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2 Probability distribution 
The probability distribution of a time series describes the probability that an observation 

falls into a specified range of values.  An empirical probability distribution for a time series can 

be arrived at by sorting and ranking the values of the series.  Quantiles and percentiles are useful 

statistics that can be taken directly from the empirical probability distribution.  Many parametric 

statistical tests assume the time series is a sample from a population with a particular population 

probability distribution.  Often the population is assumed to be normal.  This chapter presents 

some basic definitions, statistics and plots related to the probability distribution.  In addition, a 

test (Lilliefors test) is introduced for testing whether a sample comes from a normal distribution 

with unspecified mean and variance. 

2.1 Definitions 

Time series  
A time series is a set of observations ordered in time.   We will consider only time series 

observed at a discrete set of evenly spaced time intervals:  tx  at times 1,2,...,t N , where N  is 

the length of the time series.  Annual indices of tree-ring width are one example of a time series 

(Figure 2.1).    

 

 
 
Random variable  

A random variable is a function that assigns real numbers to the points in a sample space.  

The random variable is usually denoted by a capital letter (e.g., X ), and the value it takes by a 

small letter (e.g., x ). 

 

Probability function (also called probability density function)  

The probability function of the random variable X , denoted by  f x   is the function that 

gives the probability of X taking the value x , for any real number x : 

 

 ( ) ( )f x P X x   (1) 

The most commonly used theoretical distribution is the normal distribution.  Its probability 

density function (pdf) is given by:  
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Figure 2.1.  Time series plot of MEAF tree-ring index for period 1901-2007. Each 

observation is a dimensionless index of tree-ring width for a year.  Horizontal line is the 

1901-2007 mean. Higher values indicate wide rings and lower values narrow rings. This 

time series has a uniform time step of one year.   
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where   and  are the population mean and standard deviation of X .  The standard normal 

distribution is the normal distribution with  = 0 and =1.  A plot of the standard normal pdf is a 

bell-shaped curve (Figure 2.2).   

 

 

 

Distribution function (also called cumulative distribution function (cdf)) 
The distribution function of a random variable X is the function that gives the probability 

of X  being less than or equal to a real number x : 

 ( ) ( ) ( )
u x

F x p X x f u


    (3) 

 

For a theoretical distribution, the cdf can be computed as the integral of the probability density 

function. The cdf of standard normal has an “S-shaped” form (Figure 2.3). 

 

 

Empirical distribution function, or empirical cdf 

Let 1 2, ,..., nx x x  be a sample of some random variable.  The empirical distribution 

function  S x is a function of x, which equals the decimal fraction of the observations that are 

less than or equal to cx  for .cx     
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Figure2.2. Probability density function of 

standard normal distribution.  Sixty-eight 

percent of the population is within ±1.0 of 

zero.  Ninety-five percent is within ±1.96 of 

zero. 
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Figure2.3. Cumulative distribution function 

(cdf) of standard normal distribution. 
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Statistical and deterministic   
A time series is deterministic if its future behavior can be exactly predicted from its past 

behavior.  Otherwise the time series is statistical.  The future behavior of a statistical time series 

can be predicted only in probabilistic terms.  We will consider only statistical time series. 

 

Process  
A statistical time series can theoretically be viewed as generated by some underlying 

statistical process.  Sometimes the term stochastic is used instead of statistical; the two terms are 

synonyms. The process might be represented as a mathematical model.  The time series can be 

considered a single realization of the generating process. 

 

 

Stationarity 
The process can be viewed as potentially generating an infinite number of time series.  

The observed series tx is just one possible realization.  The value of the series tx at any time 

t i can be considered a realization of a random variable iX , with a probability density 

function ( )ip x .  Any set of iX at different times, say {
1
,...,

rj jX X }, has a joint probability density 

function.  If the joint probability density function is independent of time, the process is said to be 

strictly stationary.  Many statistical procedures assume at least weak stationarity, which means 

that the mean, variance, and autocovariance function are independent of time.  For Gaussian 

processes, weak stationarity implies strict stationarity. 

