We're about to play:

PSUEDO-JEOPARDY!!!!!
(Aka "The Answer Is . . . ")

It will refresh your memories about some of the key concepts we've covered.

The STUDY GUIDE will take it from here . . . If you use it and can do the questions on it, you will be ready!

And The SIES S.

The Rules...

Teams combined into MEGATEAMS

- Select one Spokesperson for your Group
 - . After conferring with your groupmates, give your group's selected ANSWER to your Team Speaker.
- Correct answers for each Group & Megagroup will be compiled.

Let's Meet Our Teams...

- ■InfraRED Radiators
- **TANGERINE Tasers**
- Mellow YELLOW Reflectors
- **GREEN House Gassers**
- BLUE Sky Diffusers
- UltraVIOLET Zappers

Here's what we're playing for...

- BRAGGING RIGHTS
- A GOOD GRADE ON THE EXAM
- GROUP & TEAM COMPETITION POINTS
 - All Groups get at least 1 Group pt for playing
 - If your Group gets your Question right, your Group gets an additional Point
 - Points earned will add to your Group & Team Score for the End-of-Semester Prize!

Ready for a practice question?

Atmospheric Composition & Structure

This gas is NOT a Greenhouse Gas.

What is...

1. O₂

2. O₃

3. CH₄

4. Freon-11 (a CFC)

Atmospheric Structure and Composition	Radiation Laws	Matter , Etc.	Thermo- dynamics	Odds & Ends
<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>	<u>100</u>
<u>200</u>	<u>200</u>	<u>200</u>	<u>200</u>	<u>200</u>
<u>300</u>	<u>300</u>	<u>300</u>	<u>300</u>	<u>300</u>
<u>400</u>	<u>400</u>	<u>400</u>	<u>400</u>	<u>400</u>
<u>500</u>	<u>500</u>	<u>500</u>	<u>500</u>	<u>500</u>

The gases: H₂O and CO₂.

What are...

1. The two most abundant gases.

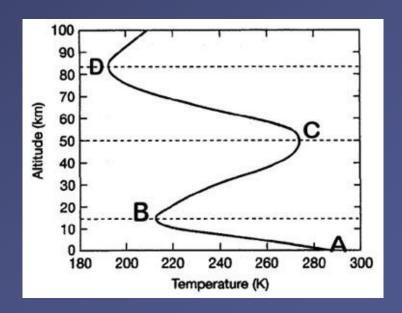
2. The two most abundant Greenhouse gases.

3. The two most abundant <u>anthropogenically enhanced</u> Greenhouse gases.

4. The two gases that comprise 99% of the atmosphere

The observation that "the atmosphere is heated from below" is most evident in this layer.

What is...


1. Layer A - B

2. Layer B - C

3. Layer C - D

4. Layer D and above

The average temperature in this layer of the atmosphere gets cooler with increasing altitude.

What is the...

1. TROPOSPHERE

2. TROPOPAUSE

3. STRATOSPHERE

4. THERMOSPHERE

The residence time of CO2 gas molecules, once they get into the atmosphere.

What is...

1. ~10-12 years

2. ~50 years

3. ~100 years

4. ~ 500 years

N2, N, O and O2 are effective absorbers of extremely harmful X-ray and UVC radiation in this layer.

What is...

1. Troposphere

2. Stratosphere

- 3. Mesosphere
- 4. Thermosphere

The Radiation Laws that best explains why What is... absorption curves exist.

1. The hotter the body, the shorter the wavelength

$$\lambda_{\rm m} = a/T$$

 $E = h c / \lambda$

- 2. Shorter electromagnetic wavelengths have higher intensity radiation than longer wavelengths
- 3. The hotter the body, the (much) greater the amount of energy flux or radiation

$$E = \sigma T^4$$

4. Some substances emit and absorb radiation at certain wavelengths only.

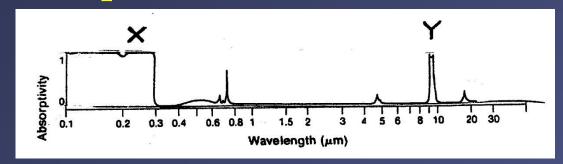
The reason the relatively cooler Earth radiates its energy in longwave radiation, in contrast to the Sun which radiates most of its energy in short wave radiation:

What is...

1. The hotter the body, the shorter the wavelength

$$\lambda_{\rm m} = a/T$$

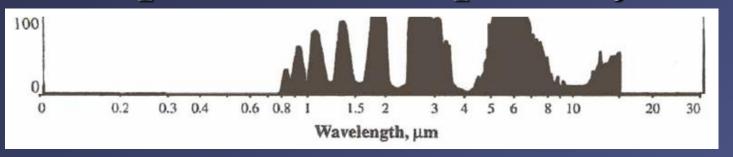
- 2. Shorter electromagnetic wavelengths have $E = h c / \lambda$ higher intensity radiation than longer wavelengths
- 3. The hotter the body, the (much) greater the amount of energy flux or radiation


$$E = \sigma T^4$$

4. Some substances emit and absorb radiation at certain wavelengths only.

The part of this O₃ absorption curve that is linked to OZONE'S absorption of harmful UV radiation in the stratosphere.

What is...


1. Part X of the absorption curve

- 2. Part Y of the absorption curve
- 3. Both Parts X & Y working together
- 4. Neither X or Y this is NOT an absorption curve!

