinusoid in Figure 4.2, equation 

(3) gives the frequency of the sinusoid as  

 

 1 100 0.01 cycles per yearf    (4) 

The wave requires 100 years to complete a full cycle, and completes 0.01 cycle in one year,.  The 

angular frequency is 
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                                                   2 0.0628 radians per yearf                                        (5) 

 

Special meaning is attached to the very short wave with a wavelength of two time steps (e.g. 2 

years). Such a wave has a frequency of one cycle every two years and an angular frequency of 

 radians per year. In the analysis of annual time series, this frequency of 0.5 cycles /f yr  or 

 radians / yr  is called the Nyquist frequency. The Nyquist frequency is the highest frequency 

for which information is available from spectral analysis of the time series. 

Another important frequency in spectral analysis is the fundamental frequency, also referred to 

as the first harmonic. If the length of a time series is N years, the fundamental frequency is 1/ N .  

The corresponding fundamental period is N years, or the length of the time series.  For example, 

the fundamental period of a time series of length 500 years is 500 years – a wave that undergoes a 

complete cycle over the full length of the time series.    

 

  

 

 

 

4.2 Sinusoidal model of a time series 

 

The model given by equation (1) is extremely simple, consisting of just a single sinusoidal 

component with superposed noise.  Following Percival and Walden (1993), the spectrum can be 
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Figure 4.2.   Example of periodic series with superposed noise. 
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defined in terms of a more complicated model in which a time series tX of length N consists of a 

linear combination of many sinusoids with random amplitudes  jA and  jB at fixed frequencies 

 jf : 

    
[ / 2]

1

cos 2 sin 2 , =1,2, ,
N

t j j j j

j

X A f t B f t t N  


   
  , (6) 

where  is a constant.  The frequencies jf in the above equation are related to the sample size N  

by  

 / , 1 [ / 2]jf j N j N   , (7) 

 

where the notation  / 2N  means the greatest integer less than or equal to / 2N ,   

The frequencies of the sinusoids are at intervals of 1/ N and are called the Fourier 

frequencies, or standard frequencies. The frequency jf is thj standard frequency (Figure 4.3).  

The standard frequencies clearly depend on the sample size. For example, for a 500-year tree-ring 

series, the standard frequencies are at 1/ 500,2 / 500, cycles per year. The highest standard 

frequency is the Nyquist frequency,  / 2 1/ 2 0.5f N N   , which corresponds to a 

wavelength of two years. 

In developing the definition of the spectrum with this model, additional assumptions are that 

the amplitudes  jA and  jB are random variables with expected values  

     0j jE A E B   (8) 

and 

    2 2 2

j j jE A E B    (9) 

From the relationship between variance and amplitude of sinusoid, equation (9) implies that 

the variance associated with the thj standard frequency is
2

j . The amplitudes associated with 

various standard frequencies are also assumed to be uncorrelated: 

     0 for j k j kE A A E B B j k    (10) 

and 

   0 for all , .j kE A B j k  (11) 

With the assumptions above, it can then be shown that the expected value of tX is 

  tE X  , (12) 

the variance of tX is 

   
[ / 2]

2 22

1

N

t j

j

E X  


    , (13) 

and the autocorrelation function of tX is 

 

[ / 2]
2

1

[ / 2]
2

1

cos(2 )
N

j j

j

k N

j

j

f k 














 (14) 

Equation (13) says that the variance of a time series tX is the sum of the sum of the variances 

associated with the sinusoidal components at the different standard frequencies.  The key point is 
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that the variance of a time series can be decomposed into components at the standard frequencies 

-- the variance can be expressed as a function of frequency. 

For the model given above, the spectrum is defined as 

 
2 2

, 1 [ / 2]j jS j N    (15) 

A plot of jS against frequencies jf shows the variance contributed by the sinusoidal terms at 

each of the standard frequencies. From equation(13), the variance of tX can then be expressed as 

the sum of the spectral components 

 
[ / 2]

2

1

N

j

j

S


   (16) 

The variance contributed at frequency jf is the spectrum jS at that frequency. A plot of the  

spectral values jS plotted against jf indicates which frequencies are most important to the variance 

of the time series. 

