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ABSTRACT

Aim It has been qualitatively understood for a long time that climate change will
have widely varying effects on human well-being in different regions of the world.
The spatial complexities underlying our relationship to climate and the geographi-
cal disparities in human demographic change have, however, precluded the devel-
opment of global indices of the predicted regional impacts of climate change on
humans. Humans will be most negatively affected by climate change in regions
where populations are strongly dependent on climate and favourable climatic
conditions decline. Here we use the relationship between the distribution of human
population density and climate as a basis to develop the first global index of
predicted impacts of climate change on human populations.

Location Global.

Methods We use spatially explicit models of the present relationship between
human population density and climate along with forecasted climate change to
predict climate vulnerabilities over the coming decades. We then globally represent
regional disparities in human population dynamics estimated with our ecological
niche model and with a demographic forecast and contrast these disparities with
CO2 emissions data to quantitatively evaluate the notion of moral hazard in climate
change policies.

Results Strongly negative impacts of climate change are predicted in Central
America, central South America, the Arabian Peninsula, Southeast Asia and much
of Africa. Importantly, the regions of greatest vulnerability are generally distant
from the high-latitude regions where the magnitude of climate change will be
greatest. Furthermore, populations contributing the most to greenhouse gas emis-
sions on a per capita basis are unlikely to experience the worst impacts of climate
change, satisfying the conditions for a moral hazard in climate change policies.

Main conclusions Regionalized analysis of relationships between distribution of
human population density and climate provides a novel framework for developing
global indices of human vulnerability to climate change. The predicted conse-
quences of climate change on human populations are correlated with the factors
causing climate change at the regional level, providing quantitative support for
many qualitative statements found in international climate change assessments.
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INTRODUCTION

Recent international assessments of the societal impacts of

climate change have repeatedly stressed the importance of defin-

ing regional vulnerabilities to inform adaptation policies

(WHO, 2004; Patz et al., 2005; IPCC, 2007; Lobell et al., 2008;

World Water Assessment Programme, 2009). The importance of

geographic disparities in the impact of current climate variabil-

ity on human populations has also received much attention,

with the 2003 European heat wave (Poumadère et al., 2005;

Chase et al., 2006), recent droughts in Australia (Horridge et al.,

2005) and California (Service, 2009), and dramatic impacts on

the traditional lifestyles of Inuit communities (Ford & Smit,

2004). Furthermore, there is strong evidence that climate change

has played a major role in defining the history of human civili-

zations (Weiss et al., 1993; Kuper & Kropelin, 2006) and wide-

spread scepticism that modern technology and globalization

will globally alleviate the negative impacts of climate change

(Zhang et al., 2007; Burke et al., 2009; Costello et al., 2009;

Trouet et al., 2009). The complexity of regional dynamics under-

lying the coupled human–environment system has, however,

restricted most assessments of climate vulnerability to qualita-

tive or regional approaches (Adger, 2006). Spatial variability in

the magnitude and direction of the impacts of climate change

makes it challenging but important to develop global indices of

regional vulnerability to climate change (Dyson, 2005).

Niche modelling is an increasingly common approach used

by ecologists to predict species responses to climate change

(Peterson, 2003; Austin, 2007). The approach assumes that a

species’ response to climate change can be anticipated by mod-

elling how environmental niches currently occupied by the

species will contract, expand and/or move as a result of climate

change (Austin, 2007). Application of niche modelling to predict

the impacts of climate change on human populations is poten-

tially problematic for many reasons, but most of these problems

are not unique to humans. The possibility that the current dis-

tribution of humans reflects where humans choose to live, not

where they are capable of living, that the distribution of humans

is dictated more by historical contingencies than current climate

conditions, that any apparent relationship between human

populations and climate is indirect and likely to be mediated by

the distribution of resources, that the current association

between humans and climate may not persist in a rapidly chang-

ing world, and that humans are too complex to model using

simple associations between climate and distribution, are possi-

bilities that also apply, albeit to a lesser degree, to all the non-

human organisms that have been studied with ecological niche

modelling. As a result, these potential limitations have been

widely discussed and debated in the literature on ecological

niche modelling in the context of other animals and plants (see

reviews by Pearson & Dawson, 2003; Austin, 2007). The appli-

cation of niche modelling to human populations can thus be

informed by a large and growing literature focused on the com-

plexities involved in modelling a wide range of species responses

to climate change. Further, because the assumptions and limi-

tations involved are likely to be similar, at least in kind if not to

the same degree, application of niche modelling to a species as

widespread and well known as humans may also provide insight

into the implicit logic and general limitations of niche model-

ling in ecology.