This curve represents absorption by:

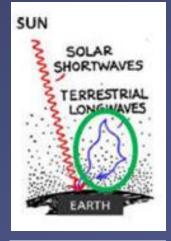
1. A blackbody

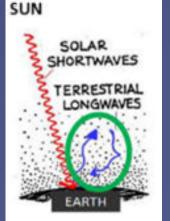
2. A gas that is NOT a Greenhouse Gas

3. All the gases in the atmosphere as a whole

4. A gas that absorbs ONLY infrared wavelengths of radiation

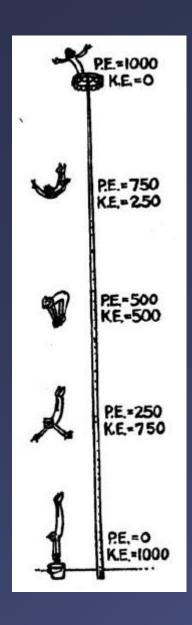
What is...


The Greenhouse Effect is best represented by the circled area in this sketch:


1. This one:

3. This one

The number of positively charged protons the nucleus of this neutral lithium atom contains. What is...


1. One

2. Two

3. Three

4. None - the nucleus contains photons, not protons!

The Law illustrated by this diagram of the diver's plunge to the ground is:

What is...

- 1. Stefan-Boltzmann
- 2. Sustainability
- 3. Conservation of Energy

4. Inverse square

The word that best completes this sentence: "Energy may not be destroyed, but it can become ____."

What is...

- 1. Matter
- 2. Mass
- 3. Inefficient

The term used to describe <u>motion-related</u> energy.

What is...

- 1. Potential energy
- 2. Electromagnetism
- 3. Kinetic energy

4. Gravitational energy

What occurs in an atom when an electron takes a quantum leap from a <u>higher</u> to a <u>lower</u> energy level.

What is...

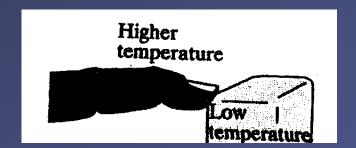
1. A photon is emitted

- 2. A photon is absorbed
- 3. There is no change because energy is conserved.

Energy transfer by means of vibrational energy from one molecule to the next through a substance.

What is...

- 1. Convection
- 2. Conduction

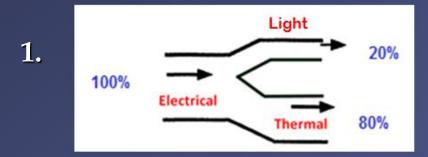


- 3. Radiation
- 4. Quantum Leap

How thermal energy will flow in this diagram, based on the 2nd Law of Thermodynamics

What is...

1. By means of CONVECTION

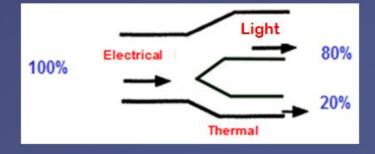

2. From the ICE CUBE to the FINGER

3. From the FINGER to the ICE CUBE

Of these choices, the energy flow diagram for an old-fashioned <u>incandescent</u> light bulb (the kind that should be replaced):

<u>What is...</u>

2. Light


10%

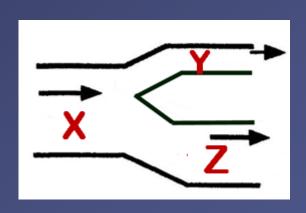
Electrical E

Thermal E 90%

3.

In this Energy Flow diagram of an efficient LED Light Bulb, the "pipe" that represents ELECTROMAGNETIC ENERGY.

What is:


1. Pipe X

3. Pipe Z

Both Pipes Y & Z

The reason why -- if Global Warming is occurring --we should be able to detect it FIRST in LAND SURFACE temperatures.

What is...

1. The specific heat & heat capacity of WATER is higher than that of SOIL, hence water heats up more slowly than soil.

- 2. The specific heat & heat capacity of SOIL is higher that that of LAND, hence soil heats up more slowly than water.
- 3. The reflectivity of WATER is higher than that of SOIL, hence it will absorb more radiation

The wavelength range of infrared radiation.

What is...

1. < 0.4 micrometers

2. > 0.7 micrometers

3. 400 - 700 nanometers

4. Longer wavelengths than microwaves

The key factor that makes certain gases act as greenhouse gases! What is...

1. They are diatomic

2. They <u>absorb</u> shortwave radiation and <u>emit</u> longwave radiation

3. They easily <u>reflect</u> IR radiation back to the Earth's surface

4. They <u>absorb</u> and <u>emit</u> infrared radiation

BONUS Q !! This is involved in the Energy Pathway illustrated by THIS Energy Balance

Symbol:

What is...

1. Albedo

2. Ultraviolet radiation

3. Infrared radiation

4. Diffuse solar radiation

Quantum behavior of certain molecules (bending, rotation, vibrations)

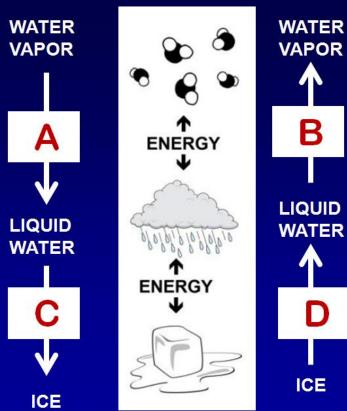
What is...

1. Why photons leap to higher energy states

2. Behavior explained by Newton's Laws

3. The reason LE is not sensed as heat

4. The reason some gases are greenhouse gases and others are not.


Energy is <u>RELEASED</u> from the H₂O <u>INTO</u> the surrounding environment during these phase changes:

What is...

- 1. Phase Changes A & B
- 2. Phase Changes A & C

- 3. Phase Changes B & D
- 4. Phase Changes C & D

THE END!