 

 

Figure 4.3.  Illustration of fundamental and Fourier frequencies. (A) Tree-ring index 

MEAF, with length 108 years. (B) Sinusoidal time series at fundamental frequency 

(wavelength 108 yr) of the tree-ring series. (C) Sinusoidal time series at Fourier 

frequencies 2/N and 10/N (wavelengths 54 yr and 10.8 yr), where N=108 years. Series 

in B and C are scaled to same mean and variance as tree-ring series.  As the tree-ring 

series is not periodic, its peaks and troughs are irregularly spaced, unlike those of the 

sinusoids. Theoretically, the variance of the tree-ring series in (A) could be 

decomposed into contributions from all Fourier frequencies.   
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Considering that 
2

j are spectral values, equation (14) gives an important relationship between 

the spectrum and the autocorrelation function: the acf can be expressed as a cosine transform of 

the spectrum. Similarly the spectrum can be shown to be the Fourier transform of the acf. The 

spectrum and acf are therefore different characterizations of the same time series information.  

The acf is a time-domain characterization and the spectrum is a frequency-domain 

characterization. From a practical point of view, the spectrum and acf are complementary. Which 

is most useful depends on the data and the objective of analysis. 

 

4.3 Harmonic analysis = periodogram analysis = Fourier analysis 

For a given time series, it is possible to apply the above model to mathematically estimate the 

parameters of the sinusoidal terms at each Fourier frequency. Such an analysis is called Fourier 

analysis, or harmonic analysis Chatfield (2004; Panofsky and Brier 1958). Harmonic analysis is 

most appropriate for phenomena with known periodic components. For example, a single time 

series made up 12 values of the long-term mean of monthly temperature will likely have a well-

defined annual (12-month) component at the fundamental frequency. Harmonic analysis can be 

used to quantify the importance of this annual wave relative to other components of the 

variability of the annual distribution of monthly means. 

In harmonic analysis, the frequencies / , 1,..., / 2j N j N are referred to as the harmonics:  

1/N is the first harmonic, 2/N the second harmonic, etc. Any series can be decomposed 

mathematically into its N/2 harmonics. The sinusoidal components at all the harmonics 

effectively describe all the variance in a series. A plot of the variance associated with each 

harmonic as a function of frequency has been referred to above as the “spectrum” for the 

hypothesized model. Such a plot of variance (sometimes scaled in different ways) against 

frequency is also called the periodogram of the series, and the analysis is called periodogram 

analysis (Chatfield 2004). Spectral analysis, to be described next, departs from periodogram 

analysis in an important way: in spectral analysis, the time series is regarded as just one possible 

realization from a random process, and the objective is to estimate the spectrum of the process 

using just the observed time series. 

 

4.4 Spectral analysis 

In analyzing the spectrum, we want to acknowledge the uncertainty in trying to understand a 

process from a single sample. Spectral analysis is therefore concerned with estimating the 

unknown spectrum of the process from the data and with quantifying the relative importance of 

different frequency bands to the variance of the process. The spectrum being estimated in a sense 

is not really the spectrum of the observed series, but the spectrum of the unknown infinitely long 

series from which the observed series is assumed to have come.   

Various methods have been developed to estimate the spectrum from an observed time series.  

For an overview and comparisons of different methods, see Percival and Walden (1993), 

Chatfield (2004), and Bloomfield (1976). In this chapter, we use the Blackman-Tukey method, 

one of several available nonparametric methods (Percival and Walden 1993).  (Later in the 

semester we will also use another spectral estimation method -- the smoothed periodogram.)   

The presentation on the Blackman-Tukey method closely follows Chatfield (2004). Note the 

use of angular frequency in the equations.  

 

 

 



Notes_4, GEOS 585A, Spring 2017 7 

Spectral distribution function 
 

We previously defined the sample autocorrelation kr and autocovariance function kc . We will 

refer to these functions also as the “acf” and the “acvf.”   In the notation of Chatfield (2004), the 

corresponding population statistics are the population acvf, ( )k , and population acf, ( )k . An 

important time series theorem, called the Wiener-Khintchine theorem, says that for any stationary 

stochastic process with autocovariance function ( )k , there exists a monotonically increasing 

function, ( )F  , such that  

 
0

( ) cos ( )k k dF


     (17) 

Equation (17) is called the spectral representation of the autocovariance function, and ( )F  is 

called the spectral distribution function. ( )F  has a direct physical interpretation: 

 

 
( ) contribution to the variance of the series which is 

            accounted for by frequencies in the range (0, )

F 




 (18) 

   