Humans are globally distributed, but human population

density is regionally variable. Accordingly, the distribution of

human population density provides a more appropriate basis

for niche modelling than the range distribution of human pres-

ence. However, because humans live in such a wide range of

climatic conditions and are socio-economically diverse, the rela-

tionship between climate and human density is likely to differ in

different parts of the world (Diamond, 2004; Fagan, 2004). For

example, human population densities might be higher in cool

localities in warm parts of the world or wet localities in dry parts

of the world. Furthermore, the strength of association between

climate and human populations is unlikely to be globally

uniform, with human density more closely correlated with

climate in some parts of the world than others. Finally, similar to

the scale dependence of many ecological patterns (Schneider,

2001; McGill, 2010), the nature of correlations between climate

and human populations is likely to vary according to the scale of

comparison. In particular, the local distribution of human

population density (e.g. over scales of tens to hundreds of kilo-

metres) is likely to be dictated by non-climatic and historical

factors such as proximity to waterways, trade routes and geo-

logical features, whereas across larger scales of comparisons (e.g.

hundreds to thousands of kilometres) these factors are more

likely to generate localized exceptions within a broader pattern

of density distribution, which may be correlated with larger-

scale environmental gradients such as climate. These forms of

spatial non-stationarity (Fotheringham et al., 1996) in the rela-

tionship between human populations and climate require a

spatially explicit modelling approach, such as geographically

weighted regression (Fotheringham et al., 2002), in which

regression parameters have enough spatial flexibility to reflect

regional differences in human–climate associations. The alter-

native of standard regression models is inherently imprecise

because regional differences are treated as noise rather than

informative spatial patterns.

Here we assess the potential impacts of climate change on

human populations by combining current regional relation-

ships between climate and human population density with pre-

dicted regional climate change (Fig. 1). The key assumptions to

this approach are that: (1) favourable climate conditions are

currently associated with high population density and

unfavourable climate conditions are associated with low popu-

lation density, and (2) the impacts of climate change on human

populations will be more severe where climate conditions cur-

rently associated with high population density decline rather

than expand. These assumptions are not inconsistent with the

existence of many additional non-climatic determinants of

human population density, such as land use and agricultural

production, distance from trading routes and natural resources

(Small & Cohen, 2004; Nelson et al., 2006; Ramankutty et al.,

2008; Beck & Sieber, 2010), nor of many additional non-climatic

determinants of human vulnerability to climate change, such as
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regional differences in exposure, sensitivity and resilience to

climate change (Turner et al., 2003). But we do assume that the

many and complex socio-economic determinants of the distri-

bution of human populations and their vulnerability to climate

change are best considered not only in relation to how much

climate is expected to change but also in the context of the

match or mismatch between regional climate suitability and

regional climate change.

First, we empirically examine how much of the global varia-

tion in human population density can be explained by climate

variables, which climate variables offer the most explanatory

power, and the nature and extent of regional variation in rela-

tionships between climate and population density. Second, we

examine the importance of agricultural production as a poten-

tial covariate in relationships between climate and human popu-

lation density. Third, we develop a climate vulnerability index

(CVI) by combining regional climate–density relationships with

predicted regional climate change. High vulnerability is pre-

dicted for regions where climate change will cause a decline in

conditions currently associated with high population density

and an increase in conditions associated with low population

density. Fourth, since regions with rapid population growth are

likely to be most severely affected by climate change (Raleigh &

Urdal, 2007), we build on the CVI to develop a climate–

demography vulnerability index (CDVI) that also incorporates

current demographic trends. In this case, high vulnerability is

predicted for regions where a decline in climate conditions cur-

rently supporting high population density is combined with

rapid population growth. Finally, we relate this CDVI to current

per capita greenhouse gas emissions as an initial quantification

of potential moral hazards involved in climate change mitiga-

tion policies. If moral hazard represents a reduced incentive for

actors to minimize risk if they are unlikely to bear the most

negative potential outcomes of their actions (cf. Dembe &

Boden, 2000), then a negative correlation between the causes

and potential consequences of climate change is consistent

with a moral hazard (or at least a perverse incentive structure;

Rauchhaus, 2009) in climate change mitigation.