  Chapman (2004) introduces the idea of stationarity from an intuitive point of view:  

“Broadly speaking, a time series is said to be stationary if there is no systematic change in mean 

(no trend), if there is no systematic change in variance and if strictly periodic variations have 

been removed.  In other words, the properties of one section of the data are much like those of 

any other section.”  Such an intuitive view basically amounts to observing that the properties of 

the series appear to be consistent with a stationary generating process or model.  

 

2.2 DESCRIPTIVE STATISTICS 

 

Sample mean, variance, standard deviation  

Let 1 2, ,..., Nx x x  be a time series of length N.   The mean, variance, and standard 

deviation are defined by 
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Figure 2.4.  Histogram of MEAF tree-ring index.  Data 

covers 350 years 1658-2007.  Smooth red line is theoretical 

pdf of normal distribution with same mean and standard 

deviation as the tree-ring index.  

 

The sample standard deviation and variance are sometimes written with 1N   replacing N in 

the denominators of  (5) and (6) so that the sample statistics are unbiased estimators of the 

population parameters. 

 

 

Sample skewness 
The shape of a data distribution loosely refers to its symmetry in a histogram, or bar plot 

of number observations falling into various ranges of data values.  A statistic summarizing the 

shape in terms of symmetry of the histogram is the sample skewnesss.  Skewness is defined as the 

third central moment (the average cubed departure from the mean) divided by the cube of the 

standard deviation: 
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       (7) 

If 0g  , the distribution is symmetric around x .  If 0g  , the distribution has positive 

skew, or is skewed to the right.  If 0g  , the distribution has negative skew, or is skewed to the 

left.  An alternative description of skew is given by the relative positions of the mean and mode.  

The mode is the most common value, or the peak in the histogram.  Mean greater than mode is 

positive skew; mean less than mode is negative skew (Panofsky and Brier, 1968).   In general for 

positive skew, mean>median>mode.  The opposite is true for negative skew: 

mean<median<mode.  Figure 2.4 shows the histogram of a time series with slight positive skew.  

 

 
Location and spread 

 The location is the 

“center” of the data.  The data 

typically clusters around some 

point that defines this center.  

The mean and median are two 

commonly used measures of 

location.   The spread describes 

the variability of the data.  The 

standard deviation is one 

measure of the spread.  Another 

is the interquartile range, 

which is the difference between 

the 75th and 25th percentiles of 

the data.  The interquartile 

range is a robust measure of the 

spread because it is unaffected 

by changes in the upper and 

lower 25% of the data.  A measure of spread extremely sensitive to individual observations is the 

range – the difference between the highest and lowest value.  Measures of spread are illustrated 

in a time series plot of a tree-ring index (Figure 2.5).   
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Figure 2.5.  Measures of spread illustrated in time series plot of MEAF tree-ring index, 

1901-2007. Plotted series same as in Figure 2.1.  Range extends from highest to lowest 

value.  Interquartile range (iqr) covers the middle 50% of observations (all except the 

highest 25% and lowest 25%).  Standard deviation is computed from squared 

departures from mean; in this plot the purple band delineates observations within ±1 

standard deviation of the mean.  For a normal distribution, 68% of the observations 

would fall within ±1 standard deviation of the mean.  It is therefore expected that for 

normally distributed data the iqr would be narrower than the band marking ±1 

standard deviations from the mean.   
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2.3  Basic Plots 

This section introduces plots useful for an initial look at a time series and for analyzing 

location, spread and shape of the data distribution.  Some useful plots are listed in Table 2.1. 

 

 

Table 2.1 Basic plots useful for time series distribution assessment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time plot.   The series plot (Figure 2.1, 2.5) is the single most important plot in time series 

analysis.  Unlike the other plots described in this chapter, the time series plot retains the time-

sequence of observations, and so graphically shows such features as persistence, trend in mean 

and trend in variance.    

