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A new modeling approach for reconstruction of streamflow from tree-ring widths is 

described and illustrated for the Salt-Verde River basin, Arizona.   The approach, 

proposed to deal with relationships that are nonlinear and possibly weaker at higher flows 

than at low flows, includes a combination of parametric and nonparametric statistical 

techniques.   Main steps are 1) filtering and scaling of tree-ring chronologies to adjust for 

lags and signal-strength differences in climate response, 2) weighting over sites to 

emphasize common signal for flow, and 3) interpolation of reconstructed flows from a 

locally weighted polynomial (loess curve) fit to the scatterplot of observed flows on the 

weighted tree-ring variable.  Error bars for the reconstruction are derived by weighted 

bootstrapping of cross-validation residuals of loess-estimated flows.   A comparison of 

reconstructions by the new method and by a more traditional approach shows important 

differences, especially in the inferred severity of low flows and high flows.   
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Reconstruction of streamflow from tree rings is based on a statistically calibrated model 

relating a time series of observed flows to indices of tree-ring width at one or more sites.  

The tree-ring indices, or site chronologies (Cook et al. 1990) are viewed as proxies for 

moisture variations in runoff-producing parts of the watershed, and in this sense are 

surrogate precipitation series.   The statistical model is usually multiple linear regression 

(MLR) and the predictors,  or the chronologies, are sometimes reduced by averaging or 

principal components analysis, and sometimes lagged to adjust for non-climatic 

persistence in the tree ring series and to allow for the possibility imperfectly 

synchronized relationships of chronologies and flow (e.g., Stockton and Jacoby 1976;  

Smith and Stockton 1981;  Meko and Graybill 1995; Cleaveland 2000; Meko et al. 2001;  

Woodhouse et al. 2006).   Depending on the basin, flow transformation has been applied 

in such studies to mitigate problems with violations of assumptions on regression 

residuals.  For example, log-transformation was used in reconstructions of annual flow 

for the Salt River (Smith and Stockton 1981), and Sacramento River (Meko et al. 2001) 

to deal with non-normality of residuals and non-constancy of regression error-variance, 

also called heteroskedasticity.  As the tree-ring index, defined as the ratio of measured 

ring width to a fitted “age-trend”, is itself an arbitrary transformation of ring width, there 

is no reason to expect the index to be ideally suited as a flow predictor.  Flow 

reconstruction has indeed been reported to benefit from quadratic transformation of the 

tree-ring chronologies used as predictors (Cleaveland 2001).  If a tree-ring index is 

viewed as a precipitation proxy it is reasonable to expect some sort of nonlinear 

relationship of the index with streamflow, as the runoff/rainfall ratio for semi-arid basins 

generally is not linear (e.g., Sellers 1960).  Moreover, under very wet conditions the 

incremental increase in tree growth with increasing moisture would logically decrease, as 

soil moisture would no longer be the main limiting factor to growth. 

 Although some combination of data transformation of predictand and predictors 

might effectively deal with the problems mentioned above, it is important to note that 

transformation of the predictand is not without its own drawbacks.    One is that the 

regression is optimized on transformed units (e.g., minimizing the sum of squares of log-
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transformed flow).  Another is that the reconstruction must generally be back-

transformed to original units if it is to be practically useful to most users (e.g., water 

managers), and in doing so some convenient properties of the regression estimates are 

lost.  For example, while regression guarantees that the calibration-period means of 

observed and reconstructed predictand are equal, the equality no longer holds for the 

predictand back-transformed to original units.  A third is that the error bars for 

reconstructed flow, while constant for the transformed flow, vary from year-to-year for 

back-transformed flow.   A fourth drawback is that the ideal form of transform may not 

be obvious -- whether for straightening the flow-tree ring relationship or for reducing 

heteroskedasticity.  Log-transformation, for example, is just one of a family of power 

transformations (Hoaglin et al. 1983), and its predominent use in dendrohydrology is 

largely due to convenience and familiarity.     

The purpose of this paper is to describe and illustrate a new approach to 

streamflow reconstruction that circumvents flow transformation but still addresses the 

issues of nonlinearity and nonconstant error variance that plague reconstruction efforts, 

especially in smaller semi-arid basins.  The approach adapts both nonparametric and 

robust parametric modeling to deal with some of the challenges posed by tree-ring and 

flow data in such basins.    Tree-ring chronologies are first individually filtered and 

scaled to emphasize the flow signal.  The resulting series are then weighted to reduce 

site-specific noise.  Finally, reconstructed flow is interpolated from a smoothed 

scatterplot of observed flow on the weighted derived tree-ring variable.  A confidence 

interval for reconstructed flows is estimated by weighted bootstrapping that reflects any 

increased scatter in the relationship of tree-ring index to flow as conditions become 

wetter.  

The trial basin selected to illustrate the method is the combined Salt-Tonto-Verde 

basin, in south-central Arizona.  We generate a reconstruction of water-year flow, 1451-

1982, by the new method.  That reconstruction is compared with a reconstruction by 

linear regression with log-transformed flow to assess the assess sensitivity of inferred 

hydrologic drought history to reconstruction methodology.   
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 The method described here is based on an idealized relationship between  flow 

and tree-ring index (Figure 1).  The sketch might apply to a gaged or natural-flow series 

of annual flows, and a moisture-limited  tree-ring index at a site in or near the watershed.    

The first relevant aspect of this idealized relationship is curvature.  It is reasonable to 

expect that the incremental change in tree-ring index with increasing flow might decrease 

as conditions become so moist that soil moisture is no longer limiting to growth.  The 

second aspect is smoothness, reflecting the likely limitation of sampled data to capture 

only the gross features of any relationship of tree-growth to moisture variation.  The third 

aspect is the amplified scatter of the relationship during wet years.  Amplified scatter 

could arise from several sources.  Gaged streamflow, as derived from stage-discharge 

relationships, is less accurate for high flows than for low flows; this characteristic is 

reflected in the convention for rating stream-gage accuracy as a percentage of measured 

flow (e.g., Mosely and McKerchar 1993).  Moreover, highs flow might also result from 

localized heavy rains that might or might not be commensurate with precipitation 

received at any particular tree-ring site.  Finally, high flows may leave dramatically 

different imprints in the soil moisture zone of the trees depending on the intensity and 

duration of the contributing storms. 

 The conceptual idea behind the method proposed here is that a suitably smoothed 

scatterplot such as that in Figure 1 can be directly applied as a reconstruction model.  

Inference from the smoothed line can yield flow estimates in original flow units, without 

the need for data transformation.  The procedure must of course be objective, such that 

the smooth curve can be regenerated by different researchers from the same basic data.  

The procedure must also allow for the incorporation of flow signals from multiple tree-

ring sites, when the signal may differ in strength, linearity, and lag properties across sites.  

Finally, estimates of uncertainty of reconstructed flows must reflect the increasing scatter 

of the relationship at  high flows.     

This paper a multi-stage reconstruction modeling approach proposed for 

precipitation reconstruction (Meko 1997) and later adapted to flow reconstruction (Meko 

et al. 2001).  The main extensions are incorporation of 1) quadratic regression and 
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nonparametric smoothing to allow flexibility to handle curvilinear relationships, and 2)  

weighted bootstrapping to generate confidence intervals consistent with an observed 

amplification of reconstruction error in wetter years.  The main steps are summarized in 

Figure 2 and are described in more detail below.     