Note the similarity of equation (18) to the relationship between autocorrelation function and 

spectrum for the simple sinusoidal model discussed previously (14).  Why is the range restricted 

to angular frequencies (0, ) ?  First, there is no variation at negative frequencies, so the lower 

limit on the range is 0. Second, if a process is measured at unit intervals, the highest possible 

frequency that can be studied corresponds to wave that undergoes a complete cycle in two 

intervals, or an angular frequency of   . Thus, all the variation is accounted for by 

frequencies less than  : 

 
2

( ) var( )t XF X    (19) 

The function ( )F  increases monotonically between 0  and   , and in this way ( )F  is 

similar to a cumulative distribution function, or cdf.  In fact, by scaling ( )F  by the variance, we 

get what is called the normalized spectral distribution function 

 
2* ( ) ( ) / XF F    (20) 

which gives the proportion of variance accounted for by frequencies in the range (0, ) , and 

which, like a cdf, reaches a maximum of 1.0, since * ( ) 1F   . 

 

Spectral density function, or spectrum 

 

The spectral distribution function, just described, gives the variance of the process at 

frequencies less than some frequency. By differentiating the spectral distribution function with 

respect to frequency we get the spectral density function, which gives the variance associated 

with each frequency 

 
d ( )

( ) (power) spectral density function
F

f
d





   (21) 

The term “spectral density function” is often shortened to spectrum. The adjective “power” is 

often omitted. “Power” comes from the application of spectral analysis in engineering, and is 

related to the passage of an electric current through a resistance. For a sinusoidal input, the power 

is directly proportional to the squared amplitude of the oscillation. We have seen that for a time 

series the variance of a sinusoid is proportional to its squared amplitude. Thus “power” is 

equivalent to “variance.” 
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Relationship between variance and spectrum of a time series 
 

A plot of the spectrum ( )f  against frequency is essentially a plot of the variance of a time 

series against frequency. More precisely, a given value of ( )f  is a “variance per unit frequency”, 

such that by integrating over some increment of ( )f  we get the variance associated with that 

range of frequencies. In other words, if d is some increment of frequency, ( )df   is the 

contribution to the variance of components with frequencies in the range ( , d )   .    

In a graph of the spectrum, therefore, the area under the curve bounded by two frequencies 

represents the variance in that frequency range, and the total area underneath the curve represents 

the variance of the series. A peak in the spectrum represents relatively high variance in a 

frequency band centered on the peak. The Wolf sunspot series appears to have about 10 peaks per 

century (Figure 4.4).  The spectrum of this series peaks at a wavelength somewhat longer than 10 

years, and indicates a large fraction of the variance is contributed by wavelengths between 10 and 

12 years (Figure 4.5).  

A flat spectrum indicates that variance is evenly distributed over frequencies. A process or 

time series with such an even distribution of variance over frequency is called “white noise.” A 

white-noise spectrum is accordingly a horizontal line (see dashed line in Figure 4.5). A sampled 

time series referred to as white noise series has no tendency for amplified variance at any 

particular frequency, and has no significant spectral peaks.  

 

 

 

Figure 4.4.  Time series of Wolf Sunspot Number.   
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Relationship between acvf and spectrum 

 

In equation (17) the acvf was expressed in terms of a cosine transform of increments of the 

spectral distribution function.  That relationship also means that the acvf can be expressed as a 

cosine transform of the spectral density function, or spectrum. An inverse relationship can also be 

shown, such that the spectrum is the Fourier transform of the acfv 

 
1

1
( ) (0) 2 ( ) cos .

k

f k k   






 
  

 
  (22) 

The Blackman-Tukey method of spectral estimation exploits this relationship to estimate the 

spectrum by way of the sample acf. 

 

The normalized spectrum 

 

Because the area under the spectrum equals the variance, scaling the spectrum by dividing it 

by the variance 
2

X yields a plot for which the area under the curve is 1. The normalized 

spectrum is accordingly defined as  

 
2

* ( ) ( ) / Xf f    (23) 

 

Figure 4.5.  Spectrum of Wolf Sunspot Cycle, 1700-2007.  

Shading covers frequency range (1/12) yr-1 to (1/10) yr-1, 

corresponding to wavelengths between 10 and 12 years. Ratio 

of shaded area to total area under curve is fraction of series 

variance contributed by wavelength-band 10-12 years. 

Horizontal dashed line is at the mean of the spectrum; its 

ordinate is the variance of the time series (here, 

variance≈0.1635E4). Area under dashed line equals area 

under solid curve, and is proportional to the series variance.  

