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12 Validating the Regression Model 

 
Regression R-squared, even if adjusted for loss of degrees of freedom due to the number of 

predictors in the model, can give a misleading, overly optimistic view of accuracy of prediction 

when the model is applied outside the calibration period. Application outside the calibration 

period is the rule rather than the exception in dendroclimatology. The calibration-period statistics 

are typically biased because the model is “tuned” for maximum agreement in the calibration 

period.   Sometimes too large a pool of potential predictors is used in automated procedures to 

select final predictors.  Another possible problem is that the calibration period may be anomalous 

in terms of the relationships between the variables: modeled relationships may hold up for some 

periods of time but not for others.  It is advisable therefore to “validate” the regression model by 

testing the model on data not used to fit the model. Several approaches to validation are available.  

Among these are cross-validation and split-sample validation. In cross-validation, a series of 

regression models is fit, each time deleting a different observation from the calibration set and 

using the model to predict the predictand for the deleted observation. The merged series of 

predictions for deleted observations is then checked for accuracy against the observed data. In 

split-sample calibration, the model is fit to some portion of the data (say, the second half), and 

accuracy is measured on the predictions for the other half of the data. The calibration and 

validation periods are then exchanged and the process repeated. In any regression problem it is 

also important to keep in mind that modeled relationships may not be valid for periods when the 

predictors are outside their ranges for the calibration period: the multivariate distribution of the 

predictors for some observations outside the calibration period may have no analog in the 

calibration period. The distinction of predictions as extrapolations versus interpolations is useful 

in flagging such occurrences. 

 

12.1 Validation 

 

Validation strategies.  Four methods of validation of the regression model are described in 

this section: proxy-validation, withheld-data validation, split-sample validation, and cross-

validation. The most appropriate method for any particular study will depend on the data and 

purpose of analysis.   

 

Proxy-validation. The term “proxy-validation” as used here refers to any sort of qualitative or 

quantitative comparison of the predictions from the regression model with some variable other 

than the actual predictand used in the regression model. As with all validation methods, the 

comparison is restricted to some period outside the period used to calibrate the regression model. 

Consider a regression and reconstruction of annual precipitation at some climatic station from 

tree rings that happens to show several decades of low precipitation in the 1700s. Qualitative 

proxy-validation might be supporting newspaper records of low lake levels. Somewhat more 

quantitative proxy validation would be reference to lows in the 1700s in smoothed plots of 

measured lake level. Quantitative proxy-validation might consist of correlation coefficients of 

measured lake levels with the reconstructed time series of precipitation. Proxy-validation often 

consists of graphical or statistical comparison of reconstructions with previous reconstructions 

using the same or a related predictand (e.g., Woodhouse et al. 2006, Meko et al. 2007).   

Withheld-data validation. This method is validation in the purest sense, and consists of 

withholding some predictand data from the calibration of the reconstruction model and using that 

data to check performance of the regression model. The term “withheld-data validation” is coined 

here to distinguish this method from the less optimal variants, split-sample validation and cross-
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validation. This method is “validation” in the truest sense because the calibration and validation 

sets are completely independent. To assure independence, validation data must in no way enter 

into the calibration of the regression model – not even in screening to identify the “best” predictor 

or form of model (e.g., lags). A practical difficulty of applying withheld-data validation is the 

lack of sufficient length of high-quality predictand data. For example, consider a hypothetical 

tree-ring reconstruction problem in which 100 years of precipitation data are available for the 

reconstruction of 500 years of precipitation from tree rings. Withheld-data validation might in this 

case consist of using the most recent 50 years of data to calibrate the regression model to be used 

for the long-term reconstruction, and reserving the first 50 years of data for validating the model. 

But a researcher would generally prefer to use the longest possible calibration period (100 yr), in 

hopes of including the most representative high-frequency and low-frequency components of 

variability of the predictand in the calibration.   