 

2.1 Filtering and scaling.  The analysis begins with a time series of flow and a set of 

residual tree-ring chronologies (Cook et al. 1990).  Each tree-ring chronology is first 

individually filtered and scaled to emphasize its signal for flow.   Essentially, this step 

consists of multiple separate single-site reconstructions of flow, as each chronology is 

converted into an estimated flow time series.   The statistical model for filtering and 

scaling is quadratic regression of flow on current and lagged tree-ring index.  A 

contemporaneous (no lags) model is specified, followed by the possible addition of laggd 

terms. The contemporaneous model takes one of three possible alternative forms: 
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where is flow in year t, is the tree-ring index in year t, is a noise term, and 

are parameters estimated by robust regression using the Huber weighting 

function.  Robust regression is preferred here because of the likelihood of outliers in 

relating tree-growth at a particular point (single chronology) to a flow series that 

responds to spatially distributed runoff.   While ordinary least squares minimizes the sum 

of squares of residuals, robust regression minimizes a weighted sum of squares of 

residuals, such that outliers have diminished influence on the fit (Myers 1990).   Huber’s 

weighting function assigns equal and maximum weight to observations whose residuals 

are within some specified threshold distance from zero, and truncates the weights for 

other residuals according to an influence function (Huber 1973).  More details on the 

particular implementation of robust regression used are included in Appendix B.      

ty

2,b

tw te

0 1{ , }b b

The selection of model-form from the candidates in  (0.1) is guided by the signs 

of parameter estimates from trial-and-error fitting of all three forms.  Priority is given to 
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model (1) if its parameter estimates and are both positive.  If either estimated 

parameter is negative, model (1) is rejected, and whichever of (2) or (3) has the higher 

regression

1̂b 2̂b139 

140 
2R is accepted.   These rules ensure that the curve is monotonically increasing 

and concave upward.   
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The filtering-and-scaling model is then expanded by adding lagged terms that 

may contribute significantly to the prediction accuracy.  A stepwise procedure, again 

using robust regression with the Huber weighting function, is used to incorporate the 

lagged terms.  If is more highly correlated with the tree-ring index than with the 

squared index , the pool of potential lagged predictors for stepwise is 

ty

2
t

tw

w

{ }2 1 2, ,t tw w w− − +1, twt+ ;   otherwise the pool is { }2 2 2 2
2 1 1, , ,t t tw w w w− − + 2t+ .  Stepwise entry of 

lagged terms is governed by the size of the partial correlation (Mardia et al. 1979) 

between residuals of the model at the current step and potential predictors not yet in the 

model.  After a lagged predictor is selected, the model is re-fit and the process is 

continued until all lags are entered.  To avoid over-fitting, the final model selection is 

guided by cross-validation (leave-9-out), such that entry is truncated with the step 

immediately preceding the first rise in median cross-validation error.  The particular 

choice of 9 observations for deletion in cross-validation is arbitrary, but is sufficiently 

large so that no cross-validation prediction relies on a tree-ring value also used to 

calibrate the model when the regression includes predictors lagged up to ±4 years from 

the year of flow.    

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

t

The final filtering-and-scaling model arrived at by the procedure described above 

can hypothetically range in complexity from a simple linear regression of flow on the 

tree-ring chronology 

 0 1t ty b b w e= + +  (0.2) 162 
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to a quadratic model with four lagged terms 

 .  (0.3) 2 2 2 2 2
0 1 2 3 1 4 2 5 1 6 2t t t t t t ty b b w b w b w b w b w b w e− − + += + + + + + + +

As each chronology is modeled separately, a different form of model may be arrived at 

for each tree-ring chronology in the predictor network. 
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 The filtering-and-scaling model for a given chronology is calibrated on the full 

available overlap of tree-ring index and flow data, and is then applied to the longer tree-

ring record to generate the long-term filtered-and-scaled tree-ring index, which extends to 

the start of that particular chronology.  This long series can alternatively be considered a 

single-site reconstruction of flow, as models like 

168 
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176 

(0.2) and(0.3) are reconstruction 

models.  For brevity, the individual predicted time series generated by substitution of 

tree-ring indices into a filtering-and-scaling regression model is referred to from here on 

as a SSR (single site reconstruction).  

ˆty

    

177 

178 
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182 

2.2 Weighting.  The SSRs for the various tree-ring sites are next weighted into a single 

time series through principal components analysis (PCA).  The PCA is run on the 

covariance matrix instead of the correlation matrix of the SSRs because the differing 

variances of the SSRs contain useful information:  the variances are proportional to the 

percent variance of flow that could be explained by the single-site regression models.   

The weighted tree-ring variable can be expressed as   

 ( ,
1

ˆ ˆ
ci n

t i t i
i

)ix a y y
=

=

= ∑ −183  (0.4) 

where is the ith SSR in year t, ,ˆt iy ˆiy is the sample mean of the ith SSR, is the loading of 

principal component #1 (PC1) on the ith SSR, and is the number of chronologies in the 

network.  The sample means in 

ia184 

185 

186 

cn

(0.4) are computed on the period in common period to the 

various SSRs.  Because the PCA is run on this common period, the weighted series tx can 

extend only over this period.   Note that

187 

tx is also the time series of scores of PC1 (Mardia 

et al. 1979), the single linear combination explaining the greatest percentage of variance 

of the SSRs.  This time series, relying on tree-growth variations at multiple sites, is likely 

a more robust indicator of flow than any of the individual SSRs.     

188 

189 

190 

191 

192  

2.3 Loess-curve estimation.  A scatter plot of observed flows  on site-weighted SSRs ty tx193 

194 

195 

is smoothed with locally weighted polynomial regression, or “loess” (Cleveland and 

Devlin 1988) such that the smoothed line is a nonparametric description of the 

relationship between  andty tx    The loess model assumes generation of y by 196 
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 ( )i iy g x197 iε= +  (0.5) 

Where iε are independent, normal variables with mean zero and variance 2σ , and is 

some smooth function locally fit to restricted ranges of x.   Loess begins with 

specification of some subset of points along the x-axis at which separate polynomial 

regressions of on

( )ig x198 

199 

200 

ty tx are to be run.  Let any one of these points be designated 0x .  A 

regression is run on the set of observations 

201 

{ },x y with tx nearest 0x , and in this sense the 

regression is “local”.  The user specifies the size of the desired neighborhood around

202 

0x as 

a decimal fraction of the total number of observations in the scatterplot through a 

smoothing parameter

203 

204 

α .  For example, 0.5α = specifies that the neighborhood of points 

for the local regression will be comprised of the 50 percent of observations with

205 

tx nearest206 

0x .  The larger the smoothing parameterα , the less localized the fit, and the smoother the 

curve.  The fit is “weighted” in the sense that within the neighborhood more importance 

is given to observations nearer

207 

208 

0x in estimating the regression parameters.  We use a 

locally linear (polynomial degree 1) model for the loess estimation.  The estimation 

procedure minimizes a weighted sum-of-squares of errors 
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  (0.6) ( )( )2
0 0 1

1

k

i i
i

S g x y xβ β
=

= − −∑

where 0β and 1β are regression parameters, ( )0ig x is a weighting function, and the 

summation is over the k observations in the neighborhood of

214 

0x .   The local regression 

procedure is repeated for a set of points

215 

0x  distributed along the x-axis, and a predicted 

flow is generated at each

216 

0ŷ 0x .  Straight-line segments joining the estimates at each 0ŷ 0x217 

218 constitute the loess curve.   

