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5 Autoregressive-Moving-Average Modeling  
 

5.1 Purpose.   

Autoregressive-moving-average (ARMA) models are mathematical models of the persistence, 

or autocorrelation, in a time series. ARMA models are widely used in hydrology, 

dendrochronology, econometrics, and other fields. There are several possible reasons for fitting 

ARMA models to data. Modeling can contribute to understanding the physical system by 

revealing something about the physical process that builds persistence into the series. For 

example, a simple physical water-balance model with precipitation as input and including terms 

for evaporation, infiltration, and groundwater storage can be shown to yield a streamflow series 

as output that follows a particular form of ARMA model. ARMA models can also be used to 

predict behavior of a time series from past values alone. Such a prediction can be used as a 

baseline to evaluate the possible importance of other variables to the system. ARMA models are 

widely used for prediction of economic and industrial time series. Another use of ARMA models 

is simulation, in which synthetic series with the same autocorrelation structure as an observed 

series can be generated. Simulations can be especially useful for established confidence intervals 

for statistics and estimated time series quantities. ARMA models can also be used to remove 

persistence. In dendrochronology, for example, ARMA modeling is applied routinely to generate 

residual chronologies – time series of ring-width index whose dependence on past values has 

been removed. This operation, called prewhitening, is usually intended to remove biologically-

related persistence from the series so that the residual may be more suitable for studying the 

influence of climate and other outside environmental factors on tree growth. 

5.2 Mathematical Model  

ARMA models can be described by a series of equations. The equations are somewhat simpler 

if the time series is first reduced to zero-mean by subtracting the sample mean. Therefore, we will 

work with the mean-adjusted series  

 , 1,t ty Y Y t N    (1) 

where tY is the original time series,Y is its sample mean, and ty is the mean-adjusted series. A 

subset of ARMA models are the so-called autoregressive, or AR models. An AR model expresses 

a time series as a linear function of its past values.  The order of the AR model tells how many 

lagged past values are included. The simplest AR model is the first-order autoregressive, or 

AR(1), model   

 1 1t t ty a y e   (2) 

where ty is the mean-adjusted series in year t, 1ty  is the series in the previous year, ta is the lag-1 

autoregressive coefficient1, and te is the noise. The noise also goes by various other names: the 

error, the random-shock, and the residual. The residuals te  are assumed to be random in time 

(not autocorrelated), and normally distributed. Be rewriting the equation for the AR(1) model as  

 1 1t t ty a y e    (3) 

                                                      
1 Some authors (e.g., Chatfield, 2004) write the equation for an AR(1) process in the form 

1 1t t ty a y e  , which implies a positive coefficient a1 for positive first-order autocorrelation. But as 

written in (2), positive autocorrelation goes with a negative coefficient a1. There is no confusion as long as 

the equation being used for describing the process is presented along with values of parameters. The 

convention used in this chapter follows Ljung (1995) and Matlab’s System Identification Toolbox. 
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we see that the AR(1) model has the form of a regression model in which ty is regressed on its 

previous value. In this form, a1 is analogous to the negative of the regression coefficient, and te to 

the regression residuals. The name autoregressive refers to the regression on self (auto).    

Higher-order autoregressive models include more lagged ty terms as predictors. For example, 

the second-order autoregressive model, AR(2), is given by  

 1 1 2 2t t t ty a y a y e     (4) 

where 1 2,a a are the autoregressive coefficients on lags 1 and 2. The thp order autoregressive 

model, AR(p) includes lagged terms on years 1t   to t p .    

The moving average (MA) model is a form of ARMA model in which the time series is 

regarded as a moving average (unevenly weighted) of a random shock series te . The first-order 

moving average, or MA(1), model is given by  

 1 1t t ty e c e    (5) 

where 1,t te e  are the residuals at times t and t-1, and 1c is the first-order moving average 

coefficient. MA models of higher order than one include more lagged terms. For example, the 

second order moving average model, MA(2), is   

 1 1 2 2t t t ty e c e c e     (6) 

The letter q is used for the order of the moving average model. The second-order moving average 

model is MA(q) with 2q  .    