METHODS

Data source

Human densities in 1990 and 2015 were obtained through the

third revision of the Gridded Population of the World (GPW)

dataset adjusted to United Nations national population size

(CIESIN, 2005). The extrapolation methods in the GPW dataset

are based on population data obtained in the most recent sub-

national censuses from nearly 400,000 administrative units with

average input resolution of 18 km and adjusted to national

population sizes forecast in 2015 by the United Nations. We used

a 1° resolution grid describing 18,504 georeferenced human

densities (Fig. S1 in Supporting Information).

Climate data for current conditions (1950–2000 average) and

general circulation model forecasts for 2050 were obtained from

WorldClim, version 1.4 (Hijmans et al., 2005). We used the 10

arcmin resolution consisting of 587,000 data points and filtered

the dataset through our georeferenced human dataset to obtain

15,842 pairs of climate and human data. The reduced sample

size produced by combining both datasets is due to the spatial

mismatch in available data for islands and coastal areas.

Geographically weighted regression models

We used geographically weighted regression (GWR) to describe

the spatial non-stationary nature of the current human–climate

relationship. Our statistical models correlate 1990 human den-

sities with a few climate variables that are geographically

weighted to allow spatial flexibility in their respective regression

coefficients. Take, for example, a model with four predictors:

annual mean temperature (°C) (Tavg), mean temperature

diurnal range (°C) (Trange), total annual precipitation (mm)

(Ptot) and precipitation seasonality (Psea). Current human–

climate relationships are then predicted by the following spa-

tially explicit regression model:

density Tavglat,long lat,long Tavg(lat,long) lat,long= +
+
β β
β
0( )

TTrange(lat,long) lat,long Ptot(lat,long) lat,lonTrange Ptot+ β gg

Psea(lat,long) lat,long lat,longPsea+ +β ε .

(1)

Local regression coefficients are estimated as:

Figure 1 Conceptual framework of a spatially explicit approach
for predicting the impacts of climate change on human
populations. Rectangles represent data or indices calculated by the
equations above each rectangle (see Methods). The climate
vulnerability index (CVI) is estimated by combining climate
change forecasts with current relationships between human
density and climate. We further refined the CVI by contrasting
predicted vulnerabilities with demographic growth rates to create
a climate–demography vulnerability index (CDVI) reflecting
the spatial disparities between demographic trends and
climate-consistent population growth. This CDVI is then
compared with per capita CO2 emissions on a nation-by-nation
basis to test the hypothesis of a moral hazard in climate change
mitigation policies.

Spatially explicit impacts of climate change on human populations
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ˆ ( )( )β lat,long
T

(lat,long)
T

(lat,long) (lat,lodensity= −X W X X W1
nng)

(2)

where X represents the matrix of predictors and W represents

the matrix of geographical weights for each of the observed data

used at a given location. We used a bi-square geographical

weighting function as shown in equation 3:

w d b d blat,long lat,long lat,longif

otherwise

= − <
=

[ ( / ) ]1

0

2 2

(3)

where w represents the weight of observed datum, d is the dis-

tance between the observed datum and the area where local

regression parameters are estimated and b is a threshold distance

referred to as the bandwidth.

We assessed the predictive power of 19 climate variables at

various bandwidths with the software sam (Rangel et al., 2006).

The bandwidth is limited to a minimum value by high spatial

collinearity in predictor values while very large bandwidths

cannot describe non-stationary patterns. A bandwidth of 27°

(c. 3000 km) was chosen to maximize overall fit of regression

models and minimize idiosyncratic regional patterns (Fig. S2,

Tables S1 & S2). We had to divide the global dataset in four

regions (at 44° and 94° longitude and isolating the Americas;

mapped on Fig. 3) because of computing limitations arising

with large matrices (see equation 2). We adjusted the geographic

coverage of the four datasets by overlapping data by 17° to

minimize the edge effect in estimates of the regression coeffi-

cient around division lines. We selected two models with both

high regional significance (defined in Table S2) and predictive

power but with contrasting climate variables to ensure that our

results are robust to the selection of climate variables.

Indirect influence of agriculture

We evaluated the importance of agriculture as an indirect pre-

dictor of human density by modelling human density with both

climate and agricultural variables. Based on the Ramankutty

et al. (2008) gridded agricultural dataset, we created an agricul-

tural density index by combining the proportion of land used

for crops and pastures in 2000. We contrasted the explanatory

power and the standardized regression coefficients of climate

variables obtained with a climate model and a climate–

agriculture model.

