

WRAP UP OF TOPIC #4...

ELECTROMANGETIC RADIATION & THE ELECTROMAGNETIC SPECTRUM

whiteboard

Sketch what happens next in the atom's quantum behavior!

2

Class Notes Closed!

Answer on p 19

ATOMS vs MOLECULES

Quantum leap of electrons <u>WITHIN an ATOM</u> when photons are absorbed or emitted →

Quantum MOLECULAR MOTION behavior when photons are absorbed or emitted

Review p 19-20

"Rotation"

"Vibration"

"Bending"

Come forth into the light of things.

Let nature be your teacher.

~ William Wordsworth

Longwaves (LW)

The Electromagnetic Spectrum (another view)

> Shortwaves (SW)

These are the wavelength ranges most critical to global change processes!

C

Another (flipped) view:

p 22

EQUATIONS, SCIENTIFIC NOTATION and the POWERS OF 10

1 meter

1 meter

THE TOPICS IN THIS CLASS WILL ADDRESS A HUGE RANGE OF SCALES We need "Powers Of Ten" to describe and quantify them !

Watch the POWERS OF TEN video at: http://www.powersof10.com/film

 1×10^{9}

 1×10^{4} 1×10^{2} 1×10^{2} 1×10^{4}

 1×10^{3} 1×10^{6}

 1×10^{7} 1×10^{8} 1×10^{9} 1×10^4 1×10^{4}

 1×10^{4} 1×10^{10} 1×10^{14} 1×10^{12} 1×10¹⁶ 1×10^{4}

 1×10^{2} 1×10^{2} 1×10^{21} 1×10^{2} 1×10^{23}

 1×10^{2}

 1×10^{24} ♣ 1 x 10° $1 \times 10^{\circ}$ $1 \times 10^{\circ}$ $1 \times 10^{\circ}$

1×10 $1 \times 10^{\circ}$ $1 \times 10^{\circ}$ $1 \times 10^{\circ}$ 1×10^{4}

1×10⁵

1×10¹⁰

 1×10^{1} 1×10¹²

1×10[±] 1 × 10*⁵⁴ 1×10^{14}

1 meter (m)	blanket
10 m	blanket a dot
100 m	tiny cars, boats
1,000 m = 1 km	
10.000 m	most of Chicago, edge of Lake Michigan
100,000 m	
1,000,000 m = 1 m illion m	Great Lakes, Florida, ocean
10 million m	whole globe 🕤
100 million m	orbit of moon
1,000 million m	
10,000 million m	orbits of planets
100,000 million m	sun enters field of view
1 million million m	orbits of outer planets
10 million million m	whole solar system
100 million million m	solar system just one of stars
1,000 million million m	
1 light year (a distance unit)	
10 light years	
100 light years	
1,000 light ye ars	Milky Way galaxy
10,000 light years	outskirts of galaxy
100,000 light years	
1 million light years	our galaxy a dot among others
10 million light years	
100 million light years	mostly emptiness
1 meter (m)	starting point of video 🗲
10 cm (.1 m)	zoom in on hand
1 cm (.01 m)	
1 mm (.001 m)	just about to enter skin
100 microns (.0001 m)	
10 microns (.00001 m)	enter a white blood cell
1 micron (.000001 m = 1 micrometer)	see cell nucleus with DNA coils
1,000 Ångstroms	Molecule of DNA
100 Ångstroms	
10 Ångstroms (=1 nanometer)	three hydrogen atoms bonded to one carbon ator
1 Ångstrom (.0000000001 m)	outer electron shell of C atom, then 2 in inner she
0.1 Ångstrom	draw towards center B mostly space
0.01Ångstrom (= 1 picometer)	carbon atom nucleus w/ 6 protons & 6 neutrons
0.001 Ångstrom	carbon atom nucleus
0.0001 Angstrom	single proton fills screen
0.00001 Ångstrom	

LENGTH OF ENTIRE IOURNEY 1 x 10 40

Scientific Notation Review

Page 11

- Any large (or small) number can be expressed as the product of two terms: (a) the *prefactor* = a number, with a value between 1 and 10 that gives the precision or accuracy of the original number, & (b) an exponent (e.g., power of 10)
- To multiply numbers in scientific notation, multiply the prefactors and add the exponents (
- To divide numbers in scientific notation, divide the prefactors and subtract the exponent of the number in the denominator from the exponent of the number in the numerator

p 11 in **CLASS** NOTES (Based on the classic "Powers of Ten" video

The Smallest to the Biggest thing in the Universe!

https://www.youtube.com/watch?v=EMLPJqeW78Q

SCIENTIFIC NOTATION REVIEW

Any number (#) can be expressed as product of 2 terms:

PREFACTOR = # between 1 and 10
 (indicates the precision / accuracy of original #

EXPONENT = a "power of 10" e.g., 1×10^{3} (= 1,000) 1×10^{-3} (= .001)