We have seen that the autoregressive model includes lagged terms on the time series itself, 

and that the moving average model includes lagged terms on the noise or residuals. By including 

both types of lagged terms, we arrive at what are called autoregressive-moving-average, or 

ARMA, models. The order of the ARMA model is included in parentheses as ARMA(p,q), where 

p is the autoregressive order and q the moving-average order.  The simplest ARMA model is 

first-order autoregressive and first-order moving average, or ARMA(1,1): 

 1 1 1 1t t t ty a y e c e     (7) 

 

5.3 Steps in modeling    

ARMA modeling proceeds by a series of well-defined steps. The first step is to identify the 

model. Identification consists of specifying the appropriate structure (AR, MA or ARMA) and 

order of model.   Identification is sometimes done by looking at plots of the acf and partial 

autocorrelation function (pacf). Alternatively, identification can be done by an automated 

iterative procedure -- fitting many different possible model structures and orders and using a 

goodness-of-fit statistic to select the best model. 

The second step is to estimate the coefficients of the model. Coefficients of AR models can be 

estimated by least-squares regression. Estimation of parameters of MA and ARMA models 

usually requires a more complicated iteration procedure (Chatfield 2004). In practice, estimation 

is fairly transparent to the user, as it accomplished automatically by a computer program with 

little or no user interaction.  

The third step is to check the model. This step is also called diagnostic checking, or 

verification (Anderson 1976). Two important elements of checking are to ensure that the residuals 

of the model are random, and to ensure that the estimated parameters are statistically significant. 

Usually the fitting process is guided by the principal of parsimony, by which the “best” model is 

the simplest possible model – the model with the fewest parameters -- that adequately describes 

the data.   
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Identification by visual inspection of acf and pacf.  The classical method of model 

identification as described by Box and Jenkins (1970) is to judge the appropriate model structure 

and order from the appearance of the plotted acf and pacf. We have already discussed the acf, and 

know that the acf at lag k measures the correlation of the series with itself lagged k years. The 

partial autocorrelation function (pacf) at lag k is the autocorrelation of the residuals of 

an  AR 1k   model fit to the time series. If the  AR 1k  model effectively whitens the time 

series, the pacf at lag k is zero. Identification of ARMA models from the acf and pacf plots is 

difficult and requires much experience for all but the simplest models. Let’s look at the diagnostic 

patterns for the two simplest models:  AR(1) and MA(1).   

The acf of an AR(1) process declines geometrically as a function of lag. For example, the acf 

of a series that follows an AR(1) process with coefficient 1 0.5a  is 2 3 4{0.5,0.5 ,0.5 ,0.5 }  at lags 

1-4. The pacf of the AR(1) process at lags 1k  is zero, because if the model is AR(1), all 

autocorrelation is removed by the AR(1) model. In summary, the diagnostic patterns of acf and 

pacf for an AR(1) model are: 

 Acf:  declines in geometric progression from its highest value at lag 1 

 Pacf: cuts off abruptly after lag 1 

 

The opposite types of patterns apply to an MA(1) process: 

 Acf:  cuts off abruptly after lag 1 

 Pacf:  declines in geometric progression from its highest value at lag 1 

 

The theoretical acf and pacf for two AR(1) processes with large and small autoregressive 

coefficients are shown in Figure 5.1. The acf and pacf in both cases follows the diagnostic 

patterns described above. The persistence is specified by the size of the coefficient. For an AR(1) 

model, the square of the autoregressive coefficient is analogous to R2 in regression. Accordingly, 

for a model with a1=-0.9 persistence explains 81% of the variance, and for a model with a1=-0.3 

persistence explains 9% of the variance. Note that the lower the coefficient of the AR(1) model 

the more quickly decaying acf approaches zero.  

 

 
Figure 5.1. Theoretical autocorrelation function (acf) and partial 

autocorrelation function (pacf) of an AR(1) processes with high and 

low amounts of positive autocorrelation.   
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The theroretical patterns of decay of the acf and pacf can be visually compared with the 

estimated acf and pacf of a time series to decide whether the series was likely generated by an 

AR(1) process. Because of sampling variability (noise) the classic AR(1) decay pattern may be 

difficult to identify in a short time series. Higher-order AR, MA, and ARMA processes also have 

characteristic theoretical patterns of decay of the acf and pacf. The acf and pacf decay patterns for 

such processes are more complicated that those of the AR(1) model. Generally, however, the pacf 

cuts off after lag p for an AR(p) process, and the acf cuts of abruptly after lag q for an MA(q) 

process.   

