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Figure 6.1.   Timeline of developments in spectral analysis of time series.  Timeline based on 

information in Bloomfield (2000, p. 5) and Hayes (1996).   

 

6 Spectral Analysis -- Smoothed Periodogram Method 

6.1 Historical background 

The spectrum of a time series can be estimated by a variety of methods. In lesson 4 we looked 

at the Blackman-Tukey method, which uses a Fourier transform of the smoothed, truncated 

autocovariance function. In contrast, the smoothed periodogram method uses a Fourier transform 

of the time series itself. The transform yields a quantity called the raw periodogram, which in 

essence is a highly resolved spectral estimate. The raw periodogram was introduced in the late 

1800s for study of periodicity in time series. Unfortunately, the raw periodogram is a crude 

spectral estimate with high variance (great uncertainty). Smoothing the raw periodogram 

produces a better estimate of the spectrum – one with a smaller variance (tighter confidence 

interval). But smoothing reduces the ability of the spectrum to resolve periodic features that may 

be very close in wavelength. The smoothness, resolution and variance of spectral estimates is 

controlled by the choice of filters in smoothed periodogram analysis. Extremely broad smoothing 

produces an underlying smoothly varying spectrum, or null continuum, against which spectral 

peaks in less-severely smoothed periodogram can be tested for significance. This approach is an 

alternative to the specification of a functional form of the null continuum (e.g., red noise).   

 

 The periodogram was one of the earliest statistical tools for studying periodic tendencies in 

time series (Figure 6.1). Prior to development of the periodogram such analysis was tedious and 

generally feasible only when the periods of interest covered a whole number of observations.  
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Schuster (1897) showed that the periodogram could yield information on periodic components 

of a time series and could be applied even when the periods are not known beforehand. Following 

the development of statistical theory of the spectrum in the 1920s and 1930s, the smoothed 

periodogram was proposed as an estimator of the spectrum (Daniell 1946). Bloomfield (2000) 

notes that use of the smoothed periodogram in this sense had actually been anticipated much 

earlier – in 1941 -- by Albert Einstein.  

The smoothed periodogram enjoyed a brief period of popularity as a spectral estimator. 

Another method, Fourier transformation of the truncated and smoothed autocorrelation function 

(e.g., the Blackman-Tukey method), gained prevalence over the smoothed periodogram in the 

1950s because of computational advantages. The smoothed periodogram has become popular 

again recently. According to Chatfield (2004, p. 136), two factors have led to increasing use of 

the smoothed periodogram. First is the advent of high-speed computers.  Second is the discovery 

of the fast Fourier Transform (FFT), which greatly speeded up computations (Cooley and Tukey 

1965).     

Today the smoothed periodogram is one of many alternative methods available for estimating 

the spectrum. Some of these methods are listed in Table 1. Pros and cons of the various methods 

– except MTM -- are discussed in Hayes (1996). 

 

Table 1.  Alternative methods for spectrum 

Method Summary Reference 

Blackman-Tukey Fourier transformation of  smoothed,  

truncated autocovariance function 

Chatfield, 1975 

Smoothed 

periodogram 

Estimate periodogram by DFT of time series;  

Smooth periodogram with modified Daniell filter 

Bloomfield, 2000 

Welch’s method Averaged periodograms of overlapped,  

windowed segments of a time series 

Welch, 1967 

Multi-taper method 

(MTM) 

Use orthogonal windows (“tapers”) to get 

approximately independent estimates of spectrum; 

combine estimates  

Percival and 

Walden, 1993 

Singular spectrum 

analysis (SSA) 

Eigenvector analysis of autocorrelation matrix to 

eliminate noise prior to transformation to spectral 

estimates 

Vautard and Ghil, 

1989 

Maximum entropy 

(MEM) 

Parametric method: estimate acf and solve for AR 

model parameters; AR model has theoretical spectrum 

Kay, 1988 

 

 

6.2 Steps in smoothed-periodogram method 

 

The main steps in estimating the spectrum by the smoothed periodogram method are: 

 

1. Subtract mean and detrend time series 

2. Compute discrete Fourier transform (DFT) 

3. Compute (raw) periodogram 

4. Smooth the periodogram to get the estimated spectrum 
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The first step in estimation of the spectrum by the smoothed periodogram method is 

subtraction of the sample mean. This operation has no effect on the variance, and amounts to a 

shift of the series along the vertical axis (Figures 6.2, 6.3). The most obvious problem with not 

subtracting the mean is that an abrupt offset is introduced when the series is padded with zeros in 

a later step in the analysis.   

