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Inflation of R* in Best Subset Regression 

Alvin C. Rencher and Fu Ceayong Pun 

Department of Statistics 
Brigham Young University 

Provo, UT 84602 

When subset selection is used in regression the expected value of R2 is substantially inflated 
above its value without selection, especially when the number of observations is less than the 
number of predictor variables. The extent of this increase was investigated by a Monte Carlo 
simulation. Tables are given with average values and percentage points of R* for the null case 
of independence between the response variable and the predictor variables. Approximation 
formulas are provided to supplement the coverage in the tables. 
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1. INTRODUCTION 

Various procedures have been used in an attempt 
to find the “best” subset of a set of predictor vari- 
ables in regression. Some of the methods which ex- 
amine one variable at a time are forward selection, 
backward elimination and stepwise selection (see, for 
example, Draper and Smith, 1966, Chapter 6, or 
Gorman and Toman, 1966). Techniques which are 
equivalent to examining all possible subsets are dis- 
cussed by Hocking and Leslie (1967) and Furnival 
and Wilson (1974). Berk (1978) compared the all 
subsets method with forward selection and backward 
elimination. Hocking (1976) reviewed several subset 
selection methods and discussed interpretation of re- 
sults. 

With any of these procedures, the usual F-statistics 
and R2 are biased (see, for example, Berk, 1978, and 
Pope and Webster, 1972). Approximate percentage 
points for the distribution of the squared multiple 
correlation coefficient, R’, under selection were given 
by Diehr and Hoflin (1974). They provided tables for 
k = 5 and k = 10 where k is the number of predictor 
variables. For other values of k a formula is given 
which requires an iterative solution. 

In this paper, the results of Diehr and Hoflin are 
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extended to include (1) average inflation of R* under 
selection as well as upper percentage points, (2) cor- 
related predictor variables, and (3) the situation 
where the number of predictor variables exceeds the 
number of observations. 

Consider the usual linear regression model 

y=p”l+xp+& (1) 
where y is an n X 1 vector of response variables, X is 
an n x k matrix of predictor variables, b is a k x 1 
vector of regression coefficients, and E is an error vec- 
tor. In this paper we consider only the null case, p = 
0. The matrix X can therefore consist of either fixed 
constants or random variables (satisfying certain as- 
sumptions) since R2 has the same distribution either 
way in the null case. 

This study was motivated by some rather unex- 
pected results obtained from a set of data with n = 26 
and k = 54. A stepwise regression program selected 8 
predictor variables which yielded an RZ value of .98. 
Considering this large R* value somewhat suspect be- 
cause n was much smaller than k, we “scrambled” 
the response variables, i.e., randomly rematched the 
y values to different rows of the X matrix. The step- 
wise procedure again selected (a different subset of) 8 
predictor variables with a resulting R* of .95. This 
gave little cause for confidence in the predictive 
power of the first set of 8 predictor variables selected 
and spurred us to find out if such large values of R* 
might be typical under selection when n < k and 
p = 0. 

2. MONTE CARLO PROCEDURE 

The mean and three percentage points of R* were 
obtained by Monte Carlo simulation. Data were gen- 
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erated according to (1) with fi = 0 and E - N(0, I). 
The McGill random number routine (Marsaglia, 
Ananthanarayanan and Paul, 1973) was used to ob- 
tain normally distributed random numbers. The pro- 
cedure was checked by generating 3,000,OOO random 
normal deviates. No significant departure from nor- 
mality was found, with particular attention given to 
the tails. 

For selection of a subset of predictor variables 
from the k available, we used the stepwise procedure 
described by Draper and Smith (1966, Sec. 6.4) or 
Efroymson (1960). The method is a modification of 
forward selection in which at each step the possibility 
of deleting a variable is considered. The variable 
which enters at each step is the one with the largest 
single degree of freedom F-ratio, provided this F-ra- 
tio exceeds the designated value for entry, Fin. After a 
variable has entered, the variables which entered pre- 
viously are reexamined and the one with the smallest 
single degree of freedom F-ratio is deleted if this F- 
ratio is less than a specified value, F,,,. 