   

Short memory and long memory processes.  Though the acf may die off very slowly for an 

AR(1) process with a high AR coefficient (Figure 5.1), the AR(1) process, and indeed all 

stationary AR, MA and ARMA processes are termed “short memory” processes. Such processes 

satisfy a condition of eventual dying off of the acf.  The condition is given by
k

k C  , where 

k is the theoretical autocorrelation at lag k, and C and are constants with 0 1  (Chatfield 

2004, p. 261). For such processes, 
0

| |k

k






 converges. On the other hand, there is another class of 

processes, called “long-memory” processes, for which
0

| |k

k






  does not converge.  See Chatfield 

(2004, p. 260) for discussion of long-memory processes.   

 

Automated identification by the FPE criterion.  An alternative to use of characteristic 

decay patterns of the acf and pacf to identify ARMA models is to fit a large number of candidate 

models and choose the best model guided by a goodness-of-fit statistic. In this approach, a suite 

of candidate models are fit, and goodness-of-fit statistics are computed that penalize appropriately 

for excessive complexity. (Think of adjusted R2 in regression.) Akaike’s Final Prediction Error 

(FPE) and Information Theoretic Criterion (AIC) are two closely related alternative statistical 

measures of goodness-of-fit of an ARMA(p,q) model. Goodness of fit might be expected to be 

measured by some function of the variance of the model residuals: the fit improves as the 

residuals become smaller.  Both the FPE and AIC are functions of the variance of residuals. 

Another factor that must be considered, however, is the number of estimated parameters, 

n p q  . This is so because by including enough parameters we can force a model to perfectly 

fit any data set. Measures of goodness of fit must therefore compensate for the artificial 

improvement in fit that comes from increasing complexity of model structure. The FPE is given 

by  

 
1

*
1 /

n N
FPE V

n N





 (8) 

where V is the variance of model residuals, N is the length of the time series, and n p q  is the 

number of estimated parameters in the ARMA model. The FPE is computed for various candidate 

models, and the model with the lowest FPE is selected as the best-fit model. 

The AIC (Akaike Information Criterion) is another widely used goodness-of-fit measure, and 

is given by 

 
2

log 1
n

AIC V
N

  
   

  
 (9) 
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 As with the FPE, the best-fit model has minimum value of AIC.2 Neither the FPE nor the AIC 

directly addresses the question of the model residuals being without autocorrelation, as they 

ideally should be if the model has removed the persistence. A strategy for model identification by 

the FPE is to 1) iteratively fit several different models and find the model that gives 

approximately minimum FPE and 2) apply diagnostic checking (see below) to assure that the 

model does a good job of producing random residuals.     

 

Checking the model – are the residuals random?  A key question in ARMA modeling is 

whether the model effectively describes the persistence?  If the model describes the persistence 

well, the model residuals should be random –or uncorrelated in time – and the autocorrelation 

function (acf) of residuals should be zero at all lags except lag zero. Because of sampling 

variability, the acf will not be exactly zero, but should fluctuate close to zero.   

The acf of the residuals can be examined in two ways. First, the acf can be scanned to see if 

any individual coefficients fall outside some specified confidence interval around zero. 

Approximate confidence intervals can be computed. The correlogram of the true residuals (which 

are unknown) is such that kr is normally distributed with mean 

 ( ) 0kE r   (10) 

and variance 

 
1

var( )kr
N

  (11) 

where kr is the autocorrelation coefficient of the ARMA residuals at lag k. The appropriate 

confidence interval for kr can be found by referring to the cdf of a normal distribution.  For 

example, the 0.975 probability point of the standard normal distribution is 1.963. The 95% 

confidence interval for kr  is therefore 0 1.96 / N . For the 99% confidence interval, the 0.995 

probability point of the normal cdf is 2.57.  The 99% CI is therefore 0 2.57 / N .  An 

kr outside this CI is evidence that the model residuals are not random.     