 

 
 

 
 

 

 

 

 

 

 

 

 

 

Figure 6.2. Time plot of Wolf Sunspot Number, 1700-2007. This time 

series is known to have an irregular cycle with period near 11 years.  The 

long-term mean is 49.9.  Data source: http://sidc.oma.be/sunspot-data/ 

 

 

Figure 6.3. Sunspot series as departure from long-term mean.   
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Any obvious trend should also be removed prior to spectral estimation. Trend produces a 

spectral peak at zero frequency, and this peak can dominate the spectrum such that other 

important features are obscured. After detrending, the next steps are computation of the Fourier 

transform, computation of the raw periodogram, and smoothing of the periodogram.  

 

Discrete Fourier transform.  Say 0 1 1, , , nx x x  is an arbitrary time series of length n.  The 

time series can be expressed as the sum of sinusoids at the Fourier frequencies of the series: 
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where the summation is over Fourier frequencies 
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and the last term in braces is included only if n is even (Bloomfield 2000, p. 38). Note that the 

total number of coefficients is n whether n is even or odd. The coefficients in (1) are given by 
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Equations (2) are sine and cosine transforms that transform the time series tx into two series of 

coefficients of sinusoids. The relationships in (2) can be more succinctly expressed in complex 

notation by making use of the Euler relation 

 cos sinixe x i x   (3) 

and its inverse  
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In general, observed data are strictly real-valued, but they may be regarded as complex numbers 

with zero imaginary parts. Suppose 0 1 1, , , nx x x  is such a real-valued time series expressed as 

complex numbers. The discrete Fourier transform (DFT) of tx is given in complex notation by 
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Periodogram.  The relationships (2) transform the time series into a series of coefficients at 

its Fourier frequencies. The discrete Fourier transform is the complex expression of these 

coefficients  
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where A and B are identical to the quantities  defined in (2). 

The original data can be recovered from the DFT using the inverse transform  
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which is the complex equivalent of equation (1). 
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The discrete Fourier transform has two representations. The first is in terms of its real and 

imaginary parts, ( ) / 2A f and ( ) / 2B f . The second is in terms of its magnitude ( )R f  and 

phase ( )f  

 ( )( ) ( ) i fd f R f e   (8) 

  The magnitude, given by  

 ( ) ( )R f d f  (9) 

measures how strongly the oscillation at frequency f is represented in the data. The strength of the 

periodic component is more often represented by the periodogram defined as 

  
2 2

( ) ( ) ( )I f n R f n d f   (10) 

 

The sine and cosine terms at the Fourier frequencies are orthogonal, and so the variance of the 

time series tx can be decomposed into components at the individual frequencies. For the sine and 

cosine transforms, the sum of squares of the original data can be expressed as  
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where the last term is included only if n is even. The analog for the discrete Fourier transform in 

complex notation is 
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If tx is a time series expressed as departures from its mean, the sums of squares in equations 

(11) and (12) are simply n times the variance. Equation (12) therefore says that (a) the sum of the 

periodogram ordinates equals the sum of squares of departures of the time series from its mean, 

(b) the sum of periodogram ordinates divided by the series length equals the series variance, and 

(c) the periodogram ordinate at Fourier frequency jf is proportional to the variance accounted for 

by that frequency component. The periodogram at this stage is a “raw” periodogram, meaning it 

has not yet been smoothed. 

The raw periodogram of the Wolf sunspot number is plotted in Figure 6.4. Each point 

represents the relative variance of the time series contributed by a frequency range centered at the 

point. Wavelengths near 11 years make relatively large contribution to the variance.  
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Smoothing the periodogram. The periodogram is a wildly fluctuating estimate of the 

spectrum with high variance. For a stable estimate, the periodogram must be smoothed.  