Climate vulnerability index

We forecast human densities in 2050 with equation 1 using the

regression coefficients from current human–climate models and

climate forecast data for 2050 (Fig. S3). From this climate-

consistent forecast, we estimated annual growth rates of regional

human density between 1990 and 2050 as follows:

λc e= [ln( )/ ln( )]/hd hd2050 1990 60 (4)

where lc represents the annual growth rate of climate-consistent

human density (referred to herein as the CVI) and hd represents

predicted human density based on equation 1.

Climate–demography vulnerability index

We created a CDVI reflecting the concordance between annual

growth rates of climate-consistent human density (lc from

equation 4) and annual growth rates of human density between

1990 and 2015 based on demographic models (ld) (Fig. S4). We

calculated ld with equation 4, taking into account the different

temporal horizon and had to limit its geographical coverage to

regions of non-zero human density in the 1990 human density

dataset. The CDVI is thus:

CDVI d c= −λ λ . (5)

Regional CDVI values are consequently positive where annual

growth rates of climate-consistent human density are lower than

annual growth rates of human density predicted by demo-

graphic models.

Moral hazard

We used a linear regression model to evaluate the relationship

between the cause and the predicted consequence of climate

change. Given the lack of a gridded greenhouse gas emission

dataset, we defined the cause of climate change based on

national per capita CO2 emissions in 2006 from the Interna-

tional Energy Association (IEA) estimates under the sectorial

approach (OECD/IEA, 2008). We transformed the IEA data to

national per capita CO2 emissions using national population

size and national boundaries in 2006 from United Nations

Population Division (UNPD) (Fig. S5) (UNPD, 2007). Excluded

from this analysis are 72 nations, collectively representing less

than 2.7% of the world’s population in 2006, with UN member-

ship but without CO2 emission data. We averaged gridded

national CDVI values to test the moral hazard hypothesis with

the following regression model where NPCE represents national

per capita CO2 emission:

CDVI NPCENPCE= +β β0 . (6)

Climate forecast uncertainties

To assess the robustness of CVI and CDVI to regional climate

change uncertainties, we used two other sources of climate fore-

casts (CSIRO, HADCM3) in addition to the CCCMA 2a2 fore-

cast presented in the main text. In all cases, we used WorldClim

climate data based on the A2 emissions scenario and the 2050

horizon (Hijmans et al., 2005).

RESULTS

Evaluation of the relationship between gridded global human

density and climate using geographically weighted regression

J. Samson et al.
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reveals that approximately half of the global variation in human

density can be accounted for by four climate variables

(Table S2). Regions of high and low explanatory power were

widely dispersed across the globe and not obviously related to

population density or climate conditions (Fig. 2). The spatial

pattern of climate–density residuals (actual density – climate-

predicted density) does not reveal large-scale deviations in

population density that are not accounted for by climate, but

does indicate many localized areas where population density is

much higher or lower than predicted from climate alone

(Fig. 2). The spatial patterns of standardized regression coeffi-

cients relating climate predictors to population density are non-

stationary (P-values < 0.001 across all models) with major

continental isoclines of shifting coefficient signs (Fig. 3). In

general, human population density tends to be negatively related

to average annual temperature in warm parts of the world (e.g.

northern South America and Africa in Fig. 3a) but positively

related in cold parts of the world (e.g. high latitudes in Fig. 3a).

Similarly, human population density tends to be negatively

related to total annual precipitation in wet parts of the world

(e.g. north-eastern North America and Southeast Asia in Fig. 3c)

but positively related in dry parts of the world (e.g. central

North America and the Middle East in Fig. 3c). This is not

surprising, but the spatial change in relationships is not cap-

tured by most regression techniques given their stationary

nature (Small & Cohen, 2004; Beck & Sieber, 2010).

Agricultural influence

The explanatory power of our climate model of current human

density (adj-R2 = 58%) was similar to the one (adj-R2 = 61%)

obtained by adding agricultural density (i.e. a combination of

Figure 2 Global variation in explanatory power (local adjusted R2) and residual values (observed density - predicted density) of a GWR
model representing 1990 human densities based on four climate predictors (Fig. 3). The average (standard deviation) of local adj-R2 and
residual values are, respectively, 0.35 (0.17) and 0.11 (3.23).

Spatially explicit impacts of climate change on human populations
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both crop and pasture density) as an additional predictor. Using

crop density and pasture density as two separate and additional

predictors incrementally improved the explanatory power

(adj-R2 = 67%). However, the four climate variables included in

our model also explained considerable variation in crop density

(adj-R2 = 61%) and pasture density (adj-R2 = 57%), suggesting

that human density is influenced by climate conditions and

agricultural density in a highly collinear pattern. The standard-

ized regression coefficients of the four climate variables from the

climate-only and the climate–agriculture models were highly

correlated [average Pearson’s correlation coefficient of 0.93

(range 0.87–0.97) with an average slope of 0.82 (range 0.77–

0.89) ]. Thus, although including agricultural density in our

climate model decreases the explanatory power of climate pre-

dictors by about 20%, the regional patterns of climate variable

regression coefficients remains unchanged (Figs 3, S6 & S7).