A subtle point that should be mentioned is that the correlogram of the estimated residuals of a 

fitted ARMA model has somewhat different properties than the correlogram of the true residuals 

– which are unknown because the true model is unknown. As a result, the above approximation 

(11) overestimates the width of the CI at low lags when applied to the acf of the residuals of a 

fitted model (Chatfield, 2004, p. 68). There is consequently some bias toward concluding that the 

model has effectively removed persistence. At large lags, however, the approximation is close.  

A different approach to evaluating the randomness of the ARMA residuals is to look at the acf 

“as a whole” rather than at the individual 'kr s separately (Chatfield, 2004). The test is called the 

portmanteau lack-of-fit test, and the test statistic, the “Q” statistic, is  

 
2

1

K

k

k

Q N r


   (12) 

The Q statistic, computed from the lowest K autocorrelations, say at lags 1,2, 20k  , 

follows a 2 distribution with  K p q  degrees of freedom, where p and q are the AR and MA 

orders of the model and N is the length of the time series. If the computed Q exceeds the value 

                                                      
2 The System Identification Toolbox in MATLAB© has functions for the FPE and the AIC.  

(Computational note:  MATLAB© computes the variance V used in the above equations with N-1 rather 

than N in the denominator of the sum-of-squares term.) 
3 The MATLAB© disttool function is a handy interactive graphics tool for getting probability points 

of the cdf for various distributions 



Notes_5, GEOS 585A, Spring 2017 6 

from the 2  table for some specified significance level, the null hypothesis that the series of 

autocorrelations represents a random series is rejected at that level.   

 The p-value gives the probability of exceeding the computed Q by chance alone, given a 

random series of residuals. Thus non-random residuals give high Q and small p-value. As for 

hypothesis testing in general, the significance level is related to the p-value by  

  significance level (%) = 100(1 - )p  (13) 

A significance level greater than 99%, for example, corresponds to a p-value smaller than 0.01. 

 

Checking the model – are the estimated coefficients significantly different from zero?  

Besides the randomness of the residuals, we are concerned with the statistical significance of the 

ARMA model coefficients. The estimated coefficients should be significantly different than zero.  

If not, the model can probably be simplified. For example, an AR(2) model for which the second-

order coefficient is not significantly different from zero might be discarded in favor of an AR(1) 

model. Significance of the ARMA coefficients can be evaluated by comparing estimated 

parameters with their standard deviations. For an AR(1) model, the estimated first-order 

autoregressive coefficient, 1â , is normally distributed with variance  

 
 2

1

1

ˆ1
ˆvar( )

a
a

N


  (14) 

where N is the length of the time series. Assuming that 1 is normally distributed, the approximate 

95% confidence interval for 1â is two standard deviations around 1â : 

 1 1
ˆ ˆ2 var( )a a  (15) 

For example, if the time series has length 300 years, and the estimated AR(1) coefficient is 

1
ˆ 0.60a  , the 95% confidence interval is  
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   

 (16) 

The estimated parameter 1
ˆ 0.60a  is therefore significant as the confidence band does not include 

zero and in fact is highly significant as the confidence band is far from zero. Equations are also 

available for the confidence bands around estimated parameters of an MA(1) model and higher-

order AR, MA, and ARMA models (e.g., Anderson 1975, p. 70). The estimated parameters 

should be compared with their standard deviations to check that the parameters are “significantly” 

different from zero.4 

 

5.4 Practical vs statistical significance of persistence   

Note from equation (14) that the variance of the estimated autoregressive coefficient for an 

AR(1) model is inversely proportional to the sample length. For long time series (e.g., many 

                                                      
4 The present function in the MATLAB© System Identification Toolbox is convenient for getting the 

standard deviations of estimated ARMA parameters 
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hundreds of observations), ARMA modeling may yield a model whose estimated parameters are 

very small, yet significantly different from zero. The persistence described by such a model might 

actually account for a tiny percentage of the variance of the original time series.  

