OVERLAPPING SCALES and the ATMOSPHERIC CAUSES OF FLOODS

Katherine K. Hirschboeck Laboratory of Tree-ring Research University of Arizona

Regional Flood Mapping

from Hirschboeck, 1991; modified from Baldwin & McGuinness, 1963

Hayden's Flood map:

PURPOSE

- Overview of atmospheric causes of floods
- Issues related to overlapping scales
- Implications
- Concluding remarks

Flood studies / observations:

- urban flash flooding; small basin floods in U.S.
- Basin-wide and regional flooding in AZ, LA, and Mississippi RB
- Largest US rainfall-runoff floods
- Global flooding events in the Dartmouth Flood Observatory

12-2500 73 GEN.1:6-8

CAUSAL ELEMENTS OF FLOODS

INGREDIENTS

PROCESS

PATTERN

PERSISTENCE

• SYNERGY

INGREDIENTS

after Doswell et al. (1996)

Heavy Precipitation "The heaviest precipitation occurs where the rainfall rate is the highest for the longest time."

INGREDIENTS

after Doswell et al. (1996)

- Rapid ascent of air
- Substantial water vapor
- Precipitation efficiency

INGREDIENTS

after Doswell et al. (1996)

Sustained Duration

- System Movement Speed
- System Size
- Within-System Variations in Rainfall Intensity

INGREDIENTS SUMMARY

Heavy Precipitation High Precipitation Rate Sustained Duration

INGREDIENTS SUMMARY

Rainfall rates associated with deep, moist convection are higher than with other rain-producing systems

Meteorological processes bring these basic ingredients together

CAUSAL ELEMENTS OF FLOODS

INGREDIENTS

PROCESS
PATTERN

PERSISTENCE

SYNERGY

PROCESS

Heavy flood-causing precipitation can be associated with a wide variety of storms types:

Multicell or supercell convection

Squall lines

Mesoscale convective systems (MCS, MCC)

Tropical Storms Extratropical Cyclones & associated Fronts

Snow events w/ Extratropical Cyclones, etc.

[SCALE OF DISTANCE								
	10,000 km	1000 km	100 km	10 km 0 km	o km				
	WORLD SCALE	SYNOPTIC SCALE	MESO-SCALE	CONVECTIVE OR SMALL SCALE					
Extra-Tropical	Long or Rossby waves Hadley cells or subtropical anticyclones	Depressions Anticyclones	Fronts Lee waves Squall lines in troughs	Cumulonimbus showers Tornadoes					
Tropics	I.T.C.Z. Easterly wa	Cloud clusters aves Tropical cyclones	Meso-scale convective cells	Convective elements					
	1000 h	100 h	ioh SCALE OF TIME	ih oh					

SCALE TERMINOLOGY (after Hirschboeck et al, 2000)

Length Scale		Term		
(km)	← 1 r			
>10,000	H H			Macro- scale
10,000 to 2,000				Synoptic scale
2,000 to 50		· · · · (Meso- scale
50 to 5				Storm scale

U.S. overview of climate and floods

From Hirschboeck, 1991; based on earlier thunderstorm studies

from Hirschboeck, 1991; based on series of published & unpublished data from Maddox et al

Some important flood-generating tropical storms

from Hirschboeck, 1991

Synoptic Scale

Areas in which FRONTS associated with extratropical cyclones occur more than 50 % of the time

ATLANTA OCEAN

GULT MEXICO

D. OCTOBER

PACIFIC OCEAN

PROCESS

FLOOD-CAUSING MECHANISMS

Geographic Scale of Influence (km²

precipitation SPACE-TIME DOMAINS 10¹⁰ Meridional and zonal systems OF WEATHER AND circulation episodes CLIMATIC EVENTS Global which Preferred ridge and 10⁸ trough positions occur at SST anomalies Extratropical cyclones **Meteorological &** 10⁶ one climatological Tropical cyclones scale flood-producing Regional Major 10⁴ snowmelt mechanisms Fronts Major Regionaloperate at Short waves Floods varying temporal Thunderstorms 10² and spatial Snowmelt Medium Convection scales 10 Large cumulus SPACE-TIME DOMAIN LocalFlash OF FLOODING EVENTS Floods 1 Small cumulus Micro 10⁻¹ Hour Week Month Year Dav Decade Century

Duration

... Are strongly interconnected with systems at other scales ...

... and larger scale processes set the stage for activity at smaller scales. **Scale factors** are critical determinants of whether a given atmospheric mechanism will cause a flood.

PROCESS

Large-scale vertical motions typical do not initiate convection . . .