Climate vulnerability index

Regions with high CVI (i.e. where climate conditions currently

associated with high population densities will shift towards

climate conditions associated with low population densities)

include central South America, the Middle East and both eastern

and southern Africa (Fig. 4). Regions with low CVI are, on the

other hand, largely restricted to northern portions of the North-

ern Hemisphere. Localized anomalies in predicted CVI near

areas classified as having zero population density, such as central

Brazil and central China, are artefacts caused by the increased

sensitivity of growth rates estimated for very small predicted

human densities.

Climate–demography vulnerability index

The CDVI magnifies the high CVI in regions where demo-

graphic forecasts of population growth are high, such as central

South America, the Arabian Peninsula, Southeast Asia and much

of Africa (Fig. 5). Regions with low CVI, including north-central

North America, northern Europe and central Asia, also tend to

have the most favourable CDVI because most of these regions

are experiencing stable or even declining demographic growth

rates.

Model robustness

We evaluated the robustness of our analyses with respect to the

selection of predictors by comparing two models with contrast-

ing sets of climate variables. The spatial patterns of standardized

regression coefficients strongly differed between models (Figs 3

& S8), but the spatial patterns of CVI and CDVI of both models

were very similar (Figs 4, 5, S9 & S10). The CVI and CDVI were

also robust to current uncertainties in forecast climate change

(Figs S11 & S12).

Moral hazard

We found a significant negative correlation between national per

capita CO2 emissions and national average CDVI, supporting

a) b)

c) d)

Figure 3 Geographically weighted regression analysis of the current relationship between human population density and four climate
variables (adj-R2 = 58%). Panels illustrate standardized regression coefficients (stdb) for (a) annual mean temperature (°C), (b) mean
temperature diurnal range (°C), (c) total annual precipitation (mm), and (d) precipitation seasonality (coefficient of variation). The average
and range of stdb for each variable are: (a) 0.29, -1.9 to 7.7; (b) -0.31, -2.5 to 0.3; (c) 0.07, -1.7 to 1.3; (d) 0.04, -1.8 to 5.6. The black lines
at the bottom of panel (c) represent the longitudinal breaks in the global dataset and apply to all four panels (see Methods).
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the moral hazard hypothesis that countries predicted to be most

negatively impacted by climate change are contributing the least

to greenhouse gas emissions (Fig. 6). The explanatory power of

this relationship is relatively low (R2 = 28%) indicating substan-

tial variation in predicted impacts of climate change, at a

national level, for a given per capita CO2 emission.

DISCUSSION

The human impacts of climate change are likely to be most

severe in parts of the world where current demographic growth

is rapid and future climate change will amplify and expand

conditions currently supporting low human population densi-

Figure 4 Climate vulnerabilities index (CVI) expressed as climate-consistent annual growth rate (lc; see equation 4) based on current
human density–climate relationships (Fig. 3) and a 2050 climate forecast (Fig. S3a). Climate-consistent annual growth rates of less than
one, indicated in red, represent negative growth and high vulnerabilities, while changes in annual growth rates of greater than one,
indicated in blue, represent positive growth and low vulnerabilities. White regions correspond to human density values of zero in the global
gridded population database.

Figure 5 Global climate–demography vulnerability index (CDVI) estimated by subtracting CVI (Fig. 4) from demographic annual growth
rates (Fig. S4), expressed as annual growth rates of human population density (see equation 5). Highly negative values, indicated in blue,
represent low-vulnerability situations where current demographic growth is much lower than climate-consistent population growth, while
highly positive values, indicated in red, represent high-vulnerability situations where current demographic growth vastly exceeds
climate-consistent population growth. White regions correspond to human density values of zero in the global gridded population
database.

Spatially explicit impacts of climate change on human populations
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ties. Our global analysis identifies hot and arid regions that will

become hotter and drier in the future as being particularly vul-

nerable. This prediction is far from surprising. Nevertheless, the

observation that regions of greatest vulnerability are generally

distant from the high-latitude regions where the magnitude of

climate change will be greatest and generally distinct from the

nations responsible for most greenhouse gas emissions has

important implications for climate adaptation and mitigation

policies. On the other hand, our analysis indicates that many

cold parts of the world with low population density have the

potential to support higher population densities in a climate-

changed future.

