Topic # 12 Natural Climate Processes

A "Primer" on How the Energy Balance Drives Atmospheric & Oceanic Circulation, Natural Climatic Processes

pp 63-68 in Class Notes

RADIATION / ENERGY BALANCE

$$R_{NET} = \bigvee_{I}^{SW} + \bigvee_{I}^{SW} - \bigvee_{IW}^{SW} + \bigvee_{IW}^{IW} = H + LE + G$$

All components are referring to electromagnetic radiation

Start out here, with energy from the SUN radiated to Earth and so forth . . .

SW

Thermal Energy Review

Heat (def) = the thermal energy that is <u>transferred</u> from one body to another because of a temperature difference.

- Sensible Heat transfer (H)
- Latent Heat transfer (LE)

plus (after transfer) thermal energy can be STORED (G)

H + LE + G

ENERGY IN THE EARTH-ATMOSPHERE SYSTEM

The Earth [as viewed from space] ... has the organized, selfcontained look of a live creature, full of information, marvelously skilled in handling the sun.

~ Lewis Thomas

LINKING THE ENERGY BALANCE TO ATMOSPHERIC CIRCULATION . . .

We'll start with the SUN (SOLAR INSOLATION)

IN - SOL - ATION =

Amount of <u>in</u>coming <u>solar</u> energy received by a point on Earth's surface

To drive the circulation, the initial source of energy is from the Sun:

+

SUN

4 Things to Know about Earth-Sun Relationships:

- 1) Earth orbits Sun in one year
- 2) Orbit is not a perfect circle (= an ellipse)
- Earth's orbit around Sun can be "traced" on a plane (called the "Plane of 3) the Ecliptic" – plane passes thru the center of Sun & Earth)
- Earth's axis tilts 23.5 ° from $a \perp$ to the "Plane of The Ecliptic" 4)

http://mesoscale.agron.iastate.edu/agron206/animations/01_EarthSun.html

These 4 Earth-Sun Properties lead to: Intensity + Duration

2 factors that determine the <u>AMOUNT</u> OF SOLAR INSOLATION as seasons progress:

(1) INTENSITY of sun's rays

(perpendicular to surface = more intense)

(2) DURATION of daily insolation

(longer day length = more insolation)

A useful term:

ZENITH = The point directly overhead

INTENSITY is greatest at any spot on Earth when sun is closest to the ZENITH!

QUICKIE LATITUDE REVIEW:

EARTH-SUN RELATIONSHIPS & The SEASONS:

VIEW THE ANIMATION:

http://mesoscale.agron.iastate.edu/agron206/animations/01_EarthSun.html

JUNE SOLSTICE

As viewed from one side of Sun

JUNE SOLSTICE

As viewed from the <u>other</u> side of the Sun

JUNE SOLSTICE

p 63

MARCH EQUINOX

p 79

SEPTEMBER EQUINOX different seasonal position in orbit ...

... but same latitudinal insolation as March Equinox

MARCH & SEPTEMBER EQUINOXES

DECEMBER SOLSTICE

DECEMBER SOLSTICE

http://mesoscale.agron.iastate.edu/agron206/animations/01_EarthSun.html

THE RADIATION BALANCE

& THE GENERAL CIRCULATION OF THE ATMOSPHERE

HOW IT ALL FITS TOGETHER:

Over the course of a year . . .

The amount of INCOMING SW (Insolation) absorbed by EARTH varies by LATITUDE

(MORE comes in near the Equator, less near the Poles)

→ LOW LATITUDES absorb more energy than HIGH LATITUDES

The amount of TERRESTRIAL LW / IR varies by latitude too --MORE LW / IR is emitted at warmer TROPICAL LATITUDES, LESS in cooler HIGH LATITUDES

HOWEVER.

EQUATOR-POLE DIFFERENCES in what goes OUT

are less than the

EQUATOR-POLE DIFFERENCES in what comes in

p 64

p 64

POLE

EQUATOR

POLE

Now lets look at a Pole to Pole Transect

100	-58	-22-	8	25	50	100	175	158	209 %in 12	

Data: NOEP/NOAR Reanalysis Project. 1858-1987 Climatologies Animation: Department of Geography. University of Cregon, March 2009

http://geography.uoregon.edu/envchange/clim_animations/

Net Radiation

Air Temperature

Data: NCEP/NCAR Reanalysis Project, 1959-1997 Climatologies Animation: Department of Geography, University of Oregon, March 2000 Dec

Global-scale motions driven by thermal differences:

COLDHOTCOLDPOLARTROPICSPOLARREGIONSREGIONSREGIONS

COLD POLAR REGIONS

HOT TROPICS

COLD POLAR REGIONS

From SGC-I Chapter 4

LOW PRESSURE AREAS:

Hot surface \rightarrow Rising air \rightarrow expansion and cooling of air, and condensation of water vapor \rightarrow clouds and possibly precipitation ...