 In our implementation of the loess, the target points 0x are specified as the 

minimum

219 

tx , maximum tx and 0.05 j quantiles of tx , where 1, ,19j = … .  The smoothing 

parameter,

220 

α , is arrived at by a trial-and-error process starting with trial values  {α=0.3, 

0.4, 0.5, 0.6,  0.7,  0.8}.  The lowest trial

221 

α giving a monotonically increasing curve is 

selected as the final

222 

α .  This constraint, consistent with our conceptual model, requires 223 
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that increasing tree-growth to be associated with increasing flow.  Following Martinez 

and Martinez (2005), the weights g in 

224 

225 
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227 

228 

(0.6) were computed with the tri-cube weight 

function (Appendix C).   

  

 

2.4 Interpolation of reconstructed flows.  Reconstructed flow for any given year is 

interpolated from the loess curve using by linear interpolation.  Interpolation is necessary 

because the historical values of

229 

230 

tx will not in general coincide with an 0x at which loess-

curve estimates were made.  Furthermore, extension of the loess curve beyond the 

extremes of

231 

232 

tx in the calibration period may be necessary if flow is to be inferred for years 

outside the calibration period.  For such years, we extrapolate the loess curve linearly:  a 

straight line between the loess curve estimates at the 0.05 quantile and minimum 

calibration

233 

234 

235 

tx is extended to lower tx , and a straight line between the loess curve estimates 

at the 0.95 quantile and maximum calibration

236 

tx is extended to higher tx .   237 

238  

2.5 Error bars for reconstructed flows.   Reconstructed flows must be accompanied by 

some estimate of uncertainty.  The conceptual model represented by the smoothed 

scatterplot in Figure 1 implies increased uncertainty of reconstruction with increased 

wetness.  If the loess residuals

239 

240 

241 

ˆtt̂ te y y= − , where is observed flow and is flow 

estimated from the smoothed scatterplot, happen to be approximately normally 

distributed with constant variance, error bars could be estimated directly from the normal 

distribution.  With nonconstant error variance, as in Figure 1, a theoretical approach to 

error bars is less tenable.  We propose a heuristic approach that also does not rely on any 

distributional assumption on the residuals and is consistent with the observed pattern of 

scatter:   a confidence interval for any given reconstructed flow is estimated from the 

cumulative distribution function of weighted-bootstrap cross-validation residuals of 

reconstructed flows.  A time series of cross-validation residuals is first generated by the 

following steps:  1) the loess curve for the selected value of smoothing parameter

ty ˆty242 

243 

244 

245 

246 

247 

248 

249 

250 

α is 

repeatedly re-fit, each time leaving out a different sequence of 9 consecutive 

observations, 2) at each re-fitting, the loess curve is applied to predict the flow for the 

251 

252 

253 
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central of the 9 omitted observations, and 3) the residuals (observed minus predicted) 

from each step are assembled into a single series of residuals

254 

255 
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260 

261 

262 

263 

264 

265 

266 

1.     

 For any reconstructed flow, the cross-validation residuals are resampled with 

replacement (bootstrap) 1000 times to generate a distribution of errors tailored to that 

particular level of reconstructed flow.  A “neighborhood” of reconstructed flows is 

defined based on the k  reconstructed flows in the calibration period nearest the target 

reconstructed flow.  The number is specified as decimal fraction (e.g., 0.6) of the total 

number of calibration-period observations.  A weighted bootstrap is used so that residuals 

for predicted flows closer to the target reconstructed flow are more highly represented 

than residuals for predicted flows further from the target.  The bi-square function is used 

to generate the weights.  The bi-square function is computed (Appendix C) and any 

weights less than 1/100 the maximum weight are dropped.   

k

 The 1000 noise values are then added to the reconstructed flow to generate 1000 

noise-added reconstructed flow values for the target year.  The / 2α and1 / 2α−267 

268 

)
probability points of the empirical cumulative distribution function of the 1000 values is 

the (100 1 α− percent confidence interval for the reconstructed flows.  For example,  the 

0.10 and 0.90 probability points give the 80 percent confidence interval.  

269 

270 

271 

272 

273 

274 

275 

276 

277 

                                                

 The 1000 noise-added reconstructions are also the basic data for estimating 

uncertainty of statistics derived from the annual reconstructions.  For example, a 

confidence interval for 5-year running mean reconstructed flow can be directly tallied by 

smoothing each of the 1000 annual series with that running mean and computing the 

probability points of the empirical cumulative distribution function of the smoothed 

series in each year.   

 

 
1 Note that (2) cannot be applied to the first 4 and last 4 observations, because 9 observations are not 
available there for extracting central values.  For those starting and ending observations, fewer than 9 
observations are omitted, but a buffer of 4 observations is retained between the cross-validated observation 
and the nearest observation of the estimation set.  For example, at the front end, observations 1-5 are 
omitted to get the cross-validation residual for observation 1, observations 1-6 are omitted to get the cross-
validation residual for observation 2, etc.   
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3.  Sample Application 278 
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The sample basin is the combined watersheds of the Salt, Verde and Tonto Rivers, 

Arizona (Figure 3).  This semi-arid basin, a major source of water supply for south-

central Arizona, has been the subject of previous dendrohydrologic studies (Smith and 

Stockton 1981; Graybill et al. 2006).   Elevation in the 11,142 mi2 (28,858 km2) basin 

ranges from 637 m to 3,846 m (Hawkins 2006).  The distribution of annual precipitation 

is bimodal, with a winter peak associated with disturbances in the westerlies, and a 

summer peak associated with summer convective storms (Sellers and Hill 1974).    

Snowmelt accounts for about 39 percent of the annual precipitation (Serreze et al. 1999).  

Runoff depends strongly on snowmelt (Molotch et al. 2002), and usually peaks in spring 

(Anderson and White 1986).   Total annual precipitation is quite variable over the basin, 

and ranges from less than 15 inches (380 mm) in the lower elevations to more than 25 

inches  (635 mm) in the high mountains (Anderson and White 1986). 

 

293 

294 

295 

296 

297 

298 

299 

300 

301 

302 

303 

304 

305 

306 

307 

3.2  Tree-ring data.  Tree-ring data for the example consists of autoregressive-residual 

chronologies of total ring-width for 10 sites in Arizona, western New Mexico, and 

southeastern Utah (Figure 3, Table 1).  Field collections were made in fall of 2005 to 

update sites sites 1 and 2.   The rest of the sites were previously collected by other 

researchers, and their data were obtained either from the International Tree-Ring Data 

Bank (ITRDB) or the Laboratory of Tree-Ring Research at the University of Arizona.  