 

 

Quantile plot.   The f quantile is the data value below which approximately a decimal fraction 

f of the data is found.  That data value is denoted q(f).  Each data point can be assigned an f-value.  

Let a time series x of length n be sorted from smallest to largest values, such that the sorted values 

have rank 1,2,...,i n .  The f-value for each observation is computed as 
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This equation gives the quantile for any observation.  For example, if the series has 99 

observations ( 99n  ), the smallest ranking data, with  1

1 0.5
0.0051

99
f


  , is the “0.0051 

quantile.”     The middle-ranking, or 50th ranking value ( 50i  ) has 50

50 0.5 49.5
0.50

99 99
f


   , 

and is the 0.50 quantile. 

The 0.5 quantile is also called the median.   The 0.25 and 0.75 quantiles are called the lower 

and upper quartiles.  The interquartile range (Figure 2.5) is defined as the difference between the 

upper and lower quartiles: 

 (.75) (.25)r q q    

Half of the observations lie between the upper and lower quartiles. 

 

Name of plot 

 

Key Information 

Matlab 

Functions 

Time plot Sequence, persistence 

 

plot 

 Quantile plot Non-exceedance 

probability 

 

cdfplot 

Box plot Location, spread,  shape boxplot 

Quantile-quantile plot 

(q-q plot) 

Relative shape qqplot 

Normal probability plot Normality normplot 

Histogram  Shape   hist, histfit 
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Quantiles for f-values not corresponding exactly to an observation can be linearly interpolated 

from flanking quantiles that do correspond to observations.  Figure 2.6 shows a sample quantile 

plot, with interpolation of the 0.25 quantile.   Note that the quantile plot has exactly the same 

information as the cdf.  The only difference is that the probability axis for the quantile plot is the 

abscissa instead of the ordinate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Box plot.   A box plot summarizes the data distribution primarily in terms of the median, the 

upper quartile, and lower quartile (Figure 2.7).  The “box” by definition extends from the upper to 

lower quartile.  Within the box is a dot or line marking the median.   The width of the box, or the 

distance between the upper and lower quartiles, is equal to the interquartile range, and is a 

measure of spread.  The median is a measure of location, and the relative distances of the median 

from the upper and lower quartiles is a measure of symmetry “in the middle” of the distribution.  

For example, the median is approximately in the middle of the box for a symmetric distribution, 

and is positioned toward the lower part of the box for a positively skewed distribution.   

“Whiskers” are drawn outside the box at what are called the “adjacent values.”  The upper 

adjacent value is the largest observation that does not exceed the upper quartile plus1.5r , where 

r is the interquartile range.  The lower adjacent value is the smallest observation than is not less 

than the lower quartile minus1.5r .   If no data fall outside this 1.5r buffer around the box, the 
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Figure 2.6.  Quantile plot of a tree-ring index time series.  The quantile plot is an empirical 

distribution function (see Figure 2.3) with the x and y axes exchanged.  Accordingly, the 

quantile plot is also a plot of “non-exceedance probability”.  For the data plotted here, an index 

of 0.62 has a probability of 0.25 of not being exceeded.  Conversely, there is a 0.75 probability 

of and index greater than 0.62.  “S” shaped quantile plots are characteristic of bell-shaped 

distributions, in which values tend to cluster toward a central value. 
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whiskers mark the data extremes.  The whiskers also give information about symmetry in the tails 

of the distribution.  For example, if the distance from the top of the box to the upper whisker 

exceeds the distance from the bottom of the box to the lower whisker, the distribution is 

positively skewed in the tails.  Skewness in the tails may be different from skewness in the 

middle of the distribution.  For example, a distribution can be positively skewed in the middle and 

negatively skewed in the tails. 