A measure of the practical significance of the autocorrelation, or persistence, in a time series 

is the percentage of the series variance that is reduced by fitting the series to an ARMA model. If 

the variance of the model residuals is much smaller than the variance of the original series, the 

ARMA model accounts for a large fraction of the variance, and a large part of the variance of the 

series is “due to persistence.” In contrast, if the variance of the residuals is almost as large as the 

original variance, then little variance has been removed by ARMA modeling, and the variance 

due to persistence is small. A simple measure of the fractional variance due to persistence is 

 

 
2 var( )

1
var( )

t

p

t

e
R

y
   (17) 

where var( )ty is the variance of the original series, and var( )te is the variance of the residuals of 

the ARMA model.5 Whether any given value of 
2

pR is practically significant is a matter of 

subjective judgment and depends on the problem. For example, in a time series of tree-ring index, 
2 0.50pR  would likely be considered practically significant, as half the variance of the original 

time series is explained by the modeled persistence. On the other hand, 
2 0.01pR  might well be 

dismissed as practically insignificant, even though with many thousands of observations the small 

estimated AR coefficients might be “significantly” different from zero.  

 

Example.  To illustrate the steps in ARMA modeling consider the fitting of a model to a time 

series of tree-ring index (Figure 5.2). The tree-ring index covers several hundred years, but for 

illustrative purposes, only a portion of the record has been used in the modeling. The time series 

plot strongly suggests positive autocorrelation, as successive observations tend to persist above or 

below the sample mean. The series has a low-frequency spectrum, with much of the variance at 

wavelengths longer than 10 years. This shape of spectrum is broadly consistent with a positively 

autocorrelated series. The acf indicates significant positive autocorrelation out to a lag of 4 years, 

and the pacf “cuts off” after lag 4. These acf and pacf patterns alone are enough to suggest an 

AR(4) model.    

 

Fitting an AR(4) model to the data results in the equation  

 1 2 3 40.3754 0.2192 0.1199 0.2547t t t t t ty y y y y e         (18) 

which is in the form of equation (4) extended to autoregressive order p=4.  Whether the 

coefficients are significantly different from zero can be evaluated by comparing the estimated 

coefficients with their standard deviations: 

 

a1:  -0.3754 (±0.0956) 

a2:  -0.2192 (±0.1036) 

a3:   0.1199 (±0.1035) 

a4:  -0.2547 (±0.0968) 

 

Since twice the standard deviation is an approximate 95% confidence interval for the estimated 

coefficients, all except a3 are significantly different from zero.  The AR(4) cannot therefore be 

ruled out because of insignificant coefficients, especially since the highest-order coefficient, a4, 

is significant.  

                                                      
5 The equation for the fractional percentage of variance due to persistence uses the one-step-ahead residuals 
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Of key importance is the “whiteness” of the residuals – are they non-autocorrelated? A acf plot 

for the tree-ring example reveals that none of the autocorrelations of the AR(4) model residuals 

are outside the 99% confidence interval around zero (Figure 5.3). This is a desired result, as 

effective ARMA modeling should explain the persistence and yield random residuals. Whiteness 

of residuals can alternatively be checked with the Portmanteau test (see equation (12)).  The null 

hypothesis for the test is all the autocorrelations of residuals for lags 1 to K are zero, where choice 

of K is up to the user. As annotated on Figure 5.3, for K=25 we cannot reject the null hypothesis.  

The p-value for the test is greater than 0.05 (p=0.37491), meaning the test is not significant at the 

0.05 α-level. In summary, review of the individual autocorrelations of residuals, the Portmanteau 

test on those residuals, and the error bars for the estimated AR parameters favor accepting the 

AR(4) model as an effective model for the persistence in the tree-ring series.   

 

 
Figure 5.2.  Diagnostic plots for ARMA modeling of a 108-year segment of a tree-ring index. Time series 

is for a Pinus strobiformis (Bear Canyon, Jemez Mtns, New Mexico) standard chronology. Top: time plot, 

1900-2007. Bottom left: autocorrelation function and partial autocorrelation function with 95% 

confidence interveal. Bottom right: spectrum.   
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5.5 Prewhitening 

Prewhitening refers to the removal of autocorrelation from a time series prior to using the time 

series in some application. In dendroclimatology standard indices of individual cores are 

prewhitened in generating “residual” chronologies (Cook 1985). Prewhitening can also be applied 

at the level of the site chronology to remove the persistence (Monserud 1986). In the context of 

ARMA modeling, the prewhitened series is equivalent to the ARMA residuals6.  As prewhitening 

aims at removal of persistence, there is an expected effect on the spectrum. Specifically, for a 

persistent (positively autocorrelated) time series, the spectrum of the prewhitened series should be 

flattened relative to the spectrum of the original series. A positively autocorrelated series has a 

low-frequency spectrum, while white noise – the objective of ARMA modeling – has a flat 

spectrum.     