The starting point for processing was measured ring widths of individual cores or cross-

sections.  Correlation analysis was used to identify any ring-width series with obvious 

dating or measuring errors, and these were eliminated from the data set.   Each ring-width 

series was detrended with a cubic smoothing spline with amplitude of frequency response 

equal to 0.95 at a wavelength twice the series length (Cook and Peters 1981).  Core 

indices were computed by the ratio method, converted to residual indices by 

autoregressive modeling, and then averaged over cores at the site to produce site 

chronologies (e.g., see Cook et al. 1990).  The common period of coverage by all 10 

chronologies was 1451-1983.  By suggested guidelines (Wigley et al. 1984), all 
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308 

309 

310 

311 

312 

313 

chronologies were sufficiently well-replicated, with subsample signal strength exceeding 

0.85 for this interval.  Variance-stabilization was applied in computing each site 

chronology to adjust for the expected statistical dependence of the chronology variance 

on time-varying sample size, or number of cores (Osborn et al. 1997).   Step-by-step 

details of the tree-ring chronology development can be found elsewhere (Appendix 3, 

SRP Final Report). 

3.1  Flow data.  The observed streamflow series, referred to as “flow” in the remainder of 

this paper, is the total volume of flow for the water year (October-September) summed 

over three gages:  the Salt River near Roosevelt, the Verde River below Bartlett Dam, 

and the Tonto River near Roosevelt

314 

315 

316 

317 

318 

319 

320 

321 

322 

2 ( Figure 3).   The flow series over 1914-2007 is 

highly positively skewed and has negligible autocorrelation (Table 2, Figure 4) .   A 

characteristic of the annual flows is the occasional very high flow: flow exceeds 300 

percent of the median in six years.  Some periods (e.g., 1950s) are notable for a long gap 

between wet years.   

 

3.3 Filtering and scaling.  A comparison of basic descriptive statistics of flow and tree-

ring chronologies suggests some obstacles to inferring flows from the tree-ring data 

(Table 2).  Differences in mean or variance between flow and chronologies are 

unimportant to reconstruction quality, as regression methods are indifferent to linear 

rescaling of the variables.  Skew and autocorrelation, however, deserve further attention.  

First-order autocorrelation is small for all series – slightly negative for the chronologies 

and slightly positive for the flow.  Autocorrelation reaches weak significance for only one 

site.  The negative autocorrelation for chronologies might seem surprising as these are 

autoregressive-residual chronologies.  However it should be noted that the autoregressive 

(AR) models for whitening chronologies are based on the full lengths of tree-ring series, 

while the statistics in Table 2 are for 1914-1982, a common period later used as the 

reconstruction calibration period.  The differing signs of autocorrelation in flow and 

chronologies might indicate the tree-ring data has been slightly  “over-whitened” for the 

323 
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327 

328 

329 

330 

331 

332 

333 

334 

335 
                                                 
2 Some splicing of records from different gages was necessary for the Verde and Tonto series.   The 
specific gages used are identified in Appendix 1, SRP Final Report 
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objective of flow reconstruction, but the small size of autocorrelations makes this a minor 

inconsistency.   

Flow is significantly positively skewed, while eight of the ten chronologies are 

negatively skewed.  This negative skew of chronologies is slight, and reaches 

significance (0.05 α-level) for only one chronology.  In contrast, flow is highly positively 

skewed. The contrast is readily apparent in quantile-quantile plots, as illustrated for  four 

chronologies in Figure 5.  As a linear model would essentially transfer the tree-ring 

distribution shape onto that of the reconstructed flows, likely problems with the linear 

model become apparent.  First is underestimation of both high and low flows.  In other 

words, the severity of high flows would be understated, and the severity of low flows 

overstated.  A scatter plot of flow on tree-ring index for one of the chronologies 

illustrates the problem:   the least-squares straight line is too low at both the high-flow 

and low-flow ends (Figure 6A).  These characteristics reflect the inability of a straight 

line to follow the concave curvature in the scatterplot.   Another regression complication, 

heteroskedasticity, is indicated when the residuals from the straight-line fit are plotted 

against predicted flows: the classic fan-shaped pattern indicates greater variance of errors 

when predicted flow is high (Figure 6B).   

Scatter plots of flow on other chronologies (not shown) were also more-or-less 

curvilinear.  The robust regression modeling of flow on lagged chronologies accordingly 

identified quadratic models as appropriate for the scaling and filtering for each of the 10 

sites (Table 3).  Plots of predicted flow on tree-ring index for four of the sites for which 

non-lagged models were selected are shown in Figure 7.  The quadratic fits are superior 

to straight lines in capturing the curvature of the relationships, but are notably deficient in 

parts of the plots, especially toward the high-flow side.  For example, a more extreme 

curvature in the high-index side of the plot for site 4 appears necessary to track the point 

cluster.   Signal strength as measured by the accuracy of the least squares quadratic fit 

varies greatly over sites – variance explained ranges from 17 to 62 percent (Table 3).  All 

models have positive skill as measured by the reduction-of-error statistic applied in cross-

validation and split-sample validation.   For three of the sites, the selected filtering-and-

scaling model included lags.  Plots of estimated flow on the tree-ring index for those sites 
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367 

368 

369 

370 

371 

372 

373 

is of course not a smooth line because the flow estimate for a given year does not depend 

exclusively on the tree-ring index or its squared value in that year alone.  While justified 

statistically in the stepwise procedure, the lags that entered are not particularly important 

in influencing the flow estimates. At site 1, for example, the jagged departures in the 

fitted line from what would be a smooth concave curve– departures imposed by the 

lagged predictor -- are relatively minor compared with the overall y-axis range of the 

fitted line (Figure 8).    

 

374 

375 

376 

377 

378 

379 

380 

381 

382 

383 

384 

385 

3.4 Weighting.  The PCA on the SSRs indicates that the first three components account 

for 79 percent of the variance of SSRs for their 1451-1982 common period (Table 4).  

PC1, which we adopt as a natural weighting function expressing common variance 

among SSRs, itself accounts for 63 percent of the variance.  The loadings for PC1 reflect 

the differential signal strength in chronologies, as reflected in the variance-explained 

statistics for the filtering-and-scaling models listed in Table 3.  For example, the site with 

the highest PC1 loading has the highest individual flow-variance explained, and the three 

sites with the lowest loadings explain the lowest percentages of flow variance.  Use of 

PC1 as a weighting function to combine the information on flow from the various 

chronologies therefore most highly weights those chronologies with the strongest 

individual flow signal, and vice versa.    

 

3.5 Loess-curve estimation and cross-validation.  A scatterplot of observed flows on 

scores of PC1 of the SSRs is the framework for the loess plot.  The scatterplot is repeated 

with loess curves corresponding to four different trial-and-error choices of smoothing 

parameter α in Figure 9.  The loess curves for

386 

387 

388 

0.3α = and 0.4α = were rejected because 

they were not monotonically increasing; those curves would imply decreasing flow with 

increasing tree-ring index for at least part of the range of tree ring index.  Loess curves 

for

389 

390 

391 

0.5α ≥392 

0.5

increased monotonically, and would have been acceptable by that criterion.  

The curves forα =393 (not shown) was rejected for containing irregularities (not smooth 
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enough), while the curve for 0.8α =394 

395 

396 

397 

398 

 was so smooth that tracking suffered at very high 

flows and very low flows.    