The stepwise procedure was altered slightly so that 
we could specify the number, p, of variables selected. 
If p variables have not entered before the F-value 
falls below F, then both F, and F,,, are reduced as 
necessary to select p variables. The value of RZ ob- 
tained by selection of p variables in this manner was 
denoted R,,‘. In each replication an RZ value denoted 
R,‘, was also obtained from p variables chosen ran- 
domly from the k available predictor variables. 

After a predetermined number of replications, the 
average values of R,* and R,* were computed (de- 
noted z and R,*), along with the standard error of 
each and three percentage points of R,*. The number 
of replications varied from 500 to 2000. The standard 

error of z ranged from .00095 to .0089. We recog- 
nize that sometimes the stepwise technique will fail 
to find the subset with maximum R2. Therefore, this 
procedure gives a conservative estimate of the aver- 
age increase in R2 due to selection. 

Two covariance patterns were considered for the 
predictor variables. Most of the simulation involved 
the uncorrelated case, i.e., X’X diagonal. The corre- 
lated case was also examined where X’X was non- 
diagonal, ranging from a low to high degree of multi- 
collinearity. 

3. RESULTS OF THE SIMULATION 

The expected value of R,* when /3 = 0 isp/(n - 1) 
(see Kendall and Stewart, 1961, p. 341) and in all 
cases K’ was very close to that value. Accordingly 
we have tabulated E(R,*) = p/(n - 1) instead of %’ 
for comparison purposes. Values of E(R,‘), R.2, and 
the 95th percentile point of R:, denoted R.,,‘, are 
given in Table 1 for n = 5,10(10)60, k = 5,10(10)40 
andp = 2(2)10. The 90th and 99th percentile points 
were also obtained in the simulation but are omitted 
from Table 1. Approximate values for other desired 
percentiles can be found using (12) in Section 4. The 
results in Table 1 are for independent predictor vari- 
ables, i.e, X’X diagonal. 

In Table 1 we see that R,2 is always greater than 
E(R,*). In some cases with large k, TiJ’ is four or fives 
times as large as E(R02). Among the cases with k > n, 
86% of the R,,’ values exceeded .75 and 66% ex- 
ceeded .90. Even the r values tended to be large for 
k > n; 72% of these values exceeded .75 and 48% ex- 
ceeded .90. 

As expected, the inflation of RZ is somewhat less 
with correlated predictors. We indicate the amount 

TABLE l-Expected value of RZ without seiection compared with average and 95th percentile of RZ with 
selection. The regressor variables are uncorrelated. 
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of intercorrelation among the predictors by (E 1 /h,)/k 
where X,, hz, a.- , A, are the eigenvalues of the correla- 
tion matrix of the predictor variables. Four values of 
(Z 1 /X,)/k were used for each of k = 4, 8, 16. The re- 
sults for these four values are compared with the un- 
correlated case in Table 2. Note that (El/X,)/k = 1 
for the uncorrelated case. 

4. APPROXIMATION FORMULAS 

Zirphile (1975) used extreme value theory to ob- 
tain an asymptotic distribution of R,*. However, his 
results are obscured by several misprints, e.g., p = 
-ln[-in(a)] should be p = -ln[-ln(1 - a)]. With ap- 
propriate corrections we found that only for large n 
did his formula give satisfactory results. In fact Zir- 
phile suggested that n should be greater than 50. For 
some of the smaller values of n in (our) Table 1, his 
formula produced R,,’ values as high as 1.5. 

The poor performance of Zirphile’s formula for 
small n may be due in part to his use of the assump- 
tion that in the null case the distribution of RZ is 
asymptotically normal. However, R* has a beta distri- 
bution in the null case (see Kendall and Stewart, 
1961, p. 338) and following Gumbel (1958) we now 
obtain an asymptotic distribution, G(R,*), based on 
the beta. 