Bloomfield (2000, p. 157) recommends the Daniell window as a smoothing filter for generating 

an estimated spectrum from the periodogram. The modified Daniell window of span, or length, m, 

is defined as 
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where m is the number of weights, or span of the filter, ig is the 
thi weight of the filter, and i is an 

index such that 1, ,i m . The Daniell filter differs from an evenly weighted moving average 

(rectangular filter) only in that the first and last weights are half as large as the other weights. A 

plot of the filter weights therefore has the form of a trapezoid. Filter weights of 5-weight Daniell 

and rectangular filters are plotted in Figure 6.5. The advantage of the Daniell filter over the 

rectangular filter for smoothing the periodogram is that the Daniell filter has less leakage, which 

refers to the influence of variance at non-Fourier frequencies on the spectrum at the Fourier 

frequencies. The leakage is related to sidelobes in the frequency response of the filter. Successive 

smoothing by Daniell filters with different spans gives an increasingly smooth spectrum, and is 

equivalent to single application of a resultant filter produced by convoluting the individual spans 

of the Daniell filters (Bloomfield 2000, p. 157).   

 A smoothed periodogram of the Wolf sunspot number is plotted in Figure 6.6  The 

smoothing for this example was done with successive application of Daniell filters of length 7 

and 11. Broader (longer) filters would give a smoother spectrum.  Narrower filters would give a 

rougher spectrum. The proper amount of smoothing is somewhat subjective, and depends on the 

characteristics of the data. If the natural periodicity of a series is such that peaks in the spectrum 

are closely spaced in frequency, too broad a filter will merge the peaks. The tradeoffs in 

 

                                                      Frequency  (cycles/year) 

Figure 6.4.  Raw periodogram of Wolf sunspot number, 1700-2007. 

Periodogram ordinates give the relative variance contributed at different 

frequency ranges centered on fundamental frequencies (after padding) of the 

series. The number of points in the plot is 256 because the series has been 

padded to length 512 before periodogram analysis (see Section 6.6).  

 



Notes_6, GEOS 585A, Spring 2017 7 

smoothness, stability and resolution 

should be considered in selecting 

widths of Daniell filters (see Section 

6.4). 

 

6.3 Null continuum 

Although the spectrum of a time 

series is innately useful for 

describing the distribution of 

variance as a function of frequency, 

interest sometimes centers on how 

the sample spectrum for a given time 

series differs from that of some 

known generating process. Interest 

also sometimes centers on the 

statistical significance of peaks in the spectrum. Significance can be evaluated only by reference 

to some standard of comparison.  The question is “significantly different than what?” A standard 

for comparison is the null continuum. The null continuum is a general null hypothesis for the 

spectrum. The null continuum can be theoretically based, or data-based.     

The simplest form of null continuum is white noise, which has an even distribution of variance 

over frequency. The white noise spectrum is accordingly a horizontal line. Variance is not 

preferentially concentrated in any particular frequency range. In testing for significance of 

spectral peaks, the white noise null continuum may be inappropriate if it is known that the series 

is persistent. Persistence, or positive autocorrelation, in a time series skews its variance toward 

the low-frequency side of the spectrum. One option for dealing with persistent processes is to use 

the theoretical spectrum of an autoregressive process as the null continuum. 

Theoretical AR spectra. An autoregressive process has a characteristic spectrum whose 

shape depends on the model order and the values of the model parameters. An AR(1) process can 

have a spectrum that ranges from red-noise (emphasizing low frequencies) to blue noise 

(emphasizing high frequencies). Higher-order AR process can have very complicated spectral 

shapes.  The AR(2) model, for example, can represent a pseudo-periodic process. A variety of 

theoretical spectra for various AR(1) and AR(2) processes are illustrated by Wilks (1995, p. 353).  