The final selected loess fit (α=0.6) is plotted again in Figure 10, with a linear 

extension to accommodate tree-ring data outside its range encountered in the 1914-82 

calibration period.  This curve constitutes the nonparametric reconstruction model.  Any 

PC1 score t399 

400 

401 

402 

403 

x from the tree-ring record is a pointer to the x-axis of the loess plot, and the 

corresponding flow is linearly interpolated from a lookup table corresponding to the loess 

plot. The dashed arrows on this figure illustrate the use of a the curve to infer a flow of 

3.6 maf (4.4 bcm) from a PC1 score of 110.   
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3.6  Error bars.     Weighted-bootstrap pseudo-populations of residuals and shapes of 

weighting functions for generating error bars for reconstructed flows are illustrated in 

Figure 11for four consecutive years in the 1500s.   The plotted points for each of the four 

frames are identical, as these are just the residuals (observed flow minus predicted flow ) 

1914-82.  The subset of those residuals bootstrapped for each reconstructed year varies, 

depending on the reconstructed flow.  For the extremely dry year 1506, the pseudo-

population comes from the left (dry) side of the plot, and consists of residuals tightly 

clustered around zero.  In contrast, for the wet year 1509 the residuals have a much wider 

range.   

The weighted-bootstrap sample for generating error bars differs for each year of 

the reconstructed as the reconstructed flow differs from year to year.  The widths of the 

error bars consequently differ, as shown in Figure 12 for a snapshot of ten years near the 

start of the 16th century.  Note that this snapshot includes the four years whose pseudo-

populations of residuals were depicted in Figure 11.  The confidence interval is narrow in 

1506, reflecting the small residuals making up that pseudo-population.  The interval is 

wider for 1507-1509, reflecting the larger residuals bootstrapped.  Small differences in 

width of confidence interval for these years come from slight differences in the 

bootstrapped population and different weighting functions within those populations.     

The confidence interval on annual reconstructed flows accordingly varies from year to 

year over the full-length reconstruction (Figure 13A), and the variation carries over to 

any smoothed version of the reconstruction, such as the 5-year running-mean (Figure 

13B).  The 80% confidence interval is considerably tighter for wet periods than for dry 

periods (e.g., early 1600s vs 1660s.).   For this particular example, the estimated record 

low is 0.57 maf (.70 bcm), for the period 1666-1670;  the confidence interval indicates a 

10 percent probability the 5-year mean flow then was as low as 0.42 maf (0.52 bcm).  

 

430 

431 

432 

433 

3.6 Comparative reconstruction.  The reconstruction generated by loess was compared 

with a reconstruction by linear regression.  To simplify the comparison, both methods 

used the same ten tree-ring chronologies and calibration period.  The comparison 

reconstruction was done using the log-10 transformed flows as a predictand, and the time 
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434 

435 

436 

437 

438 

439 

440 

series of scores of PC1 of the residual chronologies as the predictor.  No lags were used 

in the comparison model, as these were shown to be of minor importance to the loess 

reconstruction.  

 The regression R2 indicated that the comparison reconstruction accounted for 69% 

of the variance of flow in the 1914-82 calibration period.  This accuracy is misleading, 

however, because it applies to log-transformed flows.  After back-transformation to 

original flow units, the variance explained as computed by 

441 

442 

443 

 1 SSE/SSTV = −  (0.7) 

 where SSE is the sum of squares of errors (observed minus predicted flows) and SST is 

the sum of squares of departures of observed flows from the 1914-82 mean, drops to 

 The corresponding value for the loess reconstruction is 0.59.V = 0.69.V =   The loess 

reconstruction by this measure is therefore a closer fit than the linear-regression 

reconstruction to the observed flows.   

444 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

 The mean, standard deviation, and skew and first-order autocorrelation of 

observed flows are closer to those of the loess reconstruction than to those of the linear- 

regression reconstruction (Table 5).  The higher standard deviation for the loess 

reconstruction follows directly from its explaining more variance of the observed flows.  

Both reconstructions somewhat underestimate the very small positive first-order 

autocorrelation of the observed flows.   

Perhaps the more interesting comparisons for alternative reconstruction methods 

are in the key features of the long-term reconstruction.  Mean, standard deviation, skew 

and first-order autocorrelation are all higher for the 1451-1982 loess reconstruction than 

for the linear-regression reconstruction.  A scatterplot of reconstructed flows by the two 

methods has a curvature, indicating primarily that the loess approach give greater 

extremes on the high-flow end and lesser extremes on the low-flow end (Figure 14).   A 

time series plot for a snapshot of reconstructed flows in the 1500s shows that the 

differences in individual years are appreciable (Figure 15).  For example, in wet years 

1509 and 1549 the loess reconstruction is on the order of 0.5 maf (0.6 bcm) higher than 

the regression reconstruction.   Differences in dry years are much smaller – on the order 

of 0.1 maf (0.1 bcm).  
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Cumulative distribution functions (cdfs) for the two reconstructions similarly 

point to the tendency for the loess reconstruction to have both higher highs and higher 

lows than the linear-regression reconstruction (Figure 16 ).  For the long-term record and 

the 1914-82 calibration period, the cdf of the loess reconstruction is shifted to the right of 

the cdf of the linear regression reconstruction.  The shift is most apparent in the tails. 

Differences in individual years are expected to carry over to differences in multi-

year flow anomalies.  In Figure 17, the extremes in running means of length 1-20 years 

are compared.  The highest running means (wettest periods) are plotted in Figure 17A, 

and the lowest running means (driest periods) in Figure 17B.   Large differences in the 

two reconstructions are apparent even for running means longer than 10 years.  For 

example, the wettest 20-year period is about 25 percent higher in flow for the loess 

reconstruction, and the driest 20-year period about 5 percent higher in flow for the loess 

reconstruction.     

  

4.  Discussion and Conclusions 

Scatterplot smoothing is a useful and intuitively appealing approach to reconstruction of 

streamflow from tree rings when nonlinearity and heteroskedasticity of errors make linear 

regression problematic.  An ideal setting for this approach would be a simple bivariate 

problem in which flow was to be inferred from a single tree-ring series – which might be 

an average over site chronologies.  In practice, the problem is more complicated because 

individual tree-ring chronologies might have greatly varying strength of signal for flow, 

the relationships between chronologies and flow might include lags, and sites might be 

clustered spatially so that averaging over chronologies would unfairly emphasize some 

parts of the basin over others that may be of more importance to runoff.  The approach 

presented here relies on a combination of parametric and non-parametric methods to 

address these complications.   

The intermediate step of converting individual tree-ring chronologies to estimates 

of flow (“scaling and filtering”) before weighting them into the predictor for the loess 

scatterplot runs the risk of overfitting.  We attempted to minimize this risk by restricting 
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the filtering-and-scaling models to have a fairly simple quadratic form and by using 

cross-validation to guard against unwarranted entry of lagged predictors.   

Variations on the proposed approach might be preferable in some circumstances.  