... but there is a connection between synoptic-scale weather systems and deep, moist convection

Connection:

... via moistening and destabilization created by the modest but persistent SYNOPTIC-SCALE vertical ascent ahead of short-wave troughs

Mesoscale → Synoptic Scale connection in meteorology of flash floods

Based on Maddox et al. (1980)

PROCESS SUMMARY

PROCESS SUMMARY

 Linkage across scales does not necessary imply that there is a seamless process continuum in the nature of flood-causing storm systems

 Distinct processes tend to concentrate around discrete and disparate states

CAUSAL ELEMENTS OF FLOODS

INGREDIENTS

PROCESS

SYNERGY

PATTERN
PERSISTENCE

Macroscale

PATTERN

> Correlation fields
> Composites
> Principle components

Flooding in La Paz County, Arizona October, 2000

Correlation pattern for peak October streamflow

Composite pattern Cutoff Low Floods in AZ

PATTERN

October '00 composite anomaly pattern

500mb Geopotential Heights (m) Composite Anomaly Oct: 2000 NCEP/NCAR Reanglysis -100 -80 -60 -40 -20 0 2D 40 60 60 100

(Similar to PNA teleconnection pattern)

October W. AZ peak streamflow pattern

PATTERN SUMMARY

• Most floods in studies could be linked to one of several floodproducing synoptic-scale and/or larger-scale patterns

 Patterns change regionally and seasonally

 Frameworks for forecasting and "backcasting"

PATTERN SUMMARY

- Pattern alone not always sufficient as causal explanation
- If ingredients are <u>not</u> in place, heavy precipitation / flood may not develop
- If ingredients <u>are</u> in place, a benign pattern may yield anomalous flooding (flash floods)

CAUSAL ELEMENTS OF FLOODS

- INGREDIENTS
- PROCESS
- PATTERN
- PERSISTENCE
- SYNERGY

Flooding in the Mississippi River Basin Spring 1973 Hirschboeck (1985)

Flooding in Arizona - Winter 1993 House and Hirschboeck (1997)

" moistening and destabilization created by the modest but PERSISTENT synoptic-scale vertical ascent ahead of shortwave troughs"

Doswell 1987, Doswell et al. (1996)

PERSISTENCE SUMMARY

 Persistence of INGREDIENTS (e.g., deep moist convection environment) most important at small scales (flash floods)

 Persistence of PATTERN most important at larger scales (basin-wide / regional floods)

PERSISTENCE SUMMARY

 In the largest and most extreme floods studied, PERSISTENCE was always a factor

 Persistence bridges meteorological and climatological time scales

 Persistence = underlying factor in atmosphere / basin synergy

CAUSAL ELEMENTS OF FLOODS

INGREDIENTS

PROCESS

• PATTERN

PERSISTENCE

SYNERGY

SYNERGY

SYNERGY = A combined action or operation; a mutually advantageous conjunction or compatibility of distinct elements > slow movement of system
> large area of high R along motion vector
> both occurring together (as in d)

From Doswell et al. (1996)

The ways in which precipitation is delivered in both space and time over drainage basins of different size strongly influence the occurrence and type of flood event.

Orography = a key factor in synergistic flood development

TOPO (msl) 3676.86 2721.16 1765.46 809.76 -145.94

Source: National Severe Storms Lab

SYNERGY SUMMARY

Synergistic relationships between:

 > meteorological & climatological processes;
 > basin size, shape, and orientation;

> orography

were factors in many of the extreme flood peaks, esp. in small basins

SYNERGY SUMMARY

Synergistic factors can both supercede the influences of PATTERN

... or enhance the influences of PATTERN

KEY QUESTION:

Can flood-causing mechanisms be analyzed as a *process continuum*...

> ... using statistical techniques, (e.g. "upscaling" or "downscaling") ...

... Or do they concentrate around discrete scales?

Are there limits in space and time to our ability to transfer causal-process information observed at one scale to that of another? Can processes and scale relationships observed in the gaged record be applied over longer time scales?

assess paleoflood causes

 develop climatic forecasts for floods

What about GLOBAL FLOOD PATTERNS?

Can they be identified? Quantified? Can trends be seen?

Hayden's Flood map:

MEAN SPECIFIC HUMIDITY at 1000 mb Annual (Jan – Dec)

Monthly Longterm Mean (1968-1996) shum g/kg

Year 1999 Large Floods

Source: Dartmouth Flood Observatory

Year 2000 Large Floods

Source: Dartmouth Flood Observatory http://floodobservatory.colorado.edu/

1997 – 2000 Composite of Large

Elecia

Source: Dartmouth Flood Observatory

Temporal clustering in global floods, (based on number of reported floods 1975-99)

Source: Dartmouth Flood Observatory

Temporal clustering in largest U.S. rainfall / runoff floods (in different size drainage areas)

Hirschboeck (1987)

12-2500 73 GEN.1:6-8

Concluding Remarks

 INGREDIENTS PROCESS PATTERN PERSISTENCE SYNERGY

Concluding Remarks

Flood events tend to be discontinuous and episodic in time . . .

... and clustered in space

... in response to varying states of the atmosphere
Concluding Remarks

Across all scales, the *persistence* of a precipitation system is a key element for generating exceptionally large floods

Concluding Remarks

Circulation features which enhance persistence tend to occur as discrete time / space anomalies that are not easily captured by upscaling or downscaling techniques.

Concluding Remarks

Most major floods are characterized by a synergistic combination of atmospheric, hydrologic, and drainage-basin factors that intensify the event and "tip the scales" beyond what might be expected in a smoothly telescoping process continuum.