Topic #2 ENERGY & MATTER OVERVIEW

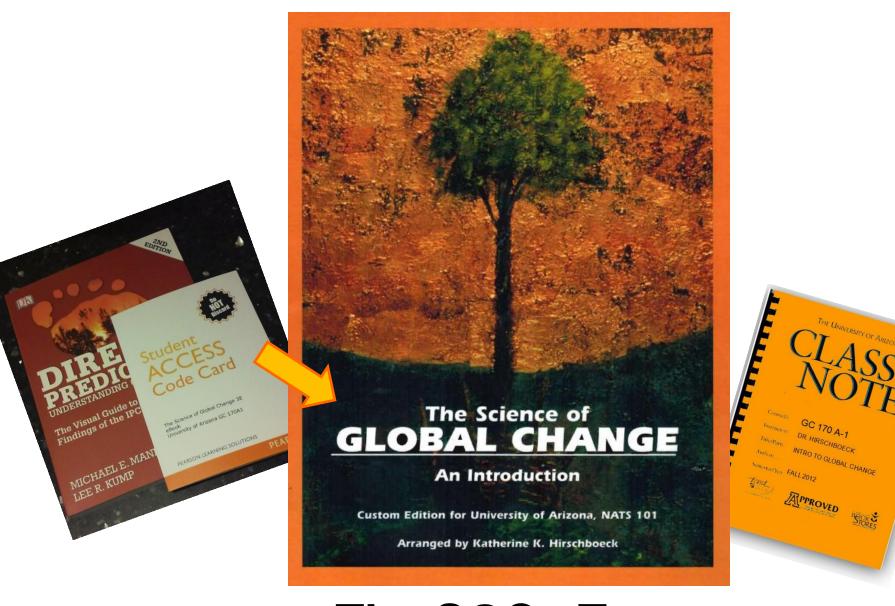
OBJECTIVES:

To review basic physical concepts of energy and matter, how they interact, and what it has to do with GLOBAL CHANGE.

Objectives for today's class:

MORE COURSE LOGISTICS

About the eText & Testing process


TODAY'S TOPIC: Matter & Energy –Part I

Review of Matter - basic concepts
Periodic Table "Hands On"

Linking the Elements to Global Change

MORE ON COURSE LOGISTICS

- Demo of SGC eText
 & what you can do with it
- Multi-Tiered Testing
 & how it will help you learn

The SGC eText The main textbook for the class

Multi-Tiered Testing Approach:

Midterm & Final Individual Exams

HIGH STAKES TESTING

In-class Individual & Group Tests

LOW STAKES TESTING Online Readiness
Quizzes

Ungraded Self-Tests

Begin taking these now!
Practice A + B then . . .
Self Test 1 & graded RQ-1 (on Chapt 2)

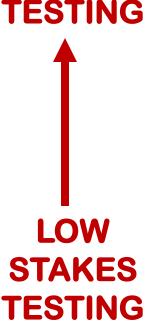
Example: In-class test procedure

10-questions!

You'll take the test as an individual first . . .

After individual tests are completed ...

you'll get into your group & take the <u>same test</u> together as a group!


You'll find out your Group Test score right after you take it . . .

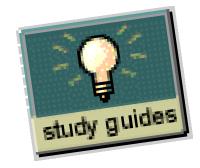
Multi-Tiered Testing Approach:

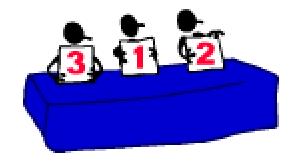
Midterm & Final Individual Exams

HIGH STAKES TESTING

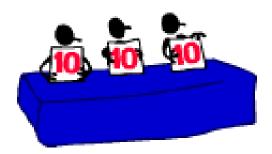
In-class Individual & Group Tests

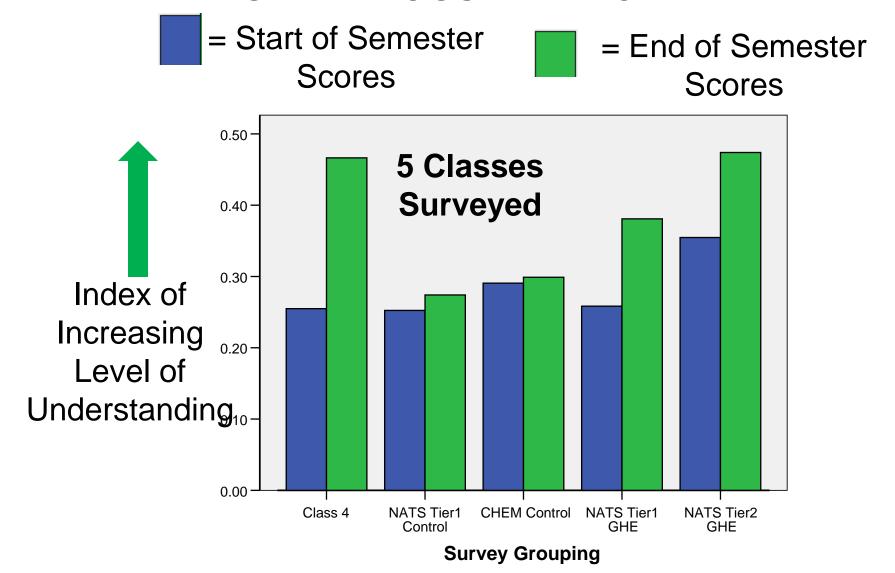
Online Readiness
Quizzes

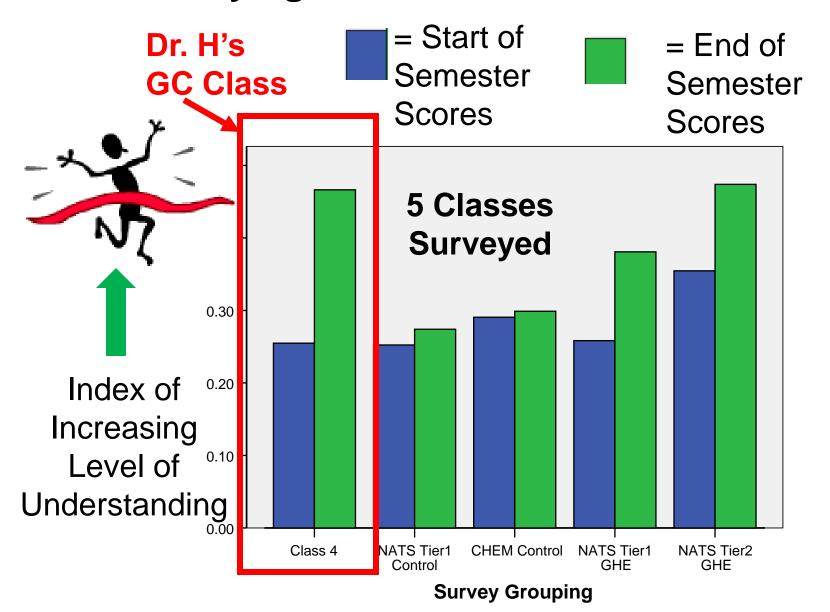

Ungraded Self-Tests



Taking full advantage of ALL the learning tools and resources this course offers offer will give you the best return on your investment






OR

Student Pre & Post-Test Study on: "How well do you understand the science underlying the GREENHOUSE EFFECT?"

"How well do you understand the science underlying the GREENHOUSE EFFECT?"

Topic #2 ENERGY & MATTER OVERVIEW

OBJECTIVES:

To review basic physical concepts of energy and matter, how they interact, and what it has to do with GLOBAL CHANGE.

SCIENCE QUOTE OF THE DAY

"Science shows us that the visible world is neither matter nor spirit;

the visible world is the invisible organization of energy."

Heinz R. Pagels (b. 1939) U.S. Physicist

WHAT IS MATTER?

THINK for a moment about how YOU would answer this IN SILENCE!

NOW . . . "try out" your answer with your group partners.

How similar are you answers?