HUMID REGIONS

DANCE YOUR PH.D! "Precipitation Initiation in Warm Clouds"

This dances shows how a rain drop can form when one slightly larger rain drop is present among a large population of smaller drops. The large drop only forms after mixing occurs.

http://www.youtube.com/watch?v=407G7F_e7I0

Condensation nucleus

H2O droplet

Here the women represent water molecules while the men represent cloud condensation nuclei.

Additional women dance in a manner suggestive of mixing processes in order to create the slightly larger drop, called a collision coalescence initiator.

Through "coalescence" a single nucleus attracts all

the other water droplets -- when large enough RAIN FALLS!

HIGH PRESSURE AREAS:

Forced sinking (e.g. in HADLEY CELL) leads to contraction and warming of air, and increased water vapor holding capacity → clear skies, dry air and ARID REGIONS.

In general: Winds tend to flow from HIGH → LOW Pressure areas

 \odot

Sub-Polar high tropical Polar easterlies Subpolar low 60° **HIGH** PRESSURE lesterlies Subtropical high 30° Northeast trades Intertropical Convergence Intertropical convergence zone 0° ITCZ Southeast trades Sub-Subtropical high 30° Westerlies tropical 60° Subpolar low Polar easterlies **HIGH** PRESSURE Polar high

BUT -Hadley cell circulation does Polar high not reach high Н Polar easterlies latitudes! Subpolar low 60° esterlies HADLEY Subtropical high 30° CELLS = Northeast trades key drivers! Intertropical convergence zone 0° **Convection cell** transfer of thermal energy from low Subtropical high 30° latitude area of Westerlies BUT energy Hadley cell 60° Subpolar low **SURPLUS** to Polar easterlies circulation does not reach higher latitude Polar high high latitudes! area of energy DEFICIT p 64

Why Hadley convective cell transport breaks down at higher latitudes:

Cooling cylin

Heatin

(pole)

(a) Slow rotation

Direction of rotation (equator)

(b) Faster rotation

64

Η

Wave transport of thermal energy instead of Hadley cell transport!

p 65

Energy is transported from areas of surplus to deficit in form of: H (sensible heat) & LE (Latent Energy)

H + LE

p 65

THERMAL ENERGY TRANSPORTED FROM LOW TO HIGH LATITUDES TO BALANCE OUT DEFICIT!

H + LE + G BUT WHAT ABOUT G ?

 ${f G}$ is a STORAGE component, not a transfer component BUT energy stored in the OCEAN, can later be transported via ocean currents as ${f H}$!

WARM & COLD SURFACE OCEAN CURRENTS:

Warm Currents

→ Large OCEAN GYRES -- driven by Trade Winds & Westerlies in Oceanic Subtropical HIGH PRESSURE CELLS (STH)

Leads to <u>SURFACE</u> ocean currents

Energy is transported from areas of surplus to deficit via: H (sensible heat)

& LE (Latent Energy)

H + LE

Both ATMOSPHERE & OCEAN play important roles in BALANCING OUT ENERGY SURPLUS & DEFICIT AREAS:

MOVIE TIME!!

GROUP BONUS POINT CHALLENGE :

Watch the video carefully – at some point a feedback loop process is described:

On an index card, state which feedback loop is described and sketch the diagram for it.

(HINT: it is one of the loops shown on p 56 in Class Notes)

NOTE: This video is posted in D2L. The part we watched was "Melting Alaska" – which starts at 19:57 min

REMEMBER FEEDBACK LOOPS:

Is this one positive or negative?

THEN – on the back of the index card, as a group complete the feedback loop on the bottom of p 58 page by linking the components with the proper coupling arrow symbols as used in the SGC text

p 58

Here are the components from p 58:

albedo

Extent of ice cover

SW radiation absorbed

Amount of melting

Ocean temperature The first coupling has been done to get you started!

Extent of ice cover

SW radiation absorbed

┿

Amount of melting

Ocean temperature We'll finish this and the G-3 Assignment in class on Thursday.