The equations for AR spectra in this section are taken from Wilks (1995), with one difference: 

signs on the AR coefficients have been changed for consistency with Matlab’s notation for AR 

models.  Matlab’s System Identification Toolbox writes the AR(1) model as 

 1 1t t ty a y e   (14) 

and the AR(2) model by  

 1 1 2 2t t t ty a y a y e     (15) 

where ty is the time series expressed as departures from its mean, 1a and 2a are autoregressive 

parameters, and te is the noise term. A positively autocorrelated AR(1) series has 1 0a  by this 

convention.   

 

AR(1) model.  For the simple case of the AR(1) process, negative values of the autoregressive 

parameter build a memory into the system that tends to smooth over short-term (high-frequency) 

variations and emphasize the slower variations. The effects are progressively stronger as the 

parameter gets closer to -1. 

The theoretical spectrum of an AR(1) process can be written in terms of the AR parameter, the 

variance of the residuals and the sample size. For an AR(1) model, 
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Figure 6.5. Daniell filter and rectangular filter of span 

(length) 5. 
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where 2

 is the variance of the residuals, N is the number of observations, 1a is the autoregressive 

parameter, f is frequency in cycles per year (or time unit), and ( )S f is the theoretical spectrum.  

The shape is entirely determined by the AR parameter; 2

 and N act to scale the spectrum higher 

or lower, but do not change the relative distribution of variance over frequency. 

Equation (16) can be used to generate a theoretical spectrum for any observed time series. The 

series is first modeled as an AR(1) process. The autoregressive parameter and variance of 

residuals are estimated from the data. Plots of spectra for different values of 1a show how the 

spectrum varies as a function of autoregressive parameter. The special case of 1 0a  corresponds 

to a white noise process. By analogy with visible light, white noise contains an equal mixture of 

variance at all frequencies. The theoretical spectrum of white noise is a horizontal line. 

For 1 0a  , the spectrum is enhanced at the low frequencies and depleted at the higher 

frequencies. By analogy with the light, the spectrum is called “red noise.” 

For 1 0a  , the process tends to create erratic short-term variations, with positive 

autocorrelation at even lags and negative autocorrelation at odd lags. The spectrum is enriched at 

the high frequencies, and depleted at the low frequencies. Such series are sometimes called “blue 

noise.” 
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AR (2) model.   Theoretical spectra can also be expressed for other AR models. For the 

special case of the AR(2) model, the spectrum is : 
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The spectrum of an AR(2) process is particularly interesting because it can express pseudo-

periodicity, with the spectral details depending on the size of the two parameters.  For example, 

for 1 20.9, 0.6a a    , the spectrum has a strong peak near a frequency of 0.15. For annual 

time series, this frequency corresponds to a wavelength of 6.7 yr. It is therefore possible that a 

time series that exhibits quasi-periodic behavior with a variance peak at 6.7 years results from a 

short memory process with dependence on the past restricted to the most recent two years.  

Theoretical AR spectra can be useful in data interpretation. Similarity of the gross shape of the 

estimated spectrum with that of an AR process may suggest the process as a simple generating 

mechanism.  

 

Allowable ranges of AR parameters.   AR parameters must stay within a certain range for a 

process to be stationary. For the AR(1) model it is required that 

 11 1a    (18) 

For an AR(2) process, several conditions must be satisfied: 
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The allowable ranges of AR(2) parameters and the portions of the bivariate range 

corresponding to pseudo-periodic behavior in a time series are discussed by Anderson (1976). 

White noise, AR(1) and AR(2) theoretical spectra are sketched in figure 6.7.  It should be 

noted that higher-order AR process can have very complicated spectra.  The maximum entropy 

method of spectral estimation fits a high-order AR process to the series and uses the theoretical 

AR spectrum as the spectral estimate.   

