TOPIC # 5 - Part II THE ELECTROMAGNETIC SPECTRUM

Class Notes: pp 27-28 Come forth into the light of things.

Let nature be your teacher.

~ William Wordsworth

Frequency, Wavelengths & Energy of Photons Energy emitted from the sun (i.e, electromagnetic radiation) exhibits both a wave-like (electromagnetic wave) and particle-like (photon) nature.

Both Sun & Earth are radiating energy

... at different electromagnetic wavelengths

.... and at different frequencies

Figure on p 27

Richard Feynman, Quantum Physicist

There's this tremendous mess

Of waves all over in space

Which is the light bouncing around the room

And going from one thing to the other

Wavelengths

Quantifying Frequency & Wavelengths

Terminology for describing the WAVE-like behavior of electromagnetic energy:

Wavelength= distance betweenadjacent crests (or troughs)(symbol = lambda λ)

Frequency = how fast the crests move up and down (symbol = nu V in E-Text)

Speed = how fast the crests move forward (symbol = c in E-text) c = the speed of light

Wavelength & Frequency

NOTE: Shorter wavelengths are produced when the rope is shaken more vigorously. *"The <u>shorter</u> the wavelength the <u>GREATER the energy</u> & the <u>HIGHER the frequency</u>"*

These are the wavelength ranges most critical to global change processes!

THE ELECTRO MAGNETIC SPECTRUM

Longwaves (LW)

The Electromagnetic Spectrum (another view)

Shortwaves (SW)

Another (flipped) view:

p 28

What are the "sources" of different wavelengths of electromagnetic radiation?

Type of Electromagnetic Radiation	Range of Wavelengths (in units indicated)	Typical Source
Gamma rays	10 ⁻¹⁶ to 10 ⁻¹¹	high-energy processes within nucleus caused by the strong force
Ultraviolet radiation Shortwave Visible light Solar	.0001 to 0.4 in micrometers (μm) 0.4 to 0.7 in micrometers (μm)	electrons moving (quantum leaps) within individual atoms $\bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \bullet$
Infrared radiation Near Infrared radiation Far Infrared	0.7 to ~30 (up to 1000) in micrometers (μm) 0.7 - 1.0 in micrometers (μm) 1.0 - ~30 (up to 1000) in micrometers (μm)	chaotic thermal kinetic motion of molecules due to their thermal energy R photon Faster rotation rate
Microwaves	10 ⁻⁴ to 10 ⁻² in meters (m) using scientific notation	electronically produced by microwave oven

THE GREENHOUSE EFFECT

Neat website . . Check it out!

ELECTROMAGNETIC SPECTRUM JAVA APPLET:

<u>http://lectureonline.cl.msu.edu/~mmp/applist/</u> <u>Spectrum/s.htm</u>

Applet: Spectrum

Wavelength	= 1.643e-6 m	= 1642.9 nm
Frequency	= 1.825e14 Hz	= 182482.3 GHz
Energy	= 1.209e-19 J	= 0.754 eV

Infrared, heat radiation

Origin: Molecular vibrations Detection: Bolometer

What is the relationship between . . . ENERGY EFREQUENCY \vee and WAVELENGTH λ OF PHOTONS ?

KEY CONCEPT #1:

The Energy E of photons is directly proportional to their frequency v

 ∞ = "is proportional to"

 $\mathsf{E} \propto \mathsf{V}$

What is the relationship between . . . ENERGY E FREQUENCY γ and WAVELENGTH λ OF PHOTONS ?

KEY CONCEPT #2:

The Energy E of photons is inversely proportional to their wavelength λ E $\propto c/\lambda$

SOLAR RADIATION: greatest intensity in SHORT wavelengths

(high energy & frequency)

EARTH **RADIATION:** entirely in LONG wavelengths (low energy & frequency)

The wavelength determines how the electromagnetic ENERGY (photon) will interact with MATTER !

Photons + ATOMS vs Photons + MOLECULES

The quantum leap of electrons: takes place <u>WITHIN an ATOM</u> between discrete energy levels (shells) when photons are absorbed or emitted . . .

but

Quantum theory also involves the *behavior of molecules*

When some molecules absorb and emit <u>certain wavelengths</u> of electromagnetic energy they bend, rotate, and spin in a specific way

rotation bending vibration

NITROGEN GAS MOLECULE N_2

Rotation

Vibration

CARBON **DIOXIDE GAS** MOLECULE CO_2

Infrared radiation! The COMET Program

Figures on p 26

So what is a Greenhouse Gas?

abbreviation we'll use = GHG

GHG = a gas than can absorb and emit (re-radiate) <u>INFRARED</u> wavelengths of Electromagnetic Radiation

> 0.7 - 1000 micrometers

The QUANTUM BEHAVIOR of **CERTAIN MOLECULES** with respect to **INFRARED RADIATION** is the **REASON THAT GREENHOUSE** GASES ARE GREENHOUSE GASES!!

And NOW another . . . SUSTAINABILITY SEGMENT

Starring:

http://www.pbs.org/wgbh/nova/tech/saved-by-the-sun.html

Is it time to take SOIAL ENELGY seriously?

e Sti

Phosphorus (P) "doped" Si layer

move down to (B) layer, negatively charging it

Silicon (Si)

Boron (B) "doped" Si layer

Read this explanation at:

http://www.pbs.org/wgbh/nova/tech/how-solar-cell-works.html /

 \odot

INSIDE A SOLAR CELL

5-277

X

ELECTRIC FIELD