
Thurs, 2-14-19 
4.  Spectrum  (cont.)

1. Characteristic spectra

2. Estimating the spectrum 

3. Blackman-Tukey estimation method 

4. Sample runs of geosa4

– Assignment a4:  due Tues, Feb 19



Characteristic Spectra

White noise

Short-term memory
(low-frequency spectrum)

Series tending to go back cnd
forth across mean (up one year,
down the next)

Periodic series

Trend

ACF Spectrum
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Estimating the Spectrum

Theoretical Spectrum
(applies to population)

^
Estimated Spectrum 

Sample Autocovariance

Time Series



Notation
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Population spectral density, as 
function of angular frequency

Sample spectral density function (the 
estimate of the population spectral 
density that we get from the data

Frequency, as “cycles per time unit”, 
defined as the inverse of the wavelength

Conversion of frequency to angular 
frequency

distinguish



Population spectrum
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• Unknown

• Assumed to be “smooth” (i.e., not a 
line spectrum)

• Estimated from the data

• The estimate will have properties 
that vary depending on the data 
and estimation procedure:

 “variance”, or uncertainty

 bias –tendency  to be shifted 
vertically in a preferred 
direction from the true value

 resolution – ability to identify 
peaks at finely spaced 
frequencies



Alternative ways to estimate the spectrum

• Smooth the amplitudes of the N/2 harmonics derived 
from a classical periodogram or harmonic analysis

• Fourier analysis of the autocovariance function*

We use this method in this week’s assignment



Blackman-Tukey 
spectral estimation method



Relationship between spectrum and acvf
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• Spectrum of a process is the Fourier transform of the 
autocovariance function of the process

• Note that the summation extends to lag infinity

• Spectral estimation by Blackman-Tukey method uses 
Fourier transform of a TRUNCATED, SMOOTHED sample 
acvf



Blackman-Tukey Spectrum
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Lag window

Truncation point
M

Sample acvf

Weights



Plot of Tukey Window for M=30
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Lag window
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Weighting function
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Choice of M affects these
spectral properties:

1. Bias
2. Variance
3. Resolution



Window closing approach

1. Start with a value of M

2. Compute and plot spectrum

3. Change the value of M

4. Repeat 1-3 until satisfied that analysis 
adequately summarizes the important 
spectral features of the time series



Smaller M Increased bias

•Peaks and troughs “smoothed out”

•Can obscure important spectral features



Effect of choice of M on bias 
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spectrum

Estimate by small M

Estimate by large M

Relative
Variance

Smaller M causes flattening of the spectral 
peak – estimate is biased low, and in the 
extreme gets smoothed out



Smaller Msmaller variance
• Confidence bands around spectral estimates 

narrower

• More likely to correctly identify an important 
spectral feature as “significant”

• Relationship

2ˆ ( ) ( )    distributed as   with  degrees of freedomf fν ω ω χ ν

Degrees of freedom depends on ratio 
of sample size to truncation point:

2.67N Mν =



Effect of choice of M on Variance

Relative
Variance
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Greater variance 
(less stability) for 
estimate by larger M



Smaller M decreased resolution

•Averages over wider band of adjacent 
frequencies

•Adjacent spectral features tend to merge

•Effect summarized by widened bandwidth:

4 (3 ) cycles/yrbw M=



Effect of choice of M on resolution

Relative
Variance
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Estimate by 
large M

Estimate by 
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Choice of M too small results in 
inability to distinguish peaks at 
closely spaced frequencies

Smaller M gives 
wider  bandwidth



Effect of choice of M on spectral estimate

M Bias Variance Resolution

Small High Low Low

Large Low High High

Effect on variance is also described as effect on 
“stability” of the spectral estimate. Higher variance 
corresponds to LOWER variance. 



Rough guide for setting M

Start with 2 , where  is the number of observations in time series

Vary : try 3 or 4 values, each time observing effect on spectrum

One rule is that  should be in the range  to 
20 3
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• If M is small, the estimated spectrum may still show the main peaks, but 
is likely to be too smooth

• If M is large, the spectrum will show many peaks, some of which may be 
spurious



Trial runs of geosa4…
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