The distribution function of R2 is given by the in- 
complete beta function 

RX 

(R’)“-‘( 1 - R’)‘-‘dR’ (2) 

where &a, b) is the beta function with a = p/2 and b 
= (n - p - 1)/2. Let N = c), the number of possible 
subsets of p predictor variables among the k avail- 
able. The mode, u, of dG(R,‘) is approximately given 
by 

where u is defined as at (3) and w can be defined in 
our case as the order of the smallest derivative of 
F(x) which does not vanish when evaluated at x = 1. 
It can easily be shown that for (2) 

F(u) = 1 - l/N. (3) w,b-n-P-l 
2 * (8) 

If the N values of RZ obtained from all possible 
subsets were independent the distribution function of 
the maximum value, Rs*, would be [F(R,*)lN. Using 
(3) this can be expressed as 

[F(R,Z)JN = [ 1 - &;(j$]N. (4) 

As N increases we obtain the extreme value distribu- 
tion 

W,Z) = exP 
1 - F(R,2) 

- (1 _ F@)) 1 . (5) 

To find percentile points, R,*, where P(R,’ 5 R,*) = 
y, we set y = G(R,*) and solve for R,’ to obtain 

R,2 = F’[l + (1 - F(u)) lny]. 

Using (3) this can be written 

where F’ is the upper percentage point of the beta 
distribution, i.e., the inverse of (2) which can be 
found using available tables or computer subrou- 
tines. 

We did not succeed in obtaining an expression for 
E(R,2) by integration using (5) and worked instead 
with Gumbel’s third asymptote (1958, p. 275) for a 
limited distribution, 

(7) 

TABLE 2-Expected value of RZ without selection compared with average and 95thpercentile of R” with 
selection for various levels of intercorrelation among the regressor variables. 

( r l/Ai)/k 

I 
1.0 

uncorrelated 
1.25 12.5 

5 42 .500 .723 .969 .703 .967 .660 ,969 

10 8 2 ,222 ,532 .780 .492 .792 ,471 ,791 

4 .444 ,720 ,926 .697 .933 .677 .918 

20 16 2 .105 .359 .528 ,361 ,552 .319 ,538 

4 .211 .528 ,706 ,526 ,716 ,467 ,689 

6 ,316 .630 .803 .632 .830 ,562 ,772 

8 .421 .705 .880 .704 ,888 .638 ,837 
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.429 .731 .401 ,752 

.620 .891 .540 .863 

.290 .507 .277 .489 -l----l .426 .663 .392 .632 

,524 ,751 .482 .716 

,600 .814 .557 .790 



To find E(x) we have 

E(x) = i’ x dG(x) 

= I’ x dexp (-(+$I. 

With the transformation y = [(l - x)/(1 - u)]” this 
becomes 

E(x) = (1 - u) l ““+““y”“d exp(-y) 

As N increases l/( 1 - u)” -+ 00 and 

E(x) = 1 - (1 - u)r(l + l/w). 

By (3) u = F’(1 - l/N) and we have 

(9) 

1 - u -’ FbFb.y-’ (l/N) (10) 

where Fb.o-’ denotes the inverse of (2) with the pa- 
rameters LI and b reversed. From (9) and (10) we ob- 
tain an approximate formula for E(R,*): 

E(R,2) G 1 - Fb,o-‘( l/N)I’(l + l/w). (11) 

We note that both (6) and (11) produce values con- 
strained to lie between 0 and 1. However, both 
showed an upward bias when applied to the values in 
Table 1. The use of stepwise regression instead of all 
possible subsets may account for a small part of this 
bias but it is due mostly to the use of the assumption 
of N = C) independent observations from the distri- 
bution of R*. In reality, of course, the N possible val- 
ues of R* all arise from the same y vector and are not 
independent. The maximum tends to be lower and 
the “effective” value of N is less than (J$. 