Similar to most current research on the ecological impacts of

climate change using niche models (Austin et al., 1984; Guisan &

Thuiller, 2005; Austin et al., 2006), the reliability of our analyses

is a function of both data quality and underlying assumptions.

The quality of current data on human population density

(CIESIN, 2005) and global climate data (Hijmans et al., 2005) is

likely to be very high at the spatial resolution used in this study.

Further, our demonstration that predicted patterns of climate

vulnerability are highly congruent across two sets of climate

predictors and three general circulation models indicates that

these predictions are robust to current uncertainties in forecast

climate change and climatic correlates of human population

density (Fig. S11). However, the adequacy of our underlying

assumptions requires careful evaluation. The main criticisms of

ecological niche models are that they assume species to be at

quasi-equilibrium with current climate, that they sometimes

interpret species–climate correlations as causal, and that they

assume instantaneous responses to climate change (Pearson &

Dawson, 2003; Hampe, 2004). We now consider each of these

assumptions in turn.

Current human–climate relationships

The complexities of human societies and the rapidity of their

demographic and technological transitions make it unlikely that

the distribution of human population density is at quasi-

equilibrium with current climate. However, a small number of

climate variables account for a surprisingly high proportion of

global variation in current human density. The proportion of

variance in current human density explained by our climate

models varied between 40% and 60%, with an average of 54%

(Table S2). Such explanatory power is favourably comparable

with climate modelling of other species. For example, Iverson

et al. (2008) modelled the current abundance of 134 tree species

in the eastern United States based on 38 climatic and non-

climatic variables and the pseudo-R2 of their random forest

models averaged 29% (standard deviation = 21%). The same

research group also modelled 150 bird species in the same region

based on climatic, elevation and tree abundance variables and

their mean model had a pseudo-R2 of 66% (standard deviation

15%; Rodenhouse et al., 2008). If such predictive powers are

considered to provide a satisfactory empirical basis to generate

coarse initial predictions of bird and tree distributions in a

climate changed future, then, a fortiori, our models suggest the

same techniques can be usefully applied to humans (despite all

of the events of recent centuries that could have served to

decouple contemporary human density from contemporary cli-

mates). The capacity of climate conditions to predict the geo-

graphical distribution of human density has also been indirectly

supported based on the relationships between climate, land use

and human density across the Old World and Australia (Beck &

Sieber, 2010). The reason why our simple climate–density

models performed well, despite the absence of historical, eco-

nomic or cultural components, probably relates to the impor-

tance of spatial scale and spatial flexibility in explaining

biogeographical patterns (Schneider, 2001; McGill, 2010).

We analysed the relationship between climate and human

density over large spatial scales, which reduces the importance of

more localized determinants of population density such as prox-

imity to waterways, trade routes, geological features and areas of

industrial and agricultural development. The spatial scale of our

models cannot describe highly localized and drastic variations

in human density (e.g. the Nile and Ganges valleys, large cities);

as a result urban areas and other localized forms of population

aggregation are largely contributing to unexplained variation in

our models. These factors are clearly important determinants of

smaller-scale patterns in human density distribution and are

likely to account for why significant amounts of variation

remain unexplained by our models. The residuals of our

climate–density model (Fig. 2) clearly illustrate localized

regions where population density is higher or lower than

expected based on climate variables. This map may be of interest

to researchers interested in moving beyond simple climate-

Figure 6 Relationship between per capita CO2 emissions (kt per
person) and average climate–demography vulnerability index
(CDVI) among 120 nations (P < 0.001). The per capita CO2

emissions are based on OECD/IEA 2006 national CO2 emissions
(OECD/IEA, 2008) and UNPD 2006 population size (UNPD,
2007) (Figure S5). Excluded from this analysis are 72 nations,
collectively representing less than 2.7% of the world’s population
in 2006, with UN membership but without CO2 emissions data.

J. Samson et al.
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based explanations of human density distribution to explore the

multitude of historical, cultural, economic and geographic

determinants of density distribution. Vulnerability to climate

change will also be heavily influenced by fine-scale patterns in

the distribution of human population density, including urban-

ization (McGranahan et al., 2007; Satterthwaite, 2009), distance

from coastlines related to sea-level rise (Nicholls & Lowe, 2004)

and access to freshwater (World Water Assessment Programme,

2009). But these issues are probably best investigated with tar-

geted regional models rather than by attempting to modify

global models to include all factors of potential regional impor-

tance. In any event, our global representations of climate vul-

nerability are based, and should be interpreted, at a broad

regional scale similar to the scale at which climate conditions

vary.