Any points lying outside the 1.5r buffer around the box are marked by individual symbols as 

“outliers”.  These points are outliers in comparison to what is expected from a normal distribution 

with the same mean and variance as the data sample.  For a standard normal distribution, the 

median and mean are both zero, and: 

 .25 0.67449q    

 0.75 0.67449q   

 .75 0.25 1.349r q q    

Where .25q and .75q are the first and third quartiles, and r is the interquartile range.  From the 

preceding paragraph, we see that the whiskers for a standard normal distribution are at data 

values: 

 

Upper whisker = 2.698 

Lower whisker = -2.698 

 

And from the cdf of the standard normal distribution, we see that the probability of a lower 

value than 2.698x   is  

 ( 2.698) 0.0035p X     

 

This result shows that for a normal distribution, roughly 0.35 percent of the data is expected to 

fall below the lower whisker.  By symmetry, 0.35 percent of the data are expected above the 

upper whisker.   These data values are classified as outliers.  Exactly how many outliers might be 

expected in a sample of normally distributed data depends on the sample size.  For example, with 

a sample size of 100, we expect no outliers, as 0.35 percent of 100 is much less than 1.  With a 

sample size of 10,000, however, we would expect 35 positive outliers and 35 negative outliers for 

a normal distribution.  It is therefore not surprising to find some outliers in box plots of very large 

data sample, and the existence of a few outliers in samples much larger than 100 does not 

necessarily indicate lack of normality. 

A “notched” boxplot is an extension to the simple boxplot intended to show the uncertainty in 

the median by the width of a notch on the side of the box.  “Notched” boxplots plotted side by 

side can give some indication of the significance of differences in medians of two samples.  

Given a sample of data with N observations and interquartile range R , how wide should the 

notch in the box plot be for a) 95 percent confidence interval about the median, and b) visual 

assessment of whether two medians are statistically different at the 95 percent level?  The 

Gaussian-based asymptotic approximation of the standard deviation s of the median M is given 

by 

 1.25 /1.35s R N   

 

This approximation “can be shown to be reasonably broadly applicable to other distributions.”  

The approximation holds especially if the middle of the distribution is shaped approximately like 

the Gaussian. 

Because 1.96 standard deviations encloses 95% of a normal distribution, a notch about the 

median for a 95 % confidence interval can be drawn at  

 1.96M s    
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For a “gap gauge” which would indicate significant differences in medians at the 95% level, 

1.96 would generally be much too stringent.  A better choice is for the notch at 

 1.7M s    

which is the width of notches drawn by Matlab. 

McGill et al. (1978) stress that there are no hard and fast rules for notch width for comparing 

medians of two groups.  The choice depends also on the standard deviations of the groups.  If the 

standard deviations are vastly different, 1.96M s   is appropriate, while, while if the standard 

deviations are nearly equal, 1.3896M s  is appropriate.  McGill et al. (1978) selected 

1.7M s  as a compromise. 

 
 

 

Quantile-quantile plot (q-q plot).  The q-q plot compares the quantiles of two variables.  If 

the variables come from the same type of distribution (e.g., normal), the qq-plot is a straight line.   

This is true even if the parameters of the distributions (e.g., mean , variance) differ.  To help in 

evaluating the q-q plot, a straight line is usually drawn for reference on the plot.  In Matlab, this 

line is drawn through the 0.25 and 0.75 quantiles, and is extended.  A q-q plot of the second half 

(175 years) of the MEAF tree-ring index against the first half (Figure 2.8A)  shows large 

 
Figure 2.7.  Boxplots and time series plot of tree-ring index for site MEAF.  (A) Boxplot 

for entire series.  (B) Notched boxplots for first and second halves of series.  (C) Time 

series plot of entire series.  Boxplot for entire series shows mild positive skew in middle of 

distribution (median toward lower half of box) and positive skew in tails.  Boxplots for 

halves emphasize the relative skewness of first half.  That notches do not overlap  

indicates sub-period medians different (α=0.05). Greater skew of first half obvious from 

time series plot, but difference in medians not noticeable.  In fact, median is 0.79 for first 

half and 0.96 for second half.   
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departure from the straight line toward the high-growth range of the data.  Specifically, the same 

quantile has a higher tree-ring index for the first half of the data than for the last half.  This 

departure reflects the difference in skew evident in the time series and box plots (Figure 2.7).  It is 

important, however to consider random sampling variability in the interpretation of q-q plots.  

