
Tues, 2-19-19 
Autoregressive-Moving-Average (ARMA) Models

1. Lightning talk
2. Self assessment on A4
3. Purpose and context of ARMA modeling
4. Equations for some simple models
5. Steps in modeling
6. Simulation
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A4 Self Assessment 

1. Download A4x.pdf  from D2L

2. Automatic points,  for running assignment and having uploaded by due 
time, is already marked in parentheses at top of first page

3. Each assignment has maximum possible 10 points; if you make no 
deductions, score is 10/10

4. A4x is color coded for points; purple=1; yellow=0.5; blue=0.5

5. Open your copy of the same assignment pdf you uploaded

6. In Acrobat Reader, using “Add text box,” mark in right margin  for 
deductions only, with deduction and segment reference : (eg., -0.5 A) 

7. At top of your pdf, mark grade like this :  9.5/10

8. If necessary, put any comments at top near the grade

9. Upload your self-graded pdf to folder A4_graded in D2L  



Purpose and context of ARMA modeling



ARMA Modeling

Autoregressive Moving average

• Get clues to processes 

• Predict future behavior

• Remove persistence

• Simulation

Purposes



• Industrial process control

• Hydrology

• Economics

• Dendrochronology

Some fields of application
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Simulation

• Simulation to check how 
likely a “mid-1100s style” 
drought is from the time 
series properties of the 
observed Colorado River 
flows

• Meko et al, 2012, 
“Dendrochronology and 
links to streamflow”



Equations and terminology for some

simple models 



AR(1) Model

1 1t t ty a y e−+ =

Mean-adjusted
Time series

Coefficient
(autoregressive parameter)

Residual

orderStructure First-order autoregressive

(mean has been subtracted)

Also called 
“random shock”  
or “noise” term



MA(1) Model

1 1t t ty e c e −= +
Mean-adjusted
series

Residual
(random)

coefficient

First-order moving average



ARMA(1,1) Model

1 1 1 1t t t ty a y e c e− −+ = +

AR order MA order

First-order 
autoregressive coefficient First-order moving

average coefficient

First-order autoregressive 
moving-average  

Order p,q model, with 
p=1 and q=1  



Steps in Modeling

1. Identification

2. Estimation

3. Checking

Structure and order?

Values for parameters?

Are the residuals effectively 
without autocorrelation and is 
the model that successfully 
removes the autocorrelation 
as simple as possible?



Identification

1. From diagnostic patterns of the ACF and PACF

2. Automatic methods based on minimizing 
variance of residuals



Partial Autocorrelation Function
(pacf)

The pacf at lag k, or pacf(k), is equivalent to the autocorrelation 
at lag k of the residuals from fitting an AR(k-1) model to the 
time series

E.g., for pacf(3), the partial autocorrelation at lag 3
1. Fit AR(2) model to time series x(t)

2. Compute the acf of the residuals from that modelre(k)

3. Pacf(3) of x(t) is re(3)



Identification by acf and pacf patterns

1. AR(1)

• Acf decreases geometrically

• Pacf cuts off after lag 1

2. MA(1)

• Pacf decreases geometrically

• Acf cuts off after lag 1

Acf and pacf have characteristic decay 
patterns for specific-order ARMA models



Classic decay patterns of AR(1) and MA(1)

Inverse patterns of acf and pacf for these
two simple models
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Classic decay patterns
(for higher-order AR(p) and MA(q) models)

( )

( )

AR :  pacf " cuts off" after lag 
               acf decays, possibly irregularly 

MA :  acf " cuts off" after lag 
               pacf decays, possibly irregularly 

p k p

q k q

=

=

Patterns can be difficult to identify, especially if noise component 
of model is large. But, some broad guidelines:
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Identification by 
automated model selection

1. Fit various candidate models

2. Select “best” model by some objective 
criterion (e.g. FPE)

3. Follow up by checking model



Akaike’s Final Prediction Error (FPE)

1 *
1 /

n NFPE V
n N

+
=

−

Number of estimated
parameters

Sample size
(series length)

Variance of 
ARMA residuals



Estimation and checking of model

1. Identification

2. Estimation

3. Checking

To get values of parameters; this process
Is largely transparent to the user

Will cover in next lecture



Simulation
in context of simple AR & MA

Building a fake time series 
that has specified statistical properties 

1. White noise
2. MA(1)
3. AR(1)

…



White noise

( )2E ~ I N 0,t σ

Process

Independent
Normal

mean variance

Sometimes “white 
noise” is defined as 
Gaussian, sometimes 
not. ARMA modeling 
usually assumes 
Gaussian white noise

t 

Sample

Process



MA(1)

• Sample from white noise

• Apply model equation to get 
simulated time seriest 

1 1t t ty e c e −= +

“Memory” goes back only one previous time step

11 1c− < < Parameters of ARMA models are restricted to specified
ranges that guarantee the model is stationary and invertible

In practice, you might begin with the observed 
time series and use that to get the estimated  
moving average parameter before simulating

MA(1)
parameter



AR(1)

11 1a− < < Assures stationarity 

White noise, or “random shock”

t 

t 

Startup value y9

yt is built recursively from past values
and noise term
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