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3. Frequency response of filter

Read notes_8.pdf



A7 Feedback 
1. Download A7x.pdf  from D2L

2. Automatic points,  for running assignment and having uploaded by due 
time, is already marked in parentheses at top of first page

3. Each assignment has maximum possible 10 points; if you make no 
deductions, score is 10/10

4. A7x is color coded for points; purple=1; yellow=0.5; blue=0.5

5. Open your copy of the same assignment pdf you uploaded

6. In Acrobat Reader, using “Add text box,” mark in right margin  for 
deductions only, with deduction and segment reference : (eg., -0.5 A); 
round to tenths in deductions (e.g., no -0.25) 

7. At top of your pdf, mark grade like this :  9.5/10

8. If necessary, put any comments at top near the grade

9. Upload your self-graded pdf to folder A7_graded in D2L  



Goal of filtering:  emphasize some 
frequencies and suppress others

Spectrum shows series has much variance
At low frequencies.  May want to study that while 
reducing the confusing influence of interannual 
variations 



Knight et al. (2010), Quaternary Research 73, 107-117 

50-yr 
spline

100-yr 
spline

Cubic smoothing spline can be uses as a filter

Annual (July-June)Precipitation. 323 B.C.. – A.D. 2005,  NE Utah, from tree rings



Symmetrical Lowpass Filters

1. Low-pass

2. High-pass

3. Band-pass

• Emphasize low-frequency variations
• Also called “smoothing” filter – smooths 

out high-frequency variations



Meko and Woodhouse (2005), J. of Hydrology 308: 196-213 

Both smoothed series below 0.2 quantile

Example: Smoothed tree-ring reconstructions of river flow
Sacramento River Basin

Blue River Basin
• Gaussian filter
• 50% frequency response at 

wavelength 20 yr



Digital filter—mathematical operation

n

t i t i
i n

s w x +
=−

= ∑
Smoothed series

Original series
Weights

1
n

i
i n

w
=−

=∑
• Weights sum to 1

• Symmetrical filters most useful

• Filter usually centered



Digital Filter

Year Filter Time
Series

Filtered
Values

1 12
2 .25 x 17 14.00
3 .50 x 10 14.75
4 .25 x 22 17.25
5 15 15.75
6 11 13.75
7 18 18.50
8 27 21.50
9 14



Filter Span
n

t i t i
i n

s w x +
=−

= ∑
• We will be considering symmetric filters with an odd number 

of weights

• The “span” is defined as  max(i)-min(i)+1, where i is a 
relative time index to the center of the filter;  a symmetrical 
filter weighting 5 observations, from i=-2 to i=2 therefore has 
span 5.  The span equals the number of weights.

• Applying the filter centered on the original data points leads 
to a filtered series shorter than the original series.  The total 
number of observations “lost” from both ends is one less than 
the span. 

• Other things being equal, it is desirable for a filter to have a 
short span



Filter Design



What is the frequency-range of interest?
At what frequencies is variance “large”?

Spectrum shows series has much variance
At low frequencies.  May want to study that while 
reducing the confusing influence of interannual 
variations 



Design Considerations

1. Impulse response
2. Frequency response
3. End effects



Impulse Response Function (IRF) of Digital Filter
(response to a “unit pulse” of input)
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 hypothetical input series, zero at all times except one, at which
         =1   (unit pulse)

filter weights (symmetrical, sum to 1)
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Output, ,  is identically equal to the filter weightsts



Example: finite impulse response (FIR) filter
Consider simple 3-weight filter

original (unsmoothed) seriest
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• Symmetric: odd number of weights, symmetric around central weight

• Zero phase:  does not shift location of peaks or troughs in the original series

• Acausal:  first “output” can occur BEFORE time of unit pulse of input 

Response finite: unit pulse of input at 
some specific time results in output 
response limited to a finite number of 
observations



Example: infinite impulse response (IIR) filter
Consider simple recursive filter

1

original (unsmoothed series)
smoothed series
0.9 filtering equation
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• Asymmetric: weights do not regularly decrease in both directions from a central 
weight

• Not zero phase:  could shift the location of peaks or troughts in the original series

• Causal:  first “output” cannot occur BEFORE time of unit pulse of input 

Response infinite: unit pulse of input 
at some specific time results in output 
response that never ends (in practice 
could become very small)

For this example, filter is:



Data extension and end effects
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1. Accept the loss of data
2. Pad series with some constant 

(e.g., the mean)
3. Repeat the end-point data beyond 

the end points
4. Reflect data across end points

options

One advantage would be to 
avoid distortion in time series 
with trend in mean (in 
contrast to simply extending 
with the mean or median)



Frequency response of a filter
• Describes the hypothetical effect of the filter on sinusoidal inputs of 

various frequency: can affect amplitude and phase

• For a symmetical filter, phase change is zero, and amplitude is multiplied 
by factor equal to amplitude of the frequency response function

• Spectrum is affected as follows:
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Equation for Frequency Response of 
Symmetrical Filter
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Frequencies “passed”

( )

, 1, time series
smoothed series

frequency response
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Frequency response summarizes 
how well variations at different 
frequencies in the original series 
are retained in the filtered series

If is a lowpass (smoothed) version of ,

is the highpass component of 
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Detrending is a form of high-pass filtering



Frequency response relationship to variance

• Frequency response is the ratio 
of amplitudes of waves before 
and after filtering

• Frequency response function 
describes the effect of 
smoothing on variance tracked 
as a function of frequency

• With a lowpass filter, variance 
tracked is variance retained

• Tracking is intermediate 
between strong and weak in the 
transition band 



“Ideal” or “brick wall” filter

• Would perfectly pass all 
variations at frequencies lower 
than some cutoff frequency and 
totally eliminate variations at 
frequencies higher than the 
cutoff frequency

• Symmetic filters of finite length 
cannot achieve this



Effect of smoothing 
on the spectrum of the time series

The squared frequency response is 
equal to the ratio of the spectrum of 
the smoothed series to the spectrum 
of the original series
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Example

Where frequency response drops to 
0.5, spectrum of smoothed series is 
about ¼ the height of spectrum of 
the original series
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