Matter - some of its attributes:

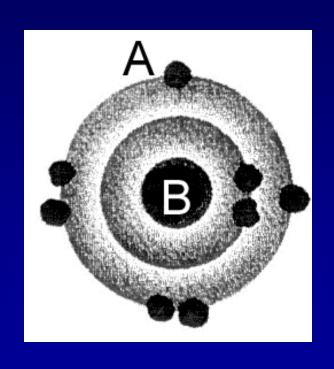
- Occupies space
- Is perceptible to the senses
- Made up of atoms
- Can be in form of solids, liquids, or gases

Atom:

- "Fundamental building block" of matter
- the smallest 'representative sample' of an element.

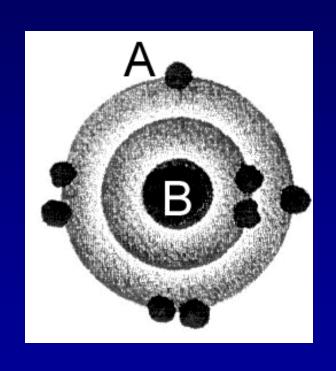
Element:

- made from a single type of atom
- can't be broken down any further (and still maintain its identity)

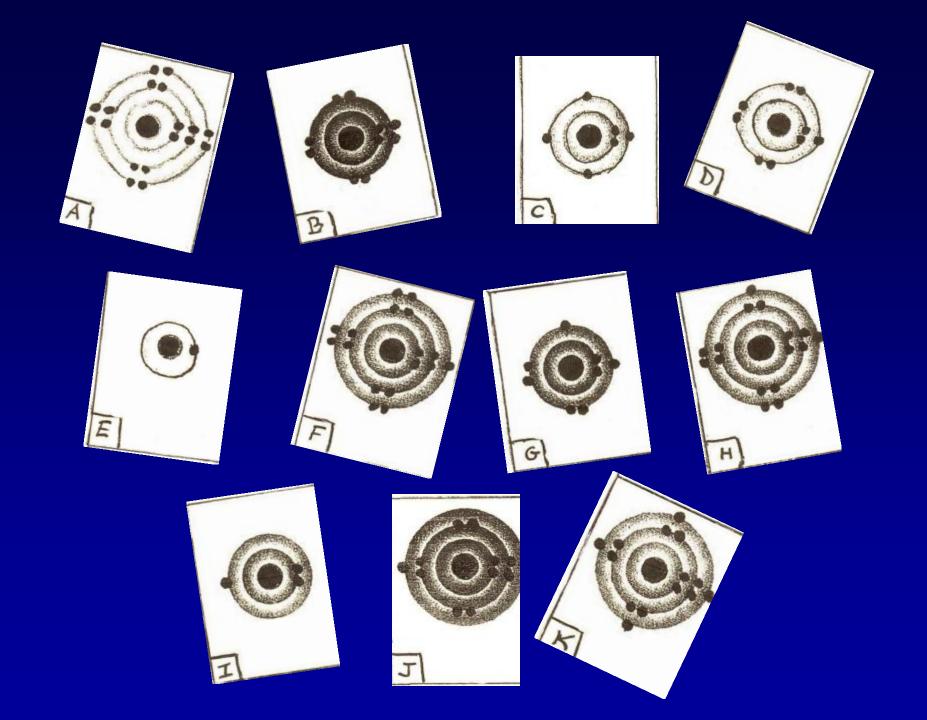

WHAT ARE ATOMS MADE UP OF?

Nucleus
Electron (-)
Proton (+)
Neutron ()

MOLECULE?

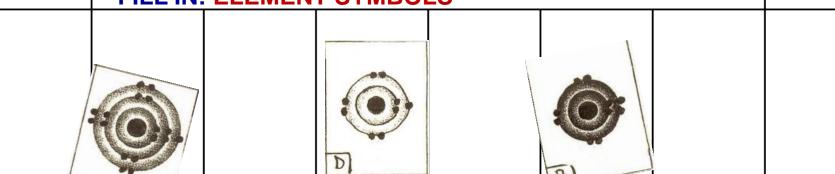

two or more atoms bound together

Schematic "dot" diagram of an oxygen atom


```
# electrons =
# protons =
# neutrons =
atomic # =
mass # =
```