Another approach to a null continnum is empirically based and does not attempt to assign any 

particular theoretical generating model as a null hypothesis (Bloomfield 2000). This approach 

uses a greatly smoothed version of the raw periodogram as the null hypothesis. Figure 6.8 

illustrates a smoothed-periodogram null continuum for the sunspot series using successive 

applications of Daniell filters of spans 43, 61 and 77. The estimation of a null continuum by 

smoothing the periodogram relies on subjective judgement and trial-and-error. In particular the 

null continuum should follow just the smooth underlying shape of the distribution of variance 

over frequency. If smoothed insufficiently, the null continuum will bulge at the important peaks 

in the spectrum. This would clearly be undesirable as the test of significance of the peak is that it 

is different from the null continuum.  
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Figure 6.6. Smoothed periodogram estimate of spectrum of Wolf sunspot 

number. Raw periodogram (points) smoothed by Daniell filters of length 7 and 

11. Bandwidth gives resolution of the spectral estimate. Spectral peak at 10.6 

years. 

 

 

Figure 6.7. Sketch of general shapes of white noise, AR(1) and AR(2) null continua.   
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6.4 Spectral properties 

 

Smoothness.  The raw (unsmoothed) periodogram is a rough estimate of the spectrum. The 

periodogram is proportional to variance contributed at the fundamental frequencies. 

Unfortunately, the raw periodogram is of little direct usefulness because of the high variance of 

the spectral estimates. Fluctuations in the raw periodogram can be driven by sampling variability, 

a problem that becomes more severe the shorter the series.  Smoothing the raw periodogram 

reduces this problem. If the raw periodogram is smoothed with Daniell filters of various spans, 

the result is a spectrum smoother in appearance, and with a tighter confidence interval. But 

excessive smoothing obscures important spectral detail, and insufficient smoothing leaves erratic 

unimportant detail in the spectrum. Smoothness is closely related to bias, as discussed in the 

lecture on the Blackman-Tukey method of spectral estimation. As a spectrum is smoothed more 

and more, the estimated spectrum eventually approaches a featureless curve, “biased” towards the 

local mean. 

 

Stability.  The stability of the spectral estimate is “the extent to which estimates computed 

from different segments of a series agree, or, in other words, the extent to which irrelevant fine 

structure in the periodogram is eliminated” (Bloomfield 2000, p. 156). High stability corresponds 

to low variance of the estimate, and is attained by averaging over many periodogram ordinates. 

The number of periodogram ordinates averaged over in the smoothed periodogram method as 

 

Figure 6.8. Spectrum and empirically-based null continuum of Wolf sunspot series.  

Daniell filters of spans 7 and 11 were applied to smooth the raw periodogram into the 

spectrum. Spans of length 43, 61 and 77 were used to smooth the raw periodogram into the 

null continuum. In evaluating the significance of the spectral peak, the null hypothesis is 

that the variance contribution at the frequency of the peak is no different that the variance 

contribute at the frequency in the null continuum.   
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described by Bloomfield (2000) is defined by the span of the Daniell filter. If the time series has 

not been padded or tapered, the variance of the spectral estimate is given by 

   2 2ˆvar ( ) ( ) u

u

s f s f g   (20) 

where ˆ( )s f is the spectral estimate at frequency f, ( )s f is the true (unknown) value of the 

spectrum, assumed to be approximately constant over the interval of averaging, and the 

summation 2

u

u

g is the sum of squared weights of the Daniell filter used to smooth the 

periodogram. The sum of periodogram weights must equal 1 for the spectral estimate to be an 

unbiased estimate of the true spectrum (Bloomfield 2000, p. 178). The broader the Daniell filter, 

the lower the sum of squares of weights and the lower the variance of the spectral estimate. For 

example, for the 3-weight Daniell filter  .25,.50,.25 the sum of squares of weights is 0.375, 

while for the 5-weight filter  .125,.25,.25,.25,.125 the sum of squares is 0.2188. 

An approximate confidence interval for the spectral estimate can be derived by considering 

that the periodogram estimates are independent and exponentially distributed. The spectral 

estimate, as a sum of independent exponentially distributed quantities, is approximately 
2 distributed. The distribution of ˆ( )S f can be shown to be approximately 2 with degrees of 

freedom  
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where 2 2

u

u

g g is the sum of squared Daniell weights. The relationship in (21) can be used to 

place a confidence interval around the spectral estimates. For example, a 95% confidence interval 

for ˆ( )s f is given by  
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where 2 (0.025)v and 2 (0.975)v  are the 2.5% and 97.5% points of the 2 distribution with 

v degrees of freedom. 