To multiply: x the prefactors and + the exponents To divide: ÷ the prefactors and subtract the exponent of # in the denominator from exponent of # in the numerator

Practice Q's will be posted online in Class Follow Up-

Wavelengths

Wavelength & Frequency

NOTE: Shorter wavelengths are produced when the rope is shaken more vigorously. *"The shorter the wavelength the GREATER the energy & the HIGHER the frequency"*

<u>Define these terms in your own words</u>

whiteboard

<u>Wavelength</u> (symbol = lambda λ)

<u>Frequency</u> (symbol = nu v in E-Text)

<u>Speed</u> (symbol = c the speed of light)

Quantifying Frequency & Wavelengths

Terminology for describing the WAVE-like behavior of electromagnetic energy:

Wavelength= distance betweenadjacent crests (or troughs)(symbol = lambda λ)

Frequency = how fast the crests move up and down (symbol = nu V in E-Text)

Speed = how fast the crests move forward (symbol = c in E-text) c = the speed of light

SOLAR RADIATION: greatest intensity in SHORT wavelengths

(high energy & frequency)

EARTH **RADIATION:** entirely in LONG wavelengths (low energy & frequency)

The wavelength determines how the electromagnetic ENERGY (photon) will interact with MATTER ! Longwaves (LW)

The Electromagnetic Spectrum (another view)

> Shortwaves (SW)

Details on the spectrum: UV Vis IR

Visible Light range = 0.4 – 0.7 micrometers

Type of Electromagnetic Radiation	Range of Wavelengths (in units indicated)	Additional Information
Gamma rays	10⁻¹⁶ to 10⁻¹¹ in meters (m) using scientific notation	Involve high-energy processes <u>within a nucleus</u> caused by the strong force
UV Ultraviolet radiation UVC.2029 UVB.2932 UVA.3240 Shortwave	.0001 to 0.4 in micrometers (μm)	Involve electrons moving (quantum leaps)
VIS Visible light Solar	0.4 to 0.7 in micrometers (μm)	
IR Infrared radiation	0.7 to ~30 (up to 1000) in micrometers (μm)	Involve chaotic thermal <u>kinetic motion</u> of
IR Near Infrared radiation Longwave	0.7 - 1.0 in micrometers (μm)	IR photon
IR Far Infrared	1.0 - ~30 (up to 1000) in micrometers (μm)	Faster rotation rate
Microwaves	10 ⁻⁴ to 10 ⁻² in meters (m) using scientific notation	occur in nature & also electronically produced by a "magnetron" in a microwave oven
AM Radio waves	10 to 10 ² in meters (m) using scientific notation	occur in nature & also electronically produced in human-made electrical circuits

THE GREENHOUSE EFFECT

What is the relationship between . . . ENERGY E and FREQUENCY V OF PHOTONS ?

KEY CONCEPT #1:

The Energy E of photons is directly proportional to their frequency v

 ∞ = "is proportional to"

 $\mathsf{E} \propto \mathsf{V}$

From your RQ #2 chapter reading!

What is the relationship between . . . ENERGY E and WAVELENGTH λ OF PHOTONS ?

KEY CONCEPT #2:

The Energy E of photons is inversely proportional to their wavelength λ E $\propto c / \lambda$ 1

c = speed of light = a constant

From your RQ #2 chapter reading!

TOPIC # 5 – Part 1 The RADIATION LAWS The KEY to unlocking the topics of: The GREENHOUSE EFFECT, GLOBAL WARMING & OZONE DEPLETION!

$E = \sigma T^{4}$ "The equations we seek are the poetry of nature Why is nature that way?

Why is it possible for these powerful manifestations of forces to be trapped in a very simple, beautiful formula?"

"This has been a question which many people have discussed, but there is no answer."

E=hc/2

~ Chen Ning Yang (b. 1922) US physicist

Emission of radiation

<u>All</u> substances emit radiation as long as their temperature is above absolute zero

(-273.15°C or 0 Kelvin).

TYING THE RADIATION "LAWS" to GLOBAL CHANGE

The Sun's energy (solar) is emitted in the form of electromagnetic radiation.

mostly Shortwave (SW) (but also some LW) The Earth's energy (terrestrial) is also emitted in the form of electromagnetic wavelengths...

but in LW INFRARED (IR) wavelengths

LAW #2 BLACKBODY & PLANCK FUNCTION CONCEPT

(NOTE: the Earth is <u>NOT</u> a VERY good "black body" emitter)

Black body (def): a body that emits equally well at all wavelengths

(i.e. radiates with 100% efficiency)

It also absorbs equally well at all wavelengths and is a "perfect absorber" (hence described as "black") Blackbodies ("ideal emitters") exhibit a *defined relationship* between:

the <u>intensity</u> of radiation <u>energy</u> (E) (i.e. amount of radiation flux) they give off & the <u>wavelength</u> of that radiation.