Schematic "dot" diagram of an oxygen atom

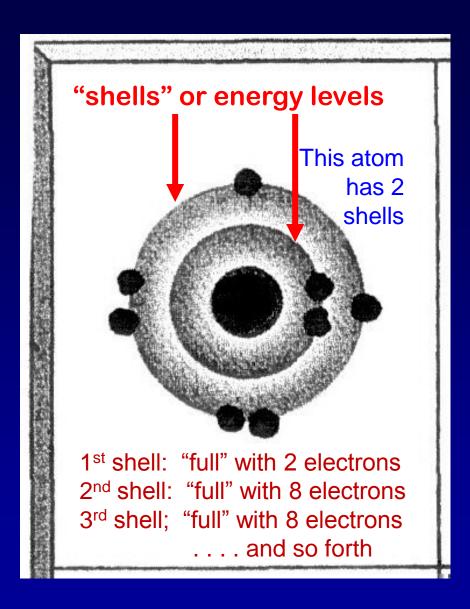

```
# electrons = 8
# protons = 8
# neutrons = 8
atomic # = 8
mass # = 16
```


GROUP LEARNING ACTIVITY

PART A: PERIODIC TABLE REVIEW GROUP ACTIVITY

Diagram Letter	Α	В	С	D	E	F	G	Н	I	J	K
Atomic#for each paper diagram		10									
Element Symbol for each paper diagram		Ne									

IN PAIRS OR AS A GROUP: • FILL IN: the ATOMIC #'s (enter Element Symbol LATER) • ARRANGE: ATOM DOT DIAGRAMS on blue layout • ANSWER: the Questions on SHEET • WHITEBOARD: DRAW diagrams for 7 missing elements • FILL IN: ELEMENT SYMBOLS



stop what you're doing and...

LISTEN.

CLASS "recap" TIME

NO side conversations!
Please be RESPECTFUL of others
who are speaking to the entire class
or trying to listen

Electron Configuration in Shells (for Elements 1 to 18)

Atomic #	Element & Symbol		etrons ell	Total # of Elec- trons	
		1st	2nd	3rd	
1	Hydrogen, H	1			1
2	Helium, He	2 (Full)			2
3	Lithium, Li	2	1		3
4	Beryllium, Be	2	2		4
5	Boron, B	2	3		5
6	Carbon, C	2	4		6
7	Nitrogen, N	2	5		7
8	Oxygen, O	2	6		8
9	Fluorine, F	2	7		9
10	Neon, Ne	2	8 (Full)		10
11	Sodium, Na	2	8	1	11
12	Magnesium Mg	2 2	8	2	12
13	Aluminum, Al	2	8	3	13
14	Silicon, Si	2	8	4	14
15	Phosphorus, P	2	8	5	15
16	Sulfur, S	2	8	6	16
17	Chlorine, Cl	2	8	7	17
18	Argon, Ar	2	8	8 (Full)	18

NOTE: This info will all in CLASS NOTES when you get your copy next week!