Split-sample validation. This method consists of using the full available predictand data for 

the final regression and reconstruction, and using subsets of the full period for separate 

calibration-validation exercises (Snee 1977). For validation, the full length of predictand data is 

split into paired segments, one used to calibrate the model and the other to validate. One approach 

is to calibrate on half the data and validate on the other half, and then repeat the exercise with the 

calibration and validation periods exchanged (e.g., Meko and Graybill 1995). This approach gives 

two sets of validation statistics (see below), one for each sub-period of validation. Split-sample 

validation can be extended as needed to more than two sub-periods.   

Split-sample validation of has the advantage over withheld-data validation in that all of the 

predictand data is available for the final reconstruction models.  Split-sample validation moreover 

gives some information on the accuracy of reconstruction of low-frequency features of variation 

of the predictand.  For example, the RE statistic (see below) from split-sample validation is 

sensitive to ability to track changes in the sub-period mean of the predictand.  This sensitivity 

would of course depend on the various selected sub-periods of the split-level validation having 

appreciably different means of the predictand.  Split-sample validation might be problematic 

when available time series of the predictand are short – say less than 50 observations.  In such 

cases half of the available data may be pushing the limits for robust modeling of regression 

relationships.  

A weakness of split-sample validation is that the model “validated” is different than the model 

actually used for the long-term reconstruction.  A potential weakness is that the validation and 

calibrations data segments may not be independent.  The principle behind validation is that the 

model is validated with data that does not enter in any way into the calibration of the model. This 

principle is violated if the validation period is used for such purposes as screening the predictor 

data to decide on which predictor variable are to be included in the calibration period.  For 

example, a clear violation occurs in the following sequence: 1) full period used to select a subset 

of tree-ring variables most highly correlated with precipitation (the predictand for regression), 2) 

full period used to calibrate and reconstruct precipitation, 3) same subset of selected tree-ring 

variables used as predictors in the calibration segments of split-sample validation modeling. In 

this sequence of operations the researcher has essentially “peeked” at the validation data and used 

its relationships in designing the calibration model.  

Cross-validation. In this method a series of iterative steps is followed to build a time series of 

estimates of predictand that can be used to validate a model calibrated on the full period of 

predictand (Michaelsen 1987). A different subset of observations is successively omitted from the 

calibration at each step, and the remaining data are used to calibrate a model that is then applied 

to reconstruct the central value of the omitted segment. This procedure eventually results in a 

complete (full-period) set of predicted values, each of which was generated by a model 

independent of the predicted value.   

At the extreme of one observation omitted at a time, the method is “leave-one-out” cross-

validation, as described by Michaelsen (1987) and to the predicted-residual-sum-of squares 
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procedure, or PRESS procedure as described by Weisberg (1985). Say the full available period 

for calibration is length of n years. Models are repeatedly estimated using data sets of 1n  years, 

each time omitting a different observation from calibration and using the estimated model to 

generate a predicted value of the predictand for the deleted observation. At the end of this 

procedure, a time series of n predictions assembled from the deleted observations is compared 

with the observed predictand to compute validation statistics of model accuracy and error. 

An obvious attraction of cross-validation is the ability to apply validation when the available 

time series of predictand is short. An advantage over split-sample validation is that the models 

validated are nearly the same as the model used for reconstruction -- differing by one observation 

or a few observations in the data used for calibration. A shortcoming, especially when just a few 

observations are omitted at a time, is the inability to check accuracy of reconstructed low-

frequency fluctuations, such as a shift in mean. Some special precautions may also be necessary 

to ensure the independence of calibration and validation subsets.  For example, if time series are 

autocorrelated, or if lags are used in the regression model, more than one observation must be 

omitted at a time (e.g., Meko 1997).  

 

Validation statistics.  Validation statistics measure the error or accuracy of the prediction for 

the validation period. The statistics can generally be expressed as functions of just a few simple 

terms, or building blocks. We begin by defining the building blocks.  