This relationship is called the **Planck function**:

E = h * speed of light / wavelength

Where (h) is Planck's constant.

<mark>E = h c / λ</mark>

Or

Planck Function:

The Sun emits energy at ALL wavelengths...

but the amount of Energy emitted is inversely related to the wavelength of emission "I radiate at the speed of light like a blackbody; but my energy flux is GREATEST at SHORTER wavelengths"

How is this depicted in this figure?

This can be depicted in a graph:

An emitting blackbody's <u>SHORTER</u> wavelengths have HIGHER intensity radiation (and greater energy flux) than the LONGER wavelengths Easy way to remember the PLANCK FUNCTION / BLACKBODY concept:

"The shorter the <u>wavelength</u>, the GREATER the intensity of the <u>energy flux</u>"

Q1 - Gamma radiation involves a greater energy flux than microwave radiation.

- 1. True
- 2. False

Record your Q1 answer now

- 3. Both wavelength bands have the same energy flux
- 4. We haven't learned enough yet to answer this!

Q1 - Gamma radiation involves a greater energy flux than microwave radiation.

- 3. Both wavelength bands have the same energy flux
- 4. We haven't learned enough yet to answer this!

LAW #3: THE STEFAN-BOLTZMANN LAW:

If the substance is an ideal emitter (black body),

The total AMOUNT of radiation given off is proportional to the fourth power of its absolute TEMPERATURE.

where σ is a constant (the Stefan-Boltzmann constant) which has a value of 5.67 x 10 ⁻⁸ W/m⁻² (or 5.67 x 10⁻⁸ J/m²) and *T* is the absolute temperature (in Kelvin)

Energy =
$$\sigma T^4$$

Stefan-Boltzmann Law (easy way) What is this law linking together and in what way?

"the hotter the body, the (much) greater the amount of energy flux or radiation" **Stefan-Boltzmann Law (easy way)** This law links:

(E) the <u>total</u> amount of <u>energy flux</u> that is emitted by a blackbody & (T) the body's <u>temperature</u>

(specifically, the <u>4th power</u> of the body's absolute temperature)

"the hotter the body, the (much) greater the amount of energy flux or radiation"

The total amount of energy flux described by the Stefan-Boltzmann Law is proportional to the <u>area under</u> the Planck function curve

Figure on p 42 in SGC E-text

Stefan-Boltzmann Law:

"I'm HOT, so I emit LARGE amounts of high intensity energy"

"I'm COOL, so I emit much LESS energy . . . AND <u>MY</u> energy is at a lower intensity than Mr. Sun over there!"

Why is this concept important? Because it means that:

> the <u>amount</u> of radiation given off by a body is a <u>very *sensitive*</u> function of its <u>temperature</u>

Therefore . . . small changes in temperature can lead to BIG changes in the amount of radiation given off.

Q2 – Which would you use: the <u>Planck Function</u> or the <u>Stefan-Boltzmann Law</u> to accurately compute <u>the total amount of ENERGY</u> emitted to space by planet Earth?

- 1. The Planck Function
- 2. The Stefan Boltzmann Law
- 3. Both of them together
- 4. Neither one is appropriate because the Earth is NOT a blackbody

Q2 – Which would you use: the <u>Planck Function</u> or the <u>Stefan-Boltzmann Law</u> to accurately compute <u>the total amount of ENERGY</u> emitted to space by planet Earth?

- **1. The Planck Function**
- 2. The Stefan Boltzmann Law
- 3. Both of them together

4. Neither one is appropriate because the Earth is NOT a blackbody

Q3 – Which would you use: the Planck Function or the Stefan-Boltzmann Law to compute the total amount of energy emitted to space by planet Earth, IF you assume the Earth emits like a blackbody & you know the Earth's temperature?

- **1. The Planck Function**
- 2. The Stefan Boltzmann Law
- 3. Neither one is appropriate because you would need to know the wavelengths of radiation the Earth emits
- 4. Don't know

Q3 – Which would you use: the Planck Function or the Stefan-Boltzmann Law to compute the total amount of energy emitted to space by planet Earth, IF you assume the Earth emits like a blackbody & you know the Earth's temperature?

1. The Planck Function

2. The Stefan Boltzmann Law

- 3. Neither one is appropriate because you would need to know the wavelengths of radiation the Earth emits
- 4. Don't know

How to do it:

$E = \sigma T^4$

E = Energy per unit area, so all we need to know is the AREA of the emitting Earth's surface + what T is.

From geometry: Do you remember the formula for computing the area of a sphere?

The area of a sphere of radius R is

$\mathbf{E} = 4 \prod \mathbf{R}^2 \times \mathbf{\sigma} \mathbf{7}^4$

See box on p 44 in SGC E-text for more details

RADIATION LAWS #4 - #6

to be continued