

Syllabus is subject to change as announced in class; additional announcements, assignments and information will also be posted on D2L

NEAR-TERM "THINGS TO DO":

Make sure you sign attendance list next to your name

Try quiz questions at end of Syllabus; **Quiz1 next WED**

Do you know how to do conversions? Work with graphs? Scientific notation? The periodic table? You should have done Homework 2 for today.

If you are willing to provide your notes for DRC students, please let me or Rebecca know ASAP

www.meouora.commaps

Syllabus is subject to change as announced in class; additional announcements, assignments and information will also be posted on D2L

A. We will need group leaders who will be able to earn 5 EC points during the semester. Let me know if you are interested AND responsible (your group will depend on you to some degree). Send me e-mail.

B. Write 1-page double-spaced summary injecting your own feelings about ______ Submit it in class next Wednesday, Jan. 26.

August Old ways Energy Locavore

www.theodora.com/maps

Back to our "Epic story"...

www.theodora.com/maps

PERIODIC TABLE OF THE ELEMENTS

and the second se

Hubbell Deep Field

Viewing a dark speck of sky, the area equivalent to a square 1mm² in area held 1 m from your eyes

Figure 6.1 tween the distance to a galaxy o group of galaxies and the velocity at which the galaxies are moving away from ours. Notice that the data are plotted on a logarithmic scale. (After Broecker, 1985.)

Relationship be- speed of light 3 x 10¹⁰ 1 × 1010 Retreat velocity of galaxy (cm/s) 1×10^{9} 1×10^{8} $60 \text{ mph} = 3 \times 10^3 \text{ cm/s}$ 1 ×10²⁶ 1 × 1027 1×10^{28} Distance of galaxy (cm)

This is evidence of an event called the "Big Bang", but how do www.theodora.com/maps

PERIODIC TABLE OF THE ELEMENTS

The second

and the second se

FUSION

Elements from (He), Li to Fe produced by fusion

For example, 4 H atoms ($^{1}_{1}$ H) combine to produce 1 He atom ($^{4}_{2}$ He) (6.696 x 10⁻²⁴g) (6.648 x 10⁻²⁴g) Where did the "lost" mass go?

Converted to energy $E = mc^2$

(nuclear energy >> chemical energy) <u>nuclear</u> 1g H converted to He would heat swimming pool (50m x 15m x 2.5m) to boiling <u>chemical</u> 1g H combusted to H₂0 wouldn't release enough heat for you to perceptibly notice a change in swimming pool temperature

Supernova 2005cs in M51

Hubble Space Telescope • ACS

PERIODIC TABLE

Table of Radioactive Isotop

NASA, ESA, W. Li and A. Filippenko (University of California, Berkeley), S. Beckwith (STScI), and The Hubble Heritage Team (STScI/AURA)

Before Supernova Near Infrared January 21, 2005

STScI-PRC05-21

Whirlpool galaxy M51

OK, what was the Lemonick article about?

www.theodora.com/maps