 

  Validation errors.  All of the statistics described here are computed as some function of the 

validation error, which is the difference of the observed and predicted values:     

 ( ) ( )
ˆ ˆ ,i i ie y y   (1) 

where iy and ( )
ˆ

iy  are the observed and predicted values of the predictand in year i, and the 

notation ( )i  indicates that data for year i were not used in fitting the model that generated the 

prediction ( )
ˆ

iy .  

 

Sum of squares of errors, validation (SSEv).    SSEv is the sum of the squared differences of 

the observed and predicted values:  
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where the summation is over the vn years making up the validation period. 

 

 

Mean squared error of validation (MSEv).  MSEv is the average squared error for the 

validation data, or the sum-of-squares of errors divided by the length of validation period:  

 vSSE
MSEv

vn
  (3) 

The closer the predictions to the actual data, the smaller the MSEv. Recall that the calibration-

period equivalent of MSEv is the residual mean square, MSE, which was listed in the ANOVA 

table in the previous notes.  

 

Root mean squared error of validation (RMSEv).  The RMSEv is a measure of the average 

size of the prediction error for the validation period, and is computed as the square root of the 

mean squared error of validation:  
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RMSEv has the advantage over MSEv of being in the original units of the predictand. The 

calibration equivalent of RMSEv is es , the standard error of the estimate.  RMSEv will generally 

be greater than es because es reflects the “tuning” of the model to the data in the calibration 

period. The difference between RMSEv and es is a practical measure of the importance of this 

tuning of the model. If the difference is small, the model is said to be validated, or to verify well.  

What is meant by “small” is subjective.  For example, in a precipitation reconstruction intended 

for use in agriculture, a difference of 0.2 inches between RMSEv and es might be judged 

inconsequential if an error of 0.2 inches makes no appreciable difference to the health of the crop.     

 

Reduction of error (RE). RE is a specific example of a skill statistic (Wilkes 1995). Skill is 

relative accuracy, and its assessment requires specification of some reference prediction against 

which the accuracy of the predictions can be measured. This reference prediction in the case of 

RE is simply the calibration-period mean of the predictand cy . The calibration-period mean of the 

predictand is substituted as the predicted value for any year outside the calibration period.  

Following Fritts et al. (1990), RE is then given by 

 

 
SSE

RE 1
SSE

v

ref

   (5) 

 

where SSEv is the sum of squares of validation errors as defined previously and  
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   (6) 

 

RE has a possible range of   to 1. An RE of 1 indicates perfect prediction for the validation 

period, and can be achieved only if all the residuals are zero (i.e., SSE 0v  ). On the other hand, 

the minimum possible value of RE cannot specified, as RE can be negative and arbitrarily large if 

SSEv is much greater than SSEref. As a rule of thumb, a positive RE is accepted as evidence of 

some skill of prediction. In contrast, if RE 0 , the prediction or reconstruction is deemed to have 

no skill.   

Recall that the equation for computing the regression 2R is  

 2 SSE
1

SST
R    (7) 

The similarity in form of the equations for 2R and RE (equations (7) and (5) suggests that RE be 

used as a validation equivalent of regression 2R , and that a value of RE “close to” the value of 
2R be considered as evidence of validation. The rational for this comparison is easily seen for 

leave-one-out cross-validation. In both equations, the numerator is a sum of squares of prediction 

errors, and the denominator if the sum of squares of departures of the observed values of the 

predictand from a constant. For leave-one-out cross-validation the constant is equal to the 

calibration-period mean for both equations (5) and (7). This is so because for leave-one-out cross-

validation the aggregate “validation” period is essentially the same as the calibration period: each 
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year of the calibration period is individually and separately used as a validation period in the 

iterative cross-validation, and the aggregate of these validation years is the “validation period.” 