The departures in plots in Figure 2.8 B-D are due to sampling variability, as all series were drawn 

from the normal distributions.    

 

 
 

Normal-probability plot.  In the normal probability plot, the quantiles of a normally 

distributed variable with the same mean and variance as the data are plotted against the quantiles 

of the data.  The y-axis is labeled with the f-values for the theoretical (normal) distribution rather 

than with the quantiles of the normal variate.    The interpretation is analogous to that for the q-q 

plot:  a straight line indicates the data come from a normal distribution. Curvature indicates 

departure from normality.   The straight line drawn for reference on the plot is again the line 

 
Figure 2.8.  Examples of quantile-quantile plots.  (A) First and last halves (175 years each) 

of MEAF tree-ring index (time series plot in Figure 2.7).  (B-D) pairs of 175-year samples 

from random normal distribution.    The random series for the ordinate (v2, v3, v4) were 

drawn from a random normal distribution with mean and standard deviation the same as 

that of the 1658-1832 tree-ring index. The random series for the abscissa (u2,u2, u4) were 

drawn from a random normal distribution with mean ½ that of the 1658-1832 tree-ring 

index and standard deviation twice that of the 1658-1832 tree-ring index.  Differences in 

mean and variance (or standard deviation) do not affect the q-q plot:  if two series come 

from the same form of distribution (e.g., normal), the q-q plot should fall along a straight 

line regardless of differences in the mean and variance. 
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connecting the 0.25 and 0.75 quantiles of the data.  Normal-probability plots highlight the 

positive skewness in the first half of the MEAF tree-ring series (Figure 2.9). 

 

 
 

 

Histogram with superposed normal PDF.  The histogram is a bar chart of frequency or 

number of observations in various data ranges.  A bell-shaped histogram is indicative of normally 

distributed data.  Visual interpretation of the histogram is aided by overplotting a properly scaled 

theoretical probability distribution for normal distribution with the same mean and variance as the 

sample series.   Such plots for the full-length MEAF tree-ring index clearly emphasize the 

positive skew of the data relative to normally distributed data ((Figure 2.4).   

 

 

2.4 Lilliefors Test for Normality 

The Lilliefors test evaluates the hypothesis that the sample comes from a normal distribution 

with unspecified mean and variance against the alternative hypothesis that the sample does not 

come from a normal distribution.  The main difference from the well-known Kolmogorov-

Smirnov test (K-S test) is in the assumption about the mean and standard deviation of the normal 

distribution.  The K-S test assumes the mean and standard deviation of the population normal 

distribution are known; Lilliefors test does not make this assumption.  In the analysis of empirical 

data, more often than not the mean and variance of the population normal distribution are 

unknown, and must be estimated from the data.  Hence Lilliefors test is generally more relevant 

than the K-S test.   

The Lilliefors test statistic is computed from the maximum vertical offset of the empirical 

cdf’s of (1) the sample, after conversion to Z-scores, and (2) the standard normal distribution.  A 

sample is converted to Z-scores by subtracting the sample mean and dividing by the sample 

standard deviation, such that the mean of the Z-score series is 0 and the standard deviation is 1.0.  

The empirical cdf of this Z-score series is computed.  Similarly, the cdf of the standard normal 

 
Figure 2.9.  Normal probability plots for first and last halves of MEAF tree-ring index. If 

normally distributed, the sample should plot along the straight dashed line. At lower end of 

distribution (low-growth), both series are “pulled in” toward the center relative to a normally 

distributed series with the same mean and variance as the sample. The normal distribution 

would therefore have a longer tail on the left side than the sample.  At the higher end of the 

distribution (high growth), the data for 1658-1832 is stretched out relative to the normal 

distribution, reflecting the high values and skew note previous (see Figure 2.7).  The 1833-

2007 segment, in contrasts, conforms well to a normal distribution over the high range. 
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distribution is obtained at the same probability points.  The maximum difference of the two cdf’s 

at any point is then computed.  Superimposing plots of the two cdf’s immediately reveals where 

the cdf’s differ most, and this is the point yielding the Lilliefors statistic.   