In the absence of heterskedasticity of errors, the weighted bootstrapping could be omitted 

and reconstruction error bars generated from the error variance and some suitably fitted 

error distribution.  A simpler approach to reduction of the individual tree-ring 

chronologies to a single predictor might also be possible if all chronologies showed a 

similarly strong signal for flow and if lagged response could be ignored.  In the extreme, 

this might amount to the loess-curve “predictor” being merely the arithmetic average of a 

number of tree-ring chronologies in the basin.   A less extreme departure would be to use 

some other form of regression model for the single-site reconstructions.   We used robust 

regression partly based on exploratory analysis that showed some severe outliers in 

scatterplots of flow on individual tree-ring chronologies.  Without this complication, 

ordinary regression, with quadratic or some other power-transformation of the tree-ring 

indices, might be preferred.  Another possibility would be generate the single-site 

reconstructions by loess curves (scatterplot smoothing) instead of quadratic regression.  

We chose not to do that in the interest of automating the reconstruction process:  for 

reconstruction problems with many tree-ring chronologies, the scatterplot smoothing was 

judged to be too tedious in requiring a large number of subjective decisions (e.g., on 

smoothing parameters for individual scatterplots).   

 The method described here can be readily extended to accommodate time-nested 

tree-ring reconstruction models (e.g., Meko et al. 2001) .  For brevity, we have restricted 

the sample application to reconstruction for a specific time period uniformly covered by 

all the tree ring chronologies.  In practice, some subset of chronologies will extend much 

further back in time, and some may come nearly up to present.  For those situations, the 

modeling procedure would simply be repeated such that multiple reconstructions were 

generated.  If these happened to overlap, as is usual, priority could be given in assigning 

the final reconstructed flow for a given year to the model deemed superior in some way 

(e.g., lowest validation error variance).  

 19



522 The proposed approach is perhaps most blatantly subjective in selection of the 

smoothing parameterα for the loess curve.  Our conceptual model dictated constraints on 

this choice.  The conceptual model is that trees grow faster as conditions become wetter, 

but may respond less to increased moisture under very wet conditions:  we accordingly 

assume the curve fit to a scatterplot of flow on tree-ring index should increase 

monotonically, and perhaps increase in steepness toward high flows.     These constraints 

would perhaps not apply in some studies.  For example, situations could be envisioned in 

which very moist conditions become detrimental to growth.  Besides the smoothing 

parameter, the other parameter typically varied in loess smoothing is the degree- of-

polynomial, λ (Martinez and Martinez 2005).  We choose a locally linear model, 

corresponding to

523 
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547 

548 

549 

550 

551 

552 

.  The locally-linear model has been recommended for having well-

behaved end-effects (Martinez and Martinez 2005). The loess curve by the local-linear 

model could also be readily extended to allow estimation of flow for those years with 

tree-ring data outside its calibration-period range.    

The confidence intervals from weighted-boostrapping of cross-validation 

residuals are of course not exactly reproducible, as a bootstrap sampling will generate a 

different sample when repeated.   The size of the bootstrap sample (e.g., 1000 vs 5000) 

will affect the repeatability of the confidence interval; an optimal size for particular 

problems could be fine-tuned with Monte Carlo sensitivity studies.   Another limitation 

that should be mentioned is the violation of the regression assumption of constant error 

variance. This violation makes can affect properties (e.g., bias, variance) of estimated 

regression predictors coefficients, and have important implications for hypothesis testing 

using those coefficients (e.g., Kennedy 2003).  Inferences based on significance of 

coefficients is not an issue in flow reconstruction.  The degree to which the violation 

negatively impacts the predictions in a flow reconstruction model is unknown.  The most 

important points in the reconstruction application are that 1) the smooth curve gives and 

acceptable and reasonably robust fit to the scatterplot, and 2) the error bars reflect any 

systematic dependence of reconstruction accuracy on level of predicted flow.   

Application of the method presented here should include cross-validation and graphical 

quality control to ensure that these points are addressed.  Alternatively, data 

transformation could be investigated in combination with the loess approach to 
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circumvent the problem of heteroskedasticity of errors – with the tradeoff of likely need 

for backtransformation to make reconstructed flows usable.      

The reconstruction approach proposed here is not claimed to be superior in 

general to any existing statistical reconstruction method, but is proposed as a useful 

alternative for reconstruction scenarios plagued by nonlinearity of relationships and 

heteroskedasticity of errors.  The scenario is most likely in small, semi-arid basins, where 

flashy flow regimes may produce highly-skewed flows and where high flows are unlikely 

to leave a footprint in tree-growth commensurate with the flow anomaly.   Comparative 

exercises can point out sensitivity of major reconstructed time series features to choice of 

reconstruction method. Our limited comparison with a more convention linear-regression 

reconstruction model indicates the loess procedure as implemented here does give 

practically significant differences in reconstructed features.  The more extreme highs and 

less extreme lows by the loess reconstruction are a direct consequence of the effort to 

deal with curvature in the relationship between tree-ring index and flow.  Other types of 

statistical models, not investigated here, may be applicable to flow-reconstruction 

problems in which the data are not particularly well-suited for regression.  Response 

surfaces (Graumlich 1993), neural networks (Zhang et al. 1999; Woodhouse 1999; Ni et 

al. 2002), and classification trees (Meko and Baisan 2001) are some of the other 

techniques that have been used to deal with nonlinearity in tree-ring reconstruction 

models.   
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Appendix A.     Statistical software 1 

2 

3 

4 

5 

All computations were done in MATLAB©, using a combination of functions written by 

us and available from MATLAB© and the Computational Statistics Toolbox (Martinez 

and Martinez 2002).  Numerous user-written functions and scripts were also used in the 

analysis.     

 1



Appendix B.     Robust Regression and Huber Weighting Function 1 

2 

,

 In linear regression the predictand for any given observation or year i is modeled as  

   , 1, 2,i i iy e i′= + =x b … n3     (1.1) 

where iy is the predictand,  is a row vector of predictors, b is a vector of coefficients, 

and is the noise.  Predictions can be generated by 

ix4 

ie ˆ
iˆiy ′= x b , where the “hat” denotes 

estimated values, such that the residuals are defined as  
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ˆi

îe

 î ie y y= −  (1.2) 7 

While ordinary least squares regression seeks to minimize 2

1

ˆ
n

i
i

e
=
∑ , robust regression seeks 

to minimize   where are weights that can be used discount the importance of 

outliers in the fit (Myers 1990).    
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Robust regression with the Huber function was implemented with MATLAB 

function robustfit .  An ordinary least squares fit (non-robust) is first run, and the 

diagonals of the “hat” matrix, , ,i jh j =  stored.   (The “hat” has been dropped from the 

estimated quantities in the following to avoid clutter.)  Scaled residuals are then 

computed as 
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 (1.3) 16 

17 where is a specified Huber “tuning factor”, and  1.345a =

 
( )MED

ˆ
0.6745

ie
σ =  (1.4) 18 
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is a scale factor reflecting the variability of the residuals.  The Huber weights are given  

by  
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The robust estimates of regression parameters are derived iteratively:  

1) Run an ordinary least squares to obtain initial, non-robust, parameter estimates 

0b , initial residuals ei,0 , and diagonal elements of the hat matrix, ,i i  h

2) Using those residuals, compute the initial scaled residuals ,0ir from (1.3) and initial 

weights ,0iw from (1.4) and (1.5) 