The coefficient of proportionality is ½ given that the 

frequency axis extends from 0 to 0.5.     
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Recall that the acf is just the acvf divided by the variance. The normalized spectrum can 

therefore be written as the Fourier transform of the acf 

 
1

1
* ( ) 1 2 ( ) cos .

k

f k k  






 
  

 
  (24) 

 The area beneath part of the normalized spectrum, * ( )df   , is the proportion of variance in 

the frequency range ( , d )   . Plots of the normalized spectrum are often preferable to plots 

of the spectrum for comparing spectral properties of time series with greatly differing variances, 

or different units of measurement. For example, a comparison of spectral properties of two 

different segments of the Wolf Sunspot series is distorted by gross differences in total variance 

for the sub-periods (Figure 4.6A). But the normalized spectra show that the segments are really 

quite similar in the fraction of variance near wavelength 11 years (Figure 4.6B).  

 

4.5 Estimating the spectrum from  data 

 

The discussion above suggests that an estimator for the spectrum is the Fourier transform of 

the complete sample acvf. Why not simply substitute the sample acvf for the population acvf,   

in equation (22) and have the summation run out to the maximum possible lag, which is 

lag 1k N  ?  In fact this is one approach to estimating the periodogram, which as we have seen 

is a spectrum with spectral estimates at the standard frequencies. The estimation of the 

periodogram in this way is described by Chatfield (2004). A problem with estimating the 

spectrum in this seemingly obvious way is that the estimator is not consistent, meaning that the  

variance of the estimate does not decrease as the sample size N increases. One reason is that the 

method entails estimating N parameters from N observations, no matter how long the series is.  

Another problem is that the acvf at high lags is uncertain, and the method does not discount the 

higher lags. As a result, the spectrum (or periodogram) estimated in this way fluctuates wildly 

from one standard frequency to another and is extremely difficult to interpret.The Blackman-

Tukey method circumvents this problem by applying the Fourier transform to a truncated, 

smoothed acvf rather than to the entire acvf.  

 

 

 

 

Figure 4.6.  Comparison of spectra and normalized spectra. (A) Spectra for two different 

sub-periods of the Wolf Sunspot series. (B) Normalized spectra for the same two sub-periods.  

Series variance for 1801-1900 is only about half that for 1901-2000. From the time series plot 

(Figure 4.4), it can be seen that the variance for 1801-1900 is lower than for 1901-2000. The 

greater area under the spectrum for 1901-2000 reflects this difference (A). The differences in 

total variance have been removed in the normalized spectra (B): the areas under the two 

normalized spectra are equal.   
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The lag-window estimate of the spectrum 
 

The Blackman-Tukey estimation method consists of taking a Fourier transform of the 

truncated sample acvf using a weighting procedure. Because the precision of the acvf estimates 

kr decreases as lag k increases, it seems reasonable to give less weight to the values of the acvf at 

high lags. Such an estimator is given by  

 0 0

1

1ˆ ( ) 2 cos
M

k k

k

f c c k   
 

 
  

 
  (25) 

where  k are a set of weights called the lag window, and ( )M N is called the truncation point.  

From equation (25) we see that the acvf at lags M k N  are no longer used, and that the acvf 

estimates at lower lags are weighted by a weighting function k . Various weighting functions 

have been used to estimate the spectrum by equation (25);  all have decreasing weight toward 

higher lags, such that the higher-lag autocovariances are discounted.  One popular form of lag 

window is the Tukey window.   

 
 
Tukey window 

 

The Tukey window, also called the Tukey-Hanning and Blackman-Tukey window, is given by  

 0.5 1 cos 0,1, ,k

k
k M

M




 
   

 
 (26) 

where k is the lag, M is the width of the lag window – also called the truncation point , and k is 

the weight at lag k.  The Tukey window for a window-width of 30 lags is shown in Figure 4.7.   

 

 

 

The weights decrease in 

the form of a bell-shaped 

curve from a maximum 

weight of 1 at lag 0 to a 

minimum weight of 0 at 

lag M.  In estimating the 

spectrum by smoothing the 

acvf, you must choose the 

truncation point M. This is 

generally done by trial and 

error, with a subjective 

evaluation of which 

window best displays the 

important spectral features.  