The Kolmogorov-Smirnov test is identical to the Lilliefors test except that no conversion to Z-

scores is made in the K-S test.  The Lilliefors test, first presented by Lilliefors (1967), is therefore 

a modification of the K-S test.  To apply the Lilliefors test, you must not just compute the 

statistic, but test its significance.  Exact tables of the quantiles of the test statistic are available; 

these tables have been computed from random numbers in computer simulations and are stored 

for reference in Matlab.  When you call a function in Matlab to test for normality, the computed 

value of the Lilliefors test statistic is compared with the internally stored quantiles of the statistic.   

The following description of Lilliefors test is from Conover (1980, p. 357).  

 

DATA. Consider a random sample 
1 , 2 nx x x of size n, which might be an observed time 

series. Denote the distribution function of the random variable by  F x .  Compute the sample 

mean, x and sample standard deviation, s , and convert the sample to Z-scores: 

 1,2, ,i
i

x x
Z i n

s


   (1) 

ASSUMPTION: The sample is a random sample.   For natural time series, we of course have 

just the observed sample, and often do not have the luxury of repeating the experiment and 

drawing repeated samples (running climate history over and over again?).  At any rate, we 

assume the observed series is a random sample.  One complication to keep in mind is that with 

autocorrelated time series (a later topic) the observations are not independent of one another, such 

that a time series of length n might actually represent fewer than n independent observations.   

 

HYPOTHESES:  

0 :H   ix comes from a normal distribution with unspecified mean and variance 

1 :H   ix does not come from a normal distritbution 

 

TEST STATISTIC: The test statistic is the maximum vertical distance between the empirical 

distribution function of the Z-score series in equation (1) and the distribution function of the 

standard normal distribution.  Plot the cdf of the standard normal distribution and call it  *F x .  

Superimpose a plot of the empirical cdf of the Z-scores, and call it  S x .  The test statistic is the 

maximum vertical distance between the two plots, or  

    *

1 supT F x S x   (2) 

DECISION RULE: reject 0H at the significance level  if 1T exceeds the 1  quantile in a 

table of quantiles of the Lilliefors test statistic for normality (e.g., p. 464, in Conover (1980)).   

 

EXAMPLE:  Lilliefors test applied to the 1658-1832 portion of the MEAF tree-ring series 

shows a maximum departure in cdf’s at a standardized value of about -0.167 in the tree-ring 

series (Figure 2.10).  From the plot alone, one cannot say whether this departure is significant.  

Reference must be made to a table based on Monte Carlo simulations.  That table indicates the 

departure is significant (α<0.05), and that the null hypothesis of normality must be rejected.  That 

conclusion is consistent with other graphical evaluations discussed previously.   
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2.5 Matlab 

 

The Matlab Statistics Toolbox has functions for statistics and plots used in this chapter.  The 

function are defined and described in the Matlab help. 
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Figure 2.10.  Graphical summary of Lilliefors statistic applied to test for normality of a tree-ring 

index.  Test series is the 1658-1832 portion of MEAF tree-ring series.   (Top)  Empirical cdf’s of a 

standard normal series and of the Z-scores of the tree-ring series.  (Bottom) Difference between 

the two cdf’s as a function of the standardized value of the tree-ring series.  This difference is 

labeled “Delta P”.    The maximum absolute value of Delta P is defined as the Lilliefors statistic.  

For these data, the Lilliefors statistic is large enough to be significant (α<.05) such that the 

hypothesis of normality is rejected. 
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