Second, we used a spatially explicit modelling approach

capable of analysing spatial non-stationarities in human–

climate relationships rather than treating these as noise in a

global model. The capacity for geographically weighted regres-

sion to capture the geographical variability in the magnitude

and direction of human–climate relationships significantly

decreased the spatial autocorrelation of residual values while

providing visual insights into the spatial pattern of the influence

of climate conditions. The non-stationary nature of this regres-

sion technique is also important in modelling species with a

broad distribution, such as humans, because it does not rely on

the assumption that there is no local adaptation. This often

unrealistic assumption may also explain why stationary models

of species with a broad distribution are generally weaker than

those of species with a limited distribution (Newbold et al.,

2009).

Causality in species–climate correlations

One of the most fundamental criticisms of ecological niche

modelling is that current species–climate relationships may not

persist in a changing climate because they are not direct, causal

relationships. Although future projections are difficult to test,

empirical support for climate-based modelling of a variety of

plant and animal taxa has been shown by predicting the non-

native ranges of invasive species based on the climatic niche of

their native range (Peterson, 2003; Thuiller et al., 2005; but see

Broennimann et al., 2007; Fitzpatrick et al., 2007). Palaeoclimate

studies also reveal a surprising degree of coherence between

species assemblages and prevailing climate conditions, even

during periods of relatively rapid climate change (though

unlikely to be as rapid as the anthropogenic warming occurring

during this and the previous century) (McGlone, 1996; Araújo

et al., 2008). Finally, recent climate change has been shown to

coherently drive a wide range of ecological phenomena, despite

the importance of many non-climate determinants (Parmesan

& Yohe, 2003).

The validity of our climate vulnerability indices requires suf-

ficient continuity in the influences of climate on human popu-

lations that the climate vulnerability of human populations in a

climate-changed future will be related, in some way, to the

current climatic correlates of human density. The high explana-

tory power of our models of current human populations may be

driven by non-climate variables that are influenced by climate. If

this were the case, our indices would only be meaningful if the

climate relationships of these non-climate variables remained

consistent in a changing climate. Localized socioeconomic

variables such as concentrated areas of resource exploitation,

transportation, trade or economic development are likely to

contribute to unexplained variation in our models, rather than

as globally coherent covariates of the density–climate relation-

ship, given the relatively smooth changes in the regression coef-

ficients of climate predictors (Figs 3, S6 & S8). Agricultural and

large-scale socio-economic variables are better candidates for

globally important covariates of the climate–density relation-

ship, because they have global relevance and are more likely to

vary across large spatial scales in a pattern similar to climate

variables.

Food production has been central to the foundation and per-

sistence of human societies (Diamond, 2004), and its strong

association with climate conditions has lead to climate change

models predicting substantial regional changes in food produc-

tion (Thomas, 2006; Cline, 2007). Additionally, cropland and

pastures now represent approximately 40% of the land surface

(Foley et al., 2005) and may therefore strongly influence the

geographical distribution of human density. Our climate-based

models of current agricultural density support the hypothesis of

strong climate–agriculture relationships. On the other hand, our

analysis indicates that the climatic correlates of human density

are strongly overlapping with climatic correlates of agricultural

output. Thus, at a global scale of analysis agricultural density

explains little additional variation in human density that is not

already explained by climate. This overlap in explanatory power,

knowledge that not all the impacts of climate on human popu-

lations operate via agriculture, and the absence of gridded global

agricultural forecasts have led us to focus on predictions of

climate vulnerability derived from density–climate relationships

for the time being. However, the past, current and presumably

future distribution and well-being of human populations is

likely to be as dependent on the availability of food resources as

that of any other animal population. As a result, more thorough

examination of the inter-relationships between climate, the pro-

duction and distribution of food resources, and the density dis-

tribution and vulnerability of human populations clearly

warrants deeper consideration. Climate conditions have recently

been shown to better explain current land-use patterns than soil

type in the Old World and Australia (Beck & Sieber, 2010).

Although Beck & Sieber (2010) did not model current human

density with climate variables, their models of human density

based on land-use variables performed relatively well (adj-R2 =
34%).