To correct this upward bias we found the adjusted 
value of N required for (6) and (11) to reproduce 
each value in Table 1 and then sought a function of 
N that would yield these adjusted values. The func- 
tion ( lnlV)CNd was found to fit well. The values of c 
and d were chosen to allow a very small upward bias 
to compensate for stepwise regression. The final val- 
ues used for (6) were c = 1.8 and d = .04. For (11) we 
used c = 1.5 and d = .04. The resulting approxima- 
tion formulas were therefore 

it,’ = F-q 1 + lny/(ln N)‘.,,w] (12) 

and 

l?(R,‘) = 1 - Fh,a-’ ( l/(ln N)‘.5Nw) r (1 + l/w), (13) 

assuming w # 0. 
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- R,,Z was .025. For @R,Z) - F the average of 91 
values was .Ol 1 with a standard deviation of .046. 

Based on this reasonably good fit to the values in 
Table 1 we can recommend use of (12) and (13) 
when interpolating for values bracketed by the n, k, 
and p in Table 1. Extrapolation beyond may be risky 
and needs further investigation. 

5. EXAMPLE 

Blumenthal, Trout and Chang (1976) used step- 
wise regression to relate four organoleptic properties 
of oils to gas chromatography peaks. For each re- 
sponse variable there were 6 observations and 24 pre- 
dictor variables. With 2 variables selected, R* values 
of .9158, .9882, .9679 and .9898 were obtained for the 
4 (correlated) response variables. The combination 
n = 6, k = 24, p = 2 is not covered in Table 1, but 
when these values were submitted to the simulation 
program with 500 replications, the result was rr;2 = 
.931 with 90th, 95th, and 99th percentiles of .982, 
.986, and .996. Formulas (12) and (13) yielded l?(R.?) 
= ,896 and I?.,,’ = .990. These results would seem to 
support the authors’ caution that “despite the ob- 
served good correlation, it is possible that the results 
could be accounted for by chance, because the num- 
ber of samples and the number of possible combina- 
tions of data do not eliminate random or chance cor- 
relation.” 

6. SUMMARY 

The shift in the distribution of R2 under selection 
was examined by Monte Carlo methods. The step- 
wise selection procedure was used and investigation 
was limited to the null case where the response vari- 
able was independent of the predictor variables. A 
wide range of values was chosen for the number of 
observations and number of predictor variables with 
particular allowance made for the case where the 
number of predictor variables exceeds the number of 
observations. 

For uncorrelated predictor variables (X’X diago- 
nal) large increases were seen in F, the average 
value of R2 under selection. In cases with more pre- 
dictor variables than observations, nearly half of the 
values of r were greater than .90. In such cases 
(k 2 n) the results of stepwise regression may be of 
little value unless substantiated by another sample or 
other information independent of the data. 

Approximations (12) and (13) were evaluated for 
each of the 9 1 corn1 Gnations of n, k, p in Table 1. The 
average difference between R,9,2 in Table 1 and R,,’ 
from (12) was .0054. The standard deviation of l?,,’ 

Approximation formulas for the average value of 
R,Z and percentage points were provided to supple- 
ment the Monte Carlo values. The tables or formulas 
can be used as guidelines for assessing the signifi- 
cance of R2 values obtained in best subset regression 
applications. 

The case where the predictor variables were inter- 
correlated (XX nondiagonal) was also investigated 
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and as expected the inflation in R2 was somewhat DRAPER, N. R. and SMITH, H. (1966). Applied Regression Anal- 

less. The amount of reduction in average R2 and per- 
centage points was shown for various levels of multi- 
collinearity. 

ysis. New York: John Wiley & Sons. 
EFROYMSON, M. A. (1960). Multiple regression analysis. 

Mathematical Methods for Digital Computers, ed. by A. Ralston 
and H. S. Wilf, pp. 191-203. New York: John Wiley t Sons. 
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