The effect of prewhitening on the spectrum is clear for our tree-ring example (Figure 5.4). The 

original series has a low-frequency spectrum and the prewhitened series has a nearly flat 

spectrum. Note also that the spectrum of the prewhitened spectrum is lower overall than that of 

the original series. The area under the spectrum is proportional to variance, and the removal of 

variance due to persistence will result in a spectrum with a smaller area. For the tree-ring series, a 

substantial fraction of the variance (more than 1/3) is due to persistence.    

The flattening of the spectrum, a frequency-domain effect, is reflected by changes in the time 

domain. For a series with positive autocorrelation, prewhitening acts to damp those time series 

features that are characteristic of persistence. Thus we expect that broad swings above and below 

                                                      
6 In practice, the original mean of the tree-ring index is usually restored, so the prewhitened chronology has 

the same mean as the standard chronology, rather than a mean of zero  

 
Figure 5.3.  Autocorrelation function of residuals of AR(4) model fit to 108-year tree-ring index.   

Annotated are the results of Portmanteau test and the percentage of variance due to modeled 

persistence.  
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the mean (broad peaks and troughs) will be reduced in amplitude, or damped. The damping is 

evident in a zoomed portion of the time series for the tree-ring example (Figure 5.5). For 

example, the swing above the mean for the period 1983-1995 has been lessened in amplitude, and 

positive departures in 1989 and 1994 have been converted to negative departures. Specific 

differences in an original and prewhitened series can be readily explained by referring to the 

equation of the fitted ARMA model used to prewhiten. For the tree-ring example, the fitted 

AR(4) model is equation (18). Differences in the original and prewhitened index (Figure 5.5) 

derive directly from this equation.  Recall first of all that yt in the equation is a departure from the 

mean (red line in Figure 5.5). The residual is computed by summing over the departures of the 

original series from the mean for the previous 4 years, after multiplying those residuals by the 

estimated ARMA coefficients. The prewhitened index for 1988 is therefore drawn closer to the 

mean because negative coefficients are applied to fairly large positive anomalies 1987, 1986, and 

1984.     

 

 

 

 

5.6 Simulation and Prediction 

In addition to helping describe persistence and remove it from a time series, ARMA modeling 

can also be used in simulation and prediction. A brief introduction to these topics is given here.  

More extensive treatment can be found elsewhere (e.g., Chatfield 2004, Wilks 1995). 

Simulation is the generation of synthetic time series with the same persistence properties as 

the observed series. Prediction is the extension of an observed series into the future based on past 

and present values. The AR(1)  model  

 1 1t t ty a y e   (19) 

Where ty is the departure of a time series from its mean, 1a is the autoregressive coefficient, and 

te is the noise term, can be rearranged as 

 1 1t t ty a y e   . (20) 

The time series ty can be simulated from equation (20) by the following steps: 1) estimate the 

autoregressive parameter 1â   by modeling the time series as an AR(1) process, 2) generate a time 

series of random noise, te , by sampling from an appropriate distribution, 3) assume some starting 

value for 1ty  , and 4) recursively generate a time series of ty using the estimated parameter in 

 
Figure 5.5.  Zoomed time series 

segments of original and prewhitened 

tree-ring index. The full original series 

is plotted in Figure 5.2 (top).    

 

 
Figure 5.4 Spectra of original and prewhitened 

tree-ring index. Time series is a 108-yr tree-ring 

from New Mexico (see previous example). Dashed 

line is 95% confidence interval. 
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place of 1a  and adding the sampled noise. The appropriate distribution for the noise is typically a 

normal with mean 0 and variance equal to the variance of the residuals from fitting the AR(1) 

model to the data.  

For example, five simulations of the tree-ring index are plotted along with original time series 

in Figure 5.6. The simulations appear to effectively mimic the low-frequency behavior of the 

observed series. Any synchrony in timing of variations in the various series is due to chance 

alone, as the simulations have been randomly generated. A possible application of such series is 

to generate empirical (as opposed to theoretical) confidence intervals of the relationship between 

the observed time series and a climate variable. For such an application, many (e.g., 10,000) 

simulated tree-ring series of length 108 years can be generated, correlation coefficients computed 

between each simulation and the climate series, and 95% confidence interval for significant 

correlation established as the 0.025 and 0.975 probability points of the 10,000 sample 

correlations. If the correlation between the observed time series and the climate series is outside 

the confidence interval, a significant statistical relationship is inferred.   