Periodic Table of the Elements

	1 1A																	18 8A
1	1 H Hydrogen 1.01	2 2A					K	(ey					13 3A	14 4A	15 5A	16 6A	17 7A	2 He Helium 4.00
2	3 Li Be Lithium Beryllium 8,94 9,01 Sodium Element name									5 B Boron 10.81	6 C Carbon 12.01	7 N Nitrogen 14.01	8 O Oxygen 16.00	9 F Fluorine 19.00	10 Ne Neon 20.18			
3	11 Na Sodium 22.99	12 Mg Magnesium 24.31	3 3B	4 4B	5 5B	6 6 6B	7 78	erage aton 8	nic mass* 8B	10	11 ı 1B	12 2B	13 Al Aluminum 26.98	14 Si Silicon 28.09	15 P Phosphorus 30.97	16 S Sulfur 32.07	17 Cl Chlorine 35.45	18 Ar Argon 39.95
4	19 K Potassium 39.10	20 Ca Calcium 40.08	21 Sc Scandium 44.96	22 Ti Titanium 47.87	23 V Vanadium 50.94	24 Cr Chromium 52.00	25 Mn Manganese 54.94	26 Fe Iron 55.85	27 Co Cobalt 58.93	28 Ni Nickel 58.69	29 Cu Copper 63.55	30 Zn Zinc 65.39	31 Ga Gallium 69.72	32 Ge Germanium 72.61	33 As Arsenic 74.92	34 Se Selenium 78.96	35 Br Bromine 79.90	36 Kr Krypton 83.80
5	37 Rb Rubidium 85.47	38 Sr Strontium 87.62	39 Y Yttrium 88.91	40 Zr Zirconium 91.22	41 Nb Niobium 92.91	42 Mo Molybdenum 95.94	43 Tc Technetium (98)	44 Ru Ruthenium 101.07	45 Rh Rhodium 102.91	46 Pd Palladium 106.42	47 Ag Silver 107.87	48 Cd Cadmium 112.41	49 In Indium 114.82	50 Sn Tin 118.71	51 Sb Antimony 121.76	52 Te Tellurium 127.60	53 lodine 126.90	54 Xe Xenon 131.29
6	55 Cs Cesium 132.91	56 Ba Barium 137.33	57 La Lanthanum 138.91	72 Hf Hafnium 178.49	73 Ta Tantalum 180.95	74 W Tungsten 183.84	75 Re Rhenium 186.21	76 Os Osmium 190.23	77 ir Iridium 192.22	78 Pt Platinum 195.08	79 Au Gold 196.97	80 Hg Mercury 200.59	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.98	84 Po Polonium (209)	85 At Astatine (210)	86 Rn Radon (222)
7	87 Fr Francium (223)	88 Ra Radium (226)	89 Ac Actinium (227)	104 Rf Rutherfoldium (261)	105 Db Dubnium (262)	106 Sg Seaborgium (266)	107 Bh Bohrium (264)	108 Hs Hassium (269)	109 Mt Meitnerium (268)									

^{*} If this number is in parentheses, then it refers to the atomic mass of the most stable isotope.

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
140.12	140.91	144.24	(145)	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium
232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

GROUP LEARNING ACTIVITY

PART B: MAKING MOLECULES

1) Based on PART A, **fill in the element name**, **symbols**, **and atomic #s** for the first 3 rows in their proper arrangement of the periodic table:

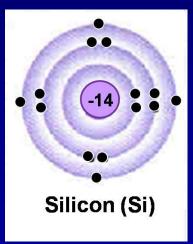
COPY: Name, Symbol & Atomic # onto this table so you have a simple 3-Row table to work with WHITEBOARD: combine atoms in the simple table to MAKE MOLECULES related to Global Change SELECT SPEAKER: to explain GC connection										

BONUS (if you finish early): write out simple CHEMICAL REACTION with molecules on WHITE BOARD

stop what you're doing and...

LISTEN.

CLASS "recap" TIME


NO side conversations!
Please be RESPECTFUL of others
who are speaking to the entire class
or trying to listen

PRESENTING.... A New Feature: The SUSTAINABILITY SEGMENT!!!

http://www.pbs.org/wgbh/nova/solar/

What did we learn today?

- 1. SGC eText & Testing explained
- 2. Review of basic concepts of Matter, Atoms, Molecules, etc.
- 3. Basis for the structure of the Periodic Table: Rows = same # of shells Columns = same #of electrons in outermost shell
- 4. Important Molecules related to many aspects of Global Climate Change

REMEMBER FOR NEXT MONDAY:

- 1) Purchase & Register your SGC eText this week & READ: Chapter 1 Global Change & Chapter 2 Atoms
- 2) Bring your Clicker Device to class NEXT week
- 3) Complete practice Self Tests & Readiness Quizzes (RQ)
- 4) Your first <u>GRADED</u> RQ (RQ-1) on <u>SGC Chapt 2</u>
 "ATOMS" is due <u>MONDAY Aug 31ST</u> by 1:30 pm
 (NOTE: All RQ's are due 30 minutes before class begins.)

SEE YOU ON MONDAY!