 

PRESS Statistic.  PRESS is an acronym for “predicted residual sum of squares” (Weisberg 

1985, p. 217). The PRESS procedure is equivalent to “leave-one-out” cross-validation, as 

described previously. The PRESS statistic is defined as   

 
2

( )

1

ˆPRESS
n

i

i

e


  (8) 

where ( )
ˆ

ie is the residual for observation i computed as the difference between the observed value 

of the predictand  and the prediction from a regression model calibrated on the set of 

1n  observations from which observation  i was excluded. The PRESS statistic is therefore 

identical to the sum of squares or residuals for validation, SSEv , defined in equation (2), which 

was described previously.    

 

12.2 Cross-validation stopping rule      

As described earlier, the automated entry of predictors into the regression equation runs the 

risk of over-fitting, as 2R is guaranteed to increase with each predictor entering the model. The 

adjusted 2R is one alternative criterion to identify when to halt entry of predictors (e.g., Meko et 

al. 1980), but the adjusted 2R has two major drawbacks. First, the theory behind adjusted 
2R assumes the predictors are independent, while in practice the predictors are often inter-

correlated. Consequently, entry of an additional predictor does not necessarily mean the loss of 

one degree of freedom for estimation of the model. Second, the adjusted 2R does not address the 

problem of selecting the predictors from a pool – sometimes a large pool – of potential predictors. 

If the pool of potential predictors is large, 2R can be seriously biased (high), and the bias will not 

be accounted by the adjustment for number of variables in the model used by the algorithm for 

adjusted 2R  (Rencher and Pun 1980).  

 An alternative method of guarding against over-fitting the regression model is to use cross-

validation as a guide for stopping the entry of additional predictors (Wilks 1995). By evaluating 

the performance of the model on data withheld from calibration at every step of the stepwise 

procedure, the level of complexity (number of predictors) above which the model is over-fit can 

be estimated. Graphs of change in calibration and validation accuracy statistics as a function of 

step in forward stepwise entry of predictors can be used as a guide for cutting off entry of 

predictors into the model. For example, in a graph of RMSEv against step in a model run out to 

many steps (e.g., 10 steps), the step at which the RMSEv is minimized (or approximately so) can 

can be accepted as the final step for the model. The same result would be achieved from a plot of 

RE against step, except that the maximum in RE indicates the “best” model.  

Extending the entry of predictors beyond the indicated steps amounts to “over-fitting” the 

model. Over-fitting refers to the tuning of the model to noise rather than to any real relationship 

between the variables. In the extreme, over-fitting is illustrated by a model whose number of 

predictors equals the number of observations for calibration: the model will explain 100% of the 

variance of the predictand even if the predictor data is merely random noise.   

 

 

12.3 Prediction (Reconstruction) 

Predictions are the values of the predictand obtained when the prediction equation 
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0 1 ,1 2 ,2 ,
ˆ ˆ ˆ ˆˆ

i i i K i Ky b b x b x b x         (9) 

 

is applied outside the period used to fit the model. For example, in dendroclimatology, the tree-

ring indices (x’s) for the long-term record are substituted into equation (9) to get estimates of past 

climate. The prediction is called a reconstruction in this case because the estimates are extended 

into the past rather than the future. Once the regression model has been estimated, the generation 

of the reconstruction is a trivial mathematical step, but important assumptions are made in taking 

the step.   

First, the multivariate relationship between predictand and predictors in the calibration period 

is assumed to have applied in the past. This assumption might be violated for many possible 

reasons. For example, in a tree-ring reconstruction, the climate for the calibration period may 

have been much different than for the earlier period, such that a threshold of response was 

exceeded in the earlier period. Or the quality of the tree-ring data might have decreased back in 

time because of a drop-off in sample size (number of trees) in the chronologies. Many other data-

dependent scenarios could be envisioned that would invalidate the application of the regression 

data to reconstruct past climate. For time series in general, regardless of the physical system, it is 

important to statistically check the ability of the model to predict outside its calibration period or 

to validate the model, as described in the preceding section. 