In many regions of the world, forms of socio-economic devel-

opment and employment opportunities seemingly unrelated to

either climate or agriculture may be primary current drivers of

human density distribution. The emergence of these density

drivers may only partially erode current correlations between

climate and density if development and employment tends to

Spatially explicit impacts of climate change on human populations
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arise in localities with a long history of dense human occupa-

tion, which may have originally been predicated on climate or

agricultural suitability. The emergence of major economic and

employment opportunities in previously unoccupied, climati-

cally unfavourable regions of the world would do much more to

weaken current associations between climate and human popu-

lation density. But to the extent that these remain localized

concentrations of higher than expected density in vast regions of

otherwise low density, they are unlikely to be important influ-

ences in global analyses of human density distribution.

A more important and uncertain issue is how socio-economic

factors will interact with modern climatic correlates of popula-

tion density and regional climate change to define the climate

vulnerability of human populations. In this paper, we consid-

ered only one socio-economic factor, projected population

growth rates derived from demographic forecasts, in our analy-

ses. Inclusion of this socio-economic variable to create our

CDVI index tended to reinforce and amplify the regional dis-

parities predicted from our CVI index based on climate and

density alone. That is, regions where climate conditions cur-

rently supporting high population density are expected to

decline also tend to be characterized by higher than average

population growth. Thus, comparison of CVI and CDVI maps

reveals a similar global pattern but the magnitude of disparity

tends to be higher after the inclusion of one socio-economic

variable. But many more socio-economic variables can and

should be considered. For example, recent research has exam-

ined the importance of climate conditions on national institu-

tions (Sokoloff & Engerman, 2000; Acemoglu et al., 2002),

associations between trade policy and economic development

(Frankel & Romer, 1999), and relationships between national

institutions, environmental endowments and economic devel-

opment (Easterly & Levine, 2003).

Instantaneous response

Climate change predictions based on ecological niche models

are often criticized because they assume instantaneous

responses of species to new climatic conditions (Pearson &

Dawson, 2003). For example, if climate change leads to the

appearance of suitable climatic conditions in a previously unoc-

cupied location, species are assumed to be able to immediately

occupy that locality. This assumption ignores potential limits to

dispersal and the difficulty of establishing in sites that may lack

key resources or habitats (because they may be lagged in their

response or also be limited by non-climatic factors). Because our

analysis focuses on human population density within already

occupied areas, we circumvent the need for some of these

assumptions. Nevertheless, our calculation of climate-consistent

population growth involves a similar implicit logic that, as

climate changes, so too will the potential for human population

growth. However, in recognition of the many diverse drivers of

human population growth and responses to climate change, we

do not proceed to the step of using our climate modelling to

predict the redistribution of human population density in a

climate-changed future. Instead, we limit our analysis to the

calculation of potential climate-consistent population growth as

a basis to predict regions of relatively high and low vulnerability

to climate change. Although our approach could be extended to

predict migration patterns induced by climate change (Myers,

2002; McLeman & Smit, 2006), we caution about the need to

differentiate potential from realized responses to climate change

and the need to match the spatial scale of analyses to the spatial

scale of interpretation.

CONCLUSIONS

The strength of current associations between human population

density and climate conditions and the robustness of the climate

vulnerability predictions they generate offer a critically needed

framework for predicting regional disparities in the potential

impacts of climate change on human populations. Assessments

of regional vulnerability have been largely focused on the influ-

ence of GCM forecasts on adaptive capacities (IPCC, 2007;

World Water Assessment Programme, 2009), but there is little

doubt that treating exposure as simply the magnitude of change

in one or a suite of climate variables is inadequate (Hockley

et al., 2009). Climate exposure should rather incorporate

regional relationships between populations and climate, the

direction and magnitude of regional climate change, as well as

current and predicted demographic trends (McGranahan et al.,

2007; Meyerson et al., 2007; Pope & Terrell, 2008). Additional

insight into the human consequences of climate change can be

achieved by expanding the framework described here to con-

sider additional effects of climate change, such as sea level rise

(Nicholls & Lowe, 2004; Overpeck et al., 2006; Yin et al., 2009)

and extreme weather events (Hockley et al., 2009; Sherwood &

Huber, 2010) as well as measures of adaptive capacities in areas

such as resource management systems or development initia-

tives (Smit & Wandel, 2006).

In summary, we believe that the capacity of our simple

human ecological models to explain broad density distribution

patterns provides a coarse but important way to formulate

initial predictions of the impacts of climate change on human

societies. These initial predictions can be used as a null model

(Gotelli, 2001) to highlight the regional importance of histori-

cal, economic or social correlates of human density and vulner-

ability to climate change.
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