The choice of M affects the 

bias, variance, and 

bandwidth of the spectral 

estimates. 
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Figure 4.7.  Weights in Tukey Window of width 30. 
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Smaller M  increased bias  

Bias refers to the tendency of spectral estimates to be less extreme (both highs and lows) than 

the true spectrum. Increased bias is manifested in a “flattening out” of the estimated spectrum, 

such that peaks are not as high as they should be, and troughs not as low. This bias is 

acknowledged, but not explicitly expressed as a function of M.  

 

Smaller M smaller variance of spectral estimates (narrower confidence bands) 
Chatfield (2004) references Jenkins and Watts (1968, Section 6.4.2) for the general 

relationship between the truncation point, M, of the Tukey window and the variance of the 

spectral estimates. The quantity ˆ( ) ( )f f   is approximately distributed as 2

 , or chi-squared 

with  degrees of freedom, where for the Tukey window the degrees of freedom depends on the 

ratio of sample size to truncation point as follows 

 2.67N M   (27) 

The relationship yields the following asymptotic 100(1 )%  confidence interval for ( )f  : 

 
2 2

, / 2 ,1 / 2

ˆ ˆ( ) ( )
to

f f

   

   

  

 (28) 

 

A hypothetical example can illustrate the effect of changing M on the confidence interval. Say 

the time series has length 500 years, and you try two values of truncation point: 1 / 5 100M N   

and 2 /10 50M N  .  From equation (27),  the corresponding degrees of freedom are  

 1 5* 2.67 13.35    (29) 

and 

 2 10 * 2.67 26.7    (30) 

For 1 13  , associated with a choice of truncation point 100M  , the chi-squared values  for 

the 95% confidence interval are 

 2

13,.025 13,0.9755.01           ,      24.73    (31) 

and the confidence interval is  

 
ˆ ˆ13 ( ) 13 ( ) ˆ ˆto or 2.59 ( ) to 0.52 ( )

5.01 24.73

f f
f f

 
   (32) 

 

 

For 2 27  , associated with a choice of truncation point 50M  , the chi-squared values for 

the 95% confidence interval are 

 2

27,.025 27,0.97514.57           ,      43.19    (33) 

and the confidence interval is  

 
ˆ ˆ27 ( ) 27 ( ) ˆ ˆto or 1.85 ( ) to 0.62 ( )

14.57 43.19

f f
f f

 
   (34) 

 

For a spectral estimate ˆ ( )f  , therefore, lowering the truncation point from 100M   to 

50M  can be seen from (32) and (34) to result in a narrowing of the confidence interval around 

the spectral estimate. 

 

 

 



Notes_4, GEOS 585A, Spring 2017 13 

Smaller M  increased bandwidth (decreased resolution of frequency of features) 
Bandwidth is the width of the spectral window describing the frequency-resolution with which 

spectral features can be identified. Spectral estimates apply to a band of frequency, and the width 

of that band is the bandwidth. If the bandwidth is wide, nearby peaks at similar frequencies might 

not be resolvable from one another. Bandwidth is a function of truncation point M, such that 

smaller M broadens the bandwidth. Chatfield (2004) gives the relationship between bandwidth 

and truncation point for the Tukey window as  

 

 8 (3 ) radians/yr bw M  (35) 

or 

 4 (3 ) cycles/yrbw M  (36) 

 

Increasing M gives a narrower bandwidth, and spectral features more finely resolved along the 

frequency axis. The trade-off, as shown in the previous section, is that increasing M also has the 

effect of widening the confidence interval around the spectral estimates.  

 

General guidelines for choice of M 
From the above, we see that the choice of truncation point M is important in getting the 

spectral estimates ˆ ( )f  . Chatfield (2004) offers some practical guidelines on the choice of M: 

 
The choice of truncation point, M, is rather difficult and little clear-cut advice is available in the 

literature.  It has to be chosen subjectively so as to balance ‘resolution’ against ‘variance’.  The 

smaller the value of M, the smaller will be the variance of ˆ ( )f  but the larger will be the bias 

(Neave, 1971).  If M is too small, important features of ˆ ( )f  may be smoothed out, while if M 

is too large the behaviour of ˆ ( )f  becomes more like that of the periodogram with erratic 

variation.  Thus a compromise value must be chosen, usually in the range1/ 20 1/ 3M N  .  

For example, if 100 200N  , a value of M about / 6N may be appropriate, while if 

1000 2000N  , a value of M less than /10N may be appropriate. The asymptotic situation 

we have in mind is that as N  , so does M  but in such a way that / 0M N  .  