         

 

12.4 Error bars for predictions 

 

A reconstruction should always be accompanied by some estimate of its uncertainty. The 

uncertainty is frequently summarized by error bars on a time series plot of the reconstruction.   

Error bars can be derived by different methods: 

 

1) Standard error of the estimate, es . Recall that es  is computed as the square root of the 

mean squared residuals, MSE. Following Wilks (1995, p. 176), the Gaussian assumption leads to 

an expected 95% confidence interval of roughly  

 1
ˆ 2t eCI y s  (10) 

Confidence bands by this method are the same width for all reconstructed values. The 2 es rule-

of- thumb is often a good approximation to the 95% confidence interval, especially if the sample 

size for calibration is large (Wilks 1995, p. 176). But because of uncertainty in the sample mean 

of the predictand and in the estimates of the regression coefficients, the prediction variance for 

data not used to fit the model is somewhat larger than indicated by MSE, and is not the same for 

all predicted values. This consideration gives rise to a slightly more precise estimate of prediction 

error called the standard error of prediction (see next section). Also note that the “2” in equation 

(10) is a rounded-off value of the 0.975 probability point on the cdf of the normal distribution 

(1.96 rounded to 2). Strictly speaking, the appropriate multiplier (2 in the example) should come 

from a “t” distribution with n-K-1 degrees of freedom, where n is the sample size for calibration 

and K is the number of predictors in the model (Weisberg 1985). The distinction will be 

important only for small sample sizes or models for which the number of predictors is 

dangerously close to the number of observations for calibration.   

 

2) Standard error of prediction, ŷs   This improved estimate of prediction error is 

proportional to es , but in addition takes into account the uncertainty in the estimated mean of the 

predictand and the in the estimates of the regression coefficients. Because of these additional 
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factors, the prediction error is larger when the predictor data are far from their calibration-period 

means, and vice versa. For simple linear regression, the standard error of the estimate and 

standard error of prediction are related as follows: 
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where es is the standard error of the estimate, n is the sample size (number of years) for the 

calibration period, ix is the value of the predictor in year i, x is the calibration-period mean of the 

predictor, *x is the value of the predictor in the reconstruction year in question, ŷs is the standard 

error of prediction for that year, and the summation in the denominator is over the n years of the 

calibration period.   

Note first that ŷ es s , and that ŷs differs from es because of contributions from the two right-

most terms under the square root in equation (11). The first source of difference is uncertainty 

comes from the sample mean of the predictand not being exactly equal its expectation; this 

contribution can be made smaller by increasing the sample size. The second source is the 

uncertainty in the estimates of the regression constant and coefficient. The consequence of this 

term is that the prediction error is greater when the predictor is farther from its calibration-period 

mean. This feature is what causes the “flaring out” of the prediction intervals in a plot of the 

predicted values against the predictor values. More on this topic can be found in Weisberg (1985, 

p. 22, 229) and Wilks (1995, p. 176).    

The equation for the standard error of prediction in MLR is more complicated than given by 

equation (11), which applies to simple linear regression. This is so because ŷs depends on the 

variances and covariances of the estimated regression coefficients. The equation for ŷs in the 

multivariate case is best expressed in matrix terms. The MLR model, following Weisberg (1985, 

p. 229) can be written in vector-matrix form as 

  

 

column vector of predictand for calibration period

matrix of predictors for calibration period

row vector of regression coefficients, with regression constant first

column vector of regress

 









Y Xβ e

Y

X

β

e ion residuals

 (12) 

 

If the model is used to predict data outside the calibration period, and the predictor data for 

some year to be predicted is given by the column vector *x , the predicted value for that year is 

given by 

 * *
ˆˆ ,Ty  x β  (13) 

where superscript “T” is the transpose. Assuming the linear model is correct, the estimate is an 

unbiased point estimate of the predictand for the year in question, the variance of the prediction is  
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where 2   is generally estimated as the residual mean square, or 
2

es . The estimated standard 

error of prediction is the square root of the above conditional variance 

  ŷ * * *s =sepred | 1 h y x  (15) 

