### Topic # 11 HOW CLIMATE WORKS – PART I

A "Primer" on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes

pp 61-67 in Class Notes

#### How do we get energy from this . . .





#### .... to drive this ?

#### .... or this ?



http://www.vets.ucar.edu/vg/T341/index.shtml

#### ....which leads to Global Climatic Regions:



#### ....and CHANGES in these regions!



**Hotter!** 



**Drier!** 

Actual recorded surface temperatures 1979–2005

#### Surface temperature key

-0.6 -0.4 -0.2 0 0.20 0.4 0.60 No Data TEMPERATURE CHANGE (°C)

#### from Dire Predictions text

Wetter!

(MM PER DAY) FOR 2080-2099 RELATIVE TO 1980-1999

# It all happens because of changes in the <u>RADIATION / ENERGY BALANCE</u>!

$$R_{NET} = \bigvee_{LW}^{SW} + \bigvee_{LW}^{SW} - \bigvee_{LW}^{SW} + \bigvee_{LW}^{LW} = H + LE + G$$



All components are referring to electromagnetic radiation

All components are referring to modes of heat energy transfer or heat energy storage <u>involving matter</u>

## "Energy Balance" part R<sub>NET</sub> = H + LE + G

Start out here, with energy from the SUN radiated to Earth and so forth ...

#### **"Radiation Balance" part**



The RNET is then able to be used in thermal energy "heat transfer" processes which manifest themselves as weather & climate!



#### **Thermal Energy Review**

Heat (def) = the thermal energy that is <u>transferred</u> from one body to another because of a temperature difference.

- Sensible Heat transfer (H)
- Latent Heat transfer (LE)

plus (after transfer) thermal energy can be STORED (G)

Review

#### **ENERGY IN THE EARTH-ATMOSPHERE SYSTEM**



#### The Earth [as viewed from space] . . .

has the organized, self-contained look of a live creature, full of information, marvelously skilled in handling the sun.

- Lewis Thomas

LINKING THE ENERGY BALANCE TO ATMOSPHERIC CIRCULATION . . .

> We'll start with the SUN (SOLAR INSOLATION)

> > IN - SOL - ATION =

Amount of <u>in</u>coming <u>solar</u> energy received by a point on Earth's surface

## To drive the circulation, the initial source of energy is from the Sun:



#### **4 Things to Know about Earth-Sun Relationships:**

- 1) Earth orbits Sun in one year
- 2) Orbit is not a perfect circle ( = an ellipse )
- 3) Earth's orbit around Sun can be "traced" on a plane ("Plane of the Ecliptic" – plane passes thru the center of Sun & Earth)
- 4) Earth's axis tilts 23.5 ° from  $a \perp$  to the "Plane of The Ecliptic"

http://mesoscale.agron.iastate.edu/agron206/animations/01 EarthSun.html

These 4 Earth-Sun Properties lead to: the <u>2 factors</u> that determine the <u>AMOUNT</u> OF SOLAR INSOLATION as the seasons progress:

#### (1) <u>INTENSITY</u> of sun's rays (perpendicular to surface = more intense)

(2) **DURATION** of daily insolation

(longer day length = more insolation)



A useful term:

ZENITH = The point directly overhead

INTENSITY is greatest at any spot on Earth when sun is closest to the ZENITH!

 $\odot$ 

#### **QUICKIE LATITUDE REVIEW:**



### EARTH-SUN RELATIONSHIPS & The SEASONS:

#### **VIEW THE ANIMATION:**

http://mesoscale.agron.iastate.edu/agron206/animations/01\_EarthSun.html



#### To Be Continued . . .