3) Use weighted least squares (e.g., Weisberg 1985)to get new robust parameter 

estimates 0( ) 1
0 0R

−′ ′=b X W X X W y , where 0W is a diagonal matrix of weights with 

ith diagonal element ,0iw   

29 

30 

31 4) Let the parameter estimates from step 3 take the role of starting parameters, and 

apply  (1.3), (1.4), and (1.5) to get new residuals, a new value ofσ̂ , and new 

weights 

32 

33 
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38 

5) Go back to step 3 

6) Repeat steps 3 and 4 until convergence is reached 

 

In function robustfit, the constant 0.6745 makes the estimate unbiased for the 

normal distribution. If there are p columns in X, the smallest p absolute deviations are 

excluded when computing the median absolute residual, ( )MED ie .  Convergence is 39 
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40 

41 

42 

43 

assumed when the maximum change in any of the parameters from the previous step 

is very small --  does not exceed some specified small number (tied to the machine 

precision).  The iteratively reweighted least squares is otherwise continued to a 

maximum possible 50 iterations,  



Appendix C.     Bisquare and tri-cube weighting functions 1 

2 The bisquare and tri-cube weighting functions are described in the context of robust 

statististics by Martinez and Martinez (2005).   Given a set of observations{ },i ix y and 

some arbitrary point x0 on the x-axis, define the k nearest neighbors as the k points with xi 

closest to x0.  Define the relative distance of any observation from x0 as 
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where ( )0k xΔ is the largest 0 ix x−  for any of the k nearest neighbors.  The bisquare 

weights are  
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 Equations (1.2) and (1.3) along with the definition of u specify that the weight 

decreases from a maximum for the observation nearest x0 to zero for the farthest 

observation in the neighborhood, and remains zero for any observation outside the 

neighborhood.  Weights are cannot be less than zero or greater than 1, and a weight 1 

occurs only if some observation happens to have an x-value exactly at x0.  The bisquare 

and tri-cube weighting functions both decline with a sigmoid shape, but steepness of 

decline differs such that the tri-cube weights are higher than the bisquare weights for 

points near x0 and lower than the bisquare weights for points far from x0 (Figure ??).   
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Figure 1.  Bisquare and tri-cube weights as a 
function of relative distance (see text).   

 



Table 1. Site information on tree-ring chronologies. 

------------------------------------------------------------------ 

                              Locationd                            

                         ------------------                        

 Na Nameb       Speciesc  Lat     Lon  El(ft) Ntreee    Periodf  sg 

 ----------------------------------------------------------------- 

 1  Wahl Knoll     PSME  34.0  -109.4  9367  23( 3)  1435  2005  a 

 2  Black Mtn      PSME  33.4  -108.2  8721  41( 8)  1327  2005  a 

 3  Navajo Mtn     PIED  37.0  -110.8  7384  13( 6)  1330  1989  b 

 4  Kane Springs   PIED  37.5  -109.9  6350  26( 5)  1361  1988  b 

 5  Betatakin Cyn  PSME  36.7  -110.5  6599  26( 9)  1306  1989  b 

 6  Walnut Cyn     PIPO  35.2  -111.5  6696  17( 2)  1451  1987  b 

 7  Spider Rock    MIX   36.1  -109.3  6105  25( 6)  1399  1989  b 

 8  Satan Pass     PSME  35.6  -108.1  7384  17( 2)  1410  1990  b 

 9  Dinnebito      PIED  36.2  -110.5  6202  28( 6)  1410  1983  b 

10  El Malpais     PSME  35.0  -108.1  7826  21(16)  1100  1990  c 

------------------------------------------------------------------ 
aSite as numbered on map                                           
bSite name                                                         
cSpecies: PSME=Pseudotsuga menziesii; PIED= Pinus edulis           

 PIPO=Pinus ponderosa; Mix = mix of PSME and PIPO                  
dLocation: latitude and longitude in decimal degrees, elevation    

 in feet above sea level                                         
eMaximum number of trees in any year (number in 1541)              
fStart and end year of site chronology                             
gSource of data: a=site updated by D. Meko in July 2005;           

 b=Southwest Archaeology Project (J. S. Dean);                     

 c=Site collected by H. Grissino-Mayer (ringwidths are subset of   

   file nm572.rwl downloaded from Internation Tree-Ring Data Bank 



Table 2.  Statistics of annual flows and tree-ring chronologies. 

-------------------------------------------------  

                        Statisticsb                

           --------------------------------------  

  Seriesa   Mean  Std Dev   Skew   Normal   r(1)   

 ------------------------------------------------  

   Flow   1.201   0.8521   1.50**    F**   0.12    

Site  1   1.001   0.1515  -0.22      P    -0.17    

Site  2   1.009   0.2372  -0.25      P    -0.15    

Site  3   0.984   0.2371  -0.02      F*   -0.06    

Site  4   0.984   0.1987  -0.38      P    -0.18    

Site  5   1.007   0.1869  -0.36      P    -0.11    

Site  6   1.027   0.2239  -0.53*     P    -0.06    

Site  7   1.002   0.2057  -0.09      P    -0.18    

Site  8   0.999   0.2794   0.30      P    -0.15    

Site  9   1.018   0.2454   0.06      P    -0.07    

Site 10   1.002   0.2951  -0.04      P    -0.19*   

------------------------------------------------   

 aSeries: first series is annual flows, others are 

  residual tree-ring chronologies as numbered on   

  map in Figure 2                                 

 bStatistics are the mean, standard deviation,     

  skewness, Lilliefors test for normality, and     

  first-order autocorrelation.  Significance at    

  0.05 and 0.01 alpha-levels are flagged by  

  "*" and "**". Flow statistics (mean and standard 

  deviation) are in millions of cubic feet, and    

  index statistics are dimensionless. Analysis 

  period is 1914-82.      



Table 3.   Summary statistics of filtering-and-scaling models for tree-ring 
chronologies. 

--------------------------------------------------------------  

                        Cross-validationd       Split-samplee   

                     -----------------------   ---------------  

                      RMSE   MAE    MedAE                       

 Na   Modelb    VEc   (maf)  (maf)  (maf)       RE   REA   REB  

--------------------------------------------------------------  

 1    2:2000   0.26    25.2   15.6    8.4     0.17  0.23  0.23  

 2    2:0000   0.17    25.9   16.5   10.0     0.12  0.10  0.26  

 3    2:0000   0.46    20.8   13.9    9.5     0.38  0.49  0.41  

 4    2:0000   0.36    22.4   14.8    8.6     0.28  0.42  0.29  

 5    2:0000   0.34    22.3   14.9   10.1     0.29  0.43  0.22  

 6    2:0002   0.31    23.9   16.0    9.5     0.22  0.20  0.40  

 7    2:0000   0.41    21.7   13.8    8.1     0.32  0.49  0.29  

 8    2:0000   0.40    22.4   15.1    9.9     0.28  0.40  0.40  

 9    2:0020   0.62    19.0   13.7    9.8     0.50  0.57  0.65  

10   12:0000   0.23    24.8   17.0   11.1     0.12  0.25  0.13 

-------------------------------------------------------------   
aN: sites number as used on map                                 
bModel: code defining regression model of flow on current and   

 lagged tree-ring index; digits before colon indicate power(s)  

 of current-year index (e.g., 2 denotes 'squared');  columns    

 after colon indicate powers on index at lags t-1, t-2, t+1     

 and t+2 years relative to the year of flow                     
cVE: variance-explained statistic computed from observed and    

 predicted flows on the loess plot. The statistic is defined    

 as VE= 1-SSE/SST, where SSE is the sum of squares of           

 differences of observed flows and predicted flows and SST      

 is the sum of squares of departures of observed flows from     

 their mean.                                                    
dCross-validation: statistics from leave-9-out cross-           

 validation of the loess curve.  RMSE=root mean square error;   