 

2) Root-mean-squared error of validation, RMSEv. Both the standard error of the estimate 

and the standard error of prediction suffer from the possible downward bias due to “tuning” of the 

model to calibration data. A way of circumventing this problem is to use as a measure of 

uncertainty a statistic based on validation data. For example, with leave-one-out cross-validation, 

or the PRESS procedure, vRMSE PRESS/ vn  is the validation equivalent of the standard 

error of prediction, and if normality is assumed, can be used in the same way as described for 

es or ŷs to place confidence bands at a desired significance level around the predictions. For 

example, an approximate 95% confidence interval is v
ˆ 2 RMSEiy  . Weisberg (1985, p. 230) 

recommends this approach as a “sensible estimate of average prediction error.” 

 

 

12.5 Interpolation vs extrapolation  

 

A regression equation is estimated on a data set called the construction data set, or calibration 

data set. For this construction set the predictors have a defined range. For example, in regressing 

annual precipitation on tree-ring indices, perhaps the tree-ring data for the calibration period are 

range between 0.4 and 1.8 -- or 40% to 180% of “normal” growth. The relationship between the 

predictand and predictors expressed by the regression equation applies strictly only when the 

predictors are “similar” to their values in the calibration period. If the form of the regression 

equation is not known a priori, then we have no information on the relationship outside the 

observed range for the predictor in the calibration period. When the model is applied to generate 

predictions outside the calibration period, an important question is how “different” can the 

predictor data be from its values in the calibration period before the predictions are considered 

invalid. When the predictors are acceptably similar to their values in the calibration period, the 

predictions are called interpolations. Otherwise, the predictions are called extrapolations. 

Extrapolations in a dendroclimatic reconstruction model present a dilemma: the most interesting 

observations are often extrapolations, while the regression model is strictly valid only for 

interpolations. A compromise to simply tossing out extrapolations is to flag them in the 

reconstruction.   

Algorithm for identifying extrapolations.  Extrapolations are identified by locating the 

predictor data for any given prediction year relative to the multivariate “cloud” of the predictor 

data for the calibration period. Identification is trivial for the simple linear regression, as any 

prediction year for which the predictor is outside its range for the calibration period can be 

regarded as an extrapolation. For MLR, any prediction for which the predictor data fall outside 

the predictor “cloud” for the calibration period can be regarded as an extrapolation. 

In MLR, extrapolations can be defined more specifically as observations that fall outside an 

ellipsoid that encloses the predictor values for the calibration period. This is an ellipsoid in p-

dimensional space, where p is then number of predictors. For the simple case of one predictor, the 

“ellipsoid” is one-dimensional, and any values of x outside the range of x for the calibration 
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period would lead to an extrapolation. For MLR with two variables, the ellipsoid is an ellipse in 

the space defined by the axes for variables 1x and 2x .   

For the general case of an MLR regression with p predictors and an calibration period of n 

years, Weisberg (1985, p. 236) suggests an ellipsoid defined by constant values of the diagonal of 

the “hat” matrix H, defined in matrix algebra as 

 

 ( ) T 1 T
H X X X X  (16) 

 

where X is the n  by ( 1)p  time series matrix of predictors, with ones in the first column to 

allow for the constant of regression. For each prediction year with predictor values in the 

vector *x , the scalar quantity 

 

 
* * *( )h  T T 1

x X X x  (17) 

 

is computed, and any prediction for which   

 

 * max ,h h  (18) 

 

where maxh is the largest iih in the diagonal of the hat matrix H, is regarded as an extrapolation. 

The row vector *x might be the predictor values for a year within or outside the n-observation 

calibration period, while the hat matrix itself is computed from calibration-period data only.       
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