 

 
 

Prediction differs from simulation in that the objective of prediction is to estimate the future 

value of the time series as accurately as possible from the current and past values. Unlike 

simulations, predictions utilize past values of the observed time series. A prediction form of the 

AR(1) model is  

 1 1
ˆ ˆ

t ty a y    (21) 

 
Figure 5.6.  Observed tree-ring index and five simulation by an AR(4) model.  Top plot is identical 

to that at top of Figure 5.2. 
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where the “^” indicates an estimate. The equation can be applied “one step ahead” to get estimate 

ˆ
ty from observed 1ty  . A “k-step-ahead” AR(1) prediction can be made by recursive application 

of equation (21).  In recursive application, the observed y at time 1 is used to generate the 

estimated ŷ  at time 2. That estimate is then substituted as 1ty  to get the estimated ŷ at time 3, 

and so on. The k-step-ahead predictions eventually converge to zero as the prediction horizon, k, 

increases7.   

 Prediction is illustrated in Figure 5.7 for the tree-ring example. Recall that the index for 

the 108-year period 1900-2007 was fit with an AR(4) model, which explained about 1/3 the 

variance of the series. The segments of observed and predicted index beginning with 1990 are 

plotted in Figure 5.7.  The observed index ends in 2007, and for the years 1990-2007 the 

predicted values plotted are one-step-ahead predictions. For the AR(4) model, this means that the 

prediction for year t is made from observed index in the preceding four years. One-step-ahead 

predictions in general make use of observed data for times ( 1)t t  to make the prediction for 

year t. The predictions plotted in Figure 5.7 for years beginning with 2009 are k-step-ahead 

predictions.  These predictions use observed index for times ( )t t k  and predicted index for 

later times in making a prediction for time t. The predicted index for 2008 is a one-step-ahead 

prediction, for 2009 a 2-step-ahead prediction, for 2010 a 3-step-ahead prediction and so forth.  

The persistence in the data combined with the low-growth period starting about 2000 leads to 

predictions of below normal tree-ring index for the 10 years of prediction horizon beyond the end 

of the observed data. The predictions converge toward the mean as the horizon lengthens, 

however, because the influence of the past gradually fades.   

                                                      
7 Because the modeling assumes yt is a departure from the mean, this convergence in terms of the 

original time series is convergence toward the mean 
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5.7 Extension to nonstationary time series 

ARMA modeling assumes the time series is weakly stationary. With the appropriate 

modification, nonstationary series can also be studied with ARMA modeling. Trend defined as a 

deterministic function of time can be removed by curve-fitting prior to ARMA modeling. That is 

the approach in dendrochronology: a smooth curve describing the “growth trend” is removed in 

converting ring widths to ring indices. Periodic time series are a special case in which the trend is 

cyclical.  An example of a periodic series is a monthly time series of air temperature with its 

annual cycle. The mean for such a monthly series is clearly nonstationarity in that the mean varies 

by month. One way of handling such a series with ARMA modeling is to remove the annual cycle 

by expressing the monthly data as departures from their long-term monthly means. Another way 

is by applying periodic ARMA models, in which separate parameters are simultaneously 

estimated for each month of the year. Periodic ARMA models are discussed by Salas et al. 

(1980). 

A trend itself might be a stochastic feature of a time series. For example, a random walk time 

series wanders with a time-varying population mean.  The series does not tend to return to any 

specific preferred level. Such series can be detrended by first-differencing before ARMA 

modeling – a modeling approach called autoregressive-integrated-moving-average (ARIMA) 

modeling. Further discussion of ARIMA modeling can be found elsewhere (Anderson 1976; Box 

and Jenkins 1976; Salas et al. 1980) 

 
Figure 5.7.  Prediction of tree-ring index by AR(4) model. Predictions generated by model given 

by equation 18 in text.  Time series described in caption to Figure 5.2. 
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