…Jenkins and Watts (1968) suggest trying 3 different values of M. A low value will give an idea 

where the large peaks in ( )f  are, but the curve is likely to be too smooth. A high value is likely 

to produce a curve showing a large number of peaks, some of which may be spurious. A 

compromise can then be achieved with the third value of M. As Hannan (1970, p. 311) says, 

‘experience is the real teacher and cannot be got from a book’. 

 

A reasonable lag window can be achieved by viewing the spectrum while gradually increasing 

M. This approach, called “window closing,” results in a gradually narrowed bandwidth, and 

increasing detail in the estimated spectrum.  The window closing approach is illustrated in 

spectral estimation for the sunspot series, 1700-2007 (Figure 4.8). Narrowing the bandwidth 

yields more detail in the spectrum, but with the tradeoff that the spectral estimate has greater 

variance, or uncertainty.     
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Low-Frequency Spectrum 

The broad shape of the estimated spectrum may indicate that variance tends to be higher at the 

low frequencies than at the high frequencies. The broad underlying shape of the spectrum is best 

seen in a much smoothed spectrum, which can be produces by selecting a small lag window, M, 

in the Blackman-Tukey method. For example, the upper left plot in Figure 4.8 clearly indicates 

that the sunspot series has relatively high variance at low frequencies. Such a spectrum is called a 

low-frequency spectrum. Conversely, if a spectrum tends to be higher at high frequencies than at 

the low frequencies the series has a high-frequency spectrum. Time series with trend in mean or 

with positive lag-1 autocorrelation are characterized by a low-frequency spectrum. Such spectra 

are common for time series generated by many geophysical processes.     

Aliasing   

Aliasing is a phenomenom sometimes encountered when the process generating the sampled 

time series has appreciable variability at frequencies higher than the Nyquist frequency, which is 

defined by the sampling interval. In other words, aliased features are spectral features on the 

frequency range  0,0.5 produced by variations at frequencies higher than 0.5. With annual 

 

Figure 4.8.   Illustration of “window closing” process in spectral estimation. Plots are spectra 

of 1700-2007 Wolf Sunspot Number using different settings of lag window M. With increasing 

M the following occurs:  1) bandwidth narrows, allowing greater frequency resolution of the 

main peak near 11 years, 2) spectral peak near 11 years becomes larger, and 3) confidence 

interval around spectrum widens.    

 



Notes_4, GEOS 585A, Spring 2017 15 

sampling, aliasing could result from variance at wavelengths shorter than 2 years. Whether 

aliasing is a problem or not depends on the sampling interval and the frequencies of variability in 

the data before sampling, and is most easily illustrated for sampled rather than aggregated time 

series. As a hypothetical example, imagine a time series of air temperature and a sampling 

interval of 18 hours. The Nyquist frequency corresponds to a wavelength of twice the sampling 

interval, or 36 hours. Air temperature has roughly a diurnal, or 24-hour, cycle – a cycle at a 

higher frequency than the Nyquist frequency. If the first sample happens to coincide with the time 

of daily peak temperature, the second sample – 18 hr later -- will be 6 hr before the peak 

temperature on the second day, the third sample will be 12 hr before the peak temperature on the 

third day, the fourth sample will be 18 hr before the peak temperature on the fourth day, and the 

fifth sample will be 24 hr before the peak temperature on the fifth day. But this fifth sample is 

again at the time of daily maximum temperature.  If the sampling is continued, the series would 

tend to peak at observations 1, 5, 9, 13, etc. The spacing between peaks is 4 sample points, or 

4x18=72 hr. A spectrum of the series sampled in this way would have a spectral peak at 

wavelength 72 hrs. This is a false spectral peak, and is really the 24-hr cycle aliased to 72 hours.   

As another hypothetical example, an aliased cycle at a wavelength of 5 years (60 months) can 

be produced by sampling a time series of monthly mean-maximum temperature at intervals of 15 

months (Figure 4.9).  The monthly temperature series has a nature period of 12 months, and 

sampling every 12 months results in a series with no apparent cycle (Figure 4.9, top). But 

sampling every 15th month produces a strong cycle with a 5 year period (Figure 4.9, bottom).  

This bogus cycle could be predicted by considering that the lowest common denominator of the 

sampling interval (15 months) and the natural cycle (12 months) is 60 months. 
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