 MAE=mean absolute error; MedAE=median absolute error;          

 RE=reduction-of-error statistic (see text)                     
eSplit-sample: Reduction-of-error statistics from split-        

 sample calibration-validation with calibration on first        

 half of data and validation on second half (REA) and for       

 calibration on the second half and validation on the           

 first half (REB)                       



Table 4.  Summary of principal components analysis on filtered and scaled 
tree-ring chronologies, 1451-1982.  Table truncated to include only first 
three components accounting for cumulative 79 percent of variance. 

 

-----------------------------  

                   Loadings    

         --------------------- 

Sitea     PC#1    PC#2    PC#3  

-----------------------------  

 1      0.178   0.407  -0.416  

 2      0.190   0.366  -0.090  

 3      0.394  -0.315   0.381  

 4      0.358  -0.192   0.163  

 5      0.295   0.018   0.238  

 6      0.308  -0.144  -0.638  

 7      0.333   0.234  -0.059  

 8      0.289   0.414   0.357  

 9      0.478  -0.398  -0.201  

10      0.207   0.398   0.108  

Var    62.7    10.8     5.4 

                               

-----------------------------  
aSite: First 10 rows correspond to  

tree-ring sites as numbered on map  

in Figure 2 and listed in Table 1. 

Last row is percentage of variance 

accounted for by the PC              



Table 5.  Summary statistics observed flows and flows reconstructed by two 
alternative methods.  

 

------------------------------------ 

                   Statisticsa       

            ------------------------ 

   Period   Mean  Stdev  Skew   r(1) 

------------------------------------ 

1914-1982                            

    Loess  1.229  0.698  0.92   0.01 

     Regr  1.112  0.556  0.66  -0.06 

      Obs  1.201  0.852  1.50   0.12 

                                     

1541-1982                            

    Loess  1.229  0.699  1.08   0.05 

     Regr  1.102  0.553  0.73   0.01 

------------------------------------ 
aStatistics: mean (maf), standard    

 deviation and first-order  

 autocorrelation      



  

 

Sketch of idealized relationship between tree-
ring index and annual streamflow for a tree-ring 
chronology in a semi-arid watershed.  Growth-
response to additional moisture flattens at high 
moisture levels, leading to concave curvilinear 
scatter.  Relationship weakens as moisture 
increases, leading to larger “errors” (Δy), or 
departures from fitted smooth line, for high 
flows. Smoothed line is quadratic fit to data with 
the outlier omitted.   
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Figure 2.  Flowchart summarizing main steps in 
reconstruction method.   

 



 

Figure 3.  Map showing locations of tree-ring sites 
(circles) and gages (triangles) used in sample 
reconstruction of sum of annual flows of Salt, Verde 
and Tonto Rivers.  Tree-ring sites numbered as in 
Tables 1 and 2. 
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Figure 4. Statistical characteristics of observed water-year total flows, 1914-2007.  (A) 
Time series plot, with dashed horizontal line at 1914-2006 median.  (B) Histogram with 
superposed pdf of theoretical normal distribution.  (C) Autocorrelation function with 95% 
confidence interval defines as two time the large-lag standard error (Box and Jenkins 
1976). 
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Figure 5.  Quantile-quantile plots illustrating 
diffences in shapes of distributions of annual flows 
and tree-ring indices.  Flow series is SVT water-
year total.  Tree-ring series are residual 
chronologies (Cook et al. 1990) for four sites in 
study are (numbered as in Figure 3 and Table 1). 
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Figure 6.  Scatter plots illustrating effects of 
nonlinearity and non-variance of errors in 
reconstruction by simple linear regression of flow 
on untransformed tree-ring index.  (A) observed 
flows against tree-ring index. (B) regression 
residuals against flows generated by simple linear 
regression model.  Data are SVT flows and 
chronology #6 (Table 1,  Figure 3) for common 
period 1914-87. 
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Figure 7.  Sample scatterplots and predictions from quadratic robust regression models scaling 
and filtering tree-ring chronologies into estimates of flow.  Sites numbered as in Figure 3 and 
Table 1.  Models for all ten sites listed in Table 3.  
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Figure 8.  Scatterplot of flow on tree-ring 
chronology for a site with a lagged predictor in 
the quadratic regression model.  Remainder of 
caption as Figure 7.  
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Figure 9.  Plots illustrating change in smoothness of loess plot with change in smoothing 
parameter, α.  Open circles are observed data.  Loess curve is composed of straight line 
segments connecting triangles located at minimum, maximum, and 0.05, 0.10, …, 0.95 
quantiles of PC#1 scores.  Analysis period 1914-82. 
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Figure 10.  Loess curve used for interpolating final reconstruction.    Dotted line is 
linear extension to allow interpolation outside the range of data in the 1914-1982 
loess calibration period.  Arrows illustrate using the loess curve to infer a flow of 3.6 
maf from a PC#1 score of 110.  
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Figure 11.  Weighted-bootstrap pseudo-
populations of residuals for reconstructed flows in 
1506-1509.  Circles mark residuals for the 1914-
82 model calibration period plotted against 
predicted flows.  Solid vertical line drawn at the 
reconstructed flow for year annotated at upper 
right.    Residuals used for weighted bootstrapping 
in annotated year are those in section of x-axis 
spanned by dotted curve.  Height of dotted curve 
is proportional to weights assigned in the weighted 
bootstrapping (declines to weight of zero at ends 
of curve).   
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Figure 12.  Ten-year segment of reconstruction 
with weighted-bootstrap 80% confidence 
intervals.   
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Figure 13.  Time series plots of annual reconstructed flows with 80 percent confidence 
interval.  (Top) Annual flows, 1541-1982. (Bottom) Five-year running mean of annual flows. 
Horizontal line in both plots is the 1541-1982 mean of annual reconstruction. 
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Figure 14.   Scatterplot of reconstructed flows by 
linear regression model on reconstructed flows by 
loess model, 1451-1982. 
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Figure 15.  Fifty-year time series segment comparing annual reconstructed flows by loess model 
with those by conventional model.  Conventional model is linear regression of flow on scores of 
first principal component of the 10 residual tree-ring chronologies. 
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Figure  16.   Empirical cumulative distribution 
functions (cdf’s) comparing distributions of 
flows. (A)  full reconstruction period (1451-
1982).  (B) model calibration period (1914-1982).  
Cdf for observed flows also shown in (B). 
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Figure 17.  Extreme running means of flow 
reconstructed by loess curve and regression. (A) 
Highest running means of length 1-20 years. (B) 
Lowest running means of length 1-20 years.  
Analysis period 1541-1982.  
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