 

Resolution.  Resolution is the ability of the spectrum to represent the fine structure of the 

frequency properties of the series. The fine structure is the variation in the spectrum between 

closely spaced frequencies. For example, narrow peaks are part of the fine structure of the 

spectrum. The raw periodogram measures the variance contributions at the Fourier frequencies, or 

the finest possible structure. Smoothing the periodogram, for example with a Daniell filter, 

averages over adjacent periodogram estimates, and consequently lowers the resolution of the 

spectrum. The wider the Daniell filter, the greater the smoothing and the greater the decrease in 

resolution.  

  If two periodic components in the series are close to the same frequency, the smoothed 

spectrum might be incapable of identifying, or resolving, the individual peaks. The width of the 

frequency interval applicable to a spectral estimate is called the bandwidth of the estimate. If a 

hypothetical periodogram were to have just a single peak at a particular Fourier frequency, the 

smoothed spectrum is roughly the image of the Daniell filter used to smooth the periodogram, and 

the peak in the spectrum is spread out over several Fourier frequencies. How many Fourier 

frequencies the peak covers depends on the spans of the filter. A reasonable measure of the 

bandwidth of the spectral estimate is therefore the width of the resultant Daniell filter used to 

smooth the periodogram. Depending on how the resultant Daniell filter has been constructed, the 

shape of the filter also varies. Thus one filter may have only a few weights appreciably different 

from zero, while another filter of the same length may have fewer or more appreciably non-zero 
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weights. Rather than the width of the Daniell filter, therefore, a more effective measure of 

bandwidth also takes into account the values of the Daniell filter weights. One such measure of 

bandwidth is the width of the rectangular filter that has the same variance as the Daniell filter.    

 

The variance of the estimator is proportional to the sum of squares of the filter weights. The 

bandwidth for a given Daniell filter can therefore be computed as follows: 

1. Compute the sum of squares of the Daniell filter weights 

2. Compute the number of weights wn  of the evenly weighted moving average that has 

the same sum of squares as computed in (1) 

3. Compute the bandwidth as wbw n f  , where f is the spacing of the Fourier 

frequencies. (Note that if the series has been padded to length 'N , the spacing is 

taken as 1/ 'N .) 

 

Differences in smoothness, stability and resolution are illustrated for spectra of the Wolf 

sunspot series in Figure 6.9. A lesser amount of smoothing of the raw periodogram yields the 

spectrum in Figure 6.9A. A greater amount of smoothing yields the spectrum in Figure 6.9B. The 

bandwidths indicate the differences in resolution of the two versions of the spectral. Both 

versions clearly show the main spectral peak near 11 years, but the peak is narrower and much 

higher for the spectrum with less smoothing. On the other hand, the confidence interval around 

the spectrum is much tighter for the spectrum with greater smoothing. Trial and error computing 

and plotting of spectral with different degrees of smoothing for the smoothed periodogram 

method is analogous to the “window smoothing” approach described in lesson 4 for the 

Blackman-Tukey method of spectral estimation.   

Note that the sunspot series also exhibits a spectral peak at near frequency 0.01 (wavelength 

100 years). This lower-frequency fluctuation is evident also in the time plot of the series (Figure 

6.2). Too much smoothing (e.g., Figure 6.9B) makes it impossible to resolve this peak from trend 

(peak at zero frequency).   

6.5 Testing for periodicity 

 

A peak in the estimated spectrum can be tested for significance by comparing the spectral 

estimate at a given frequency with the confidence interval for the estimate.  Two considerations 

for the testing are: 

 

1. A significance test requires a null hypothesis. For the spectrum, the null hypothesis is 

that the spectrum at the specified frequency is not different from some “null” 

spectrum, or null continuum. An earlier section described a white noise null 

continuum, an autoregressive null continuum and a null continuum based on a greatly 

smoothed raw periodogram. The null hypothesis is then that the estimated spectrum is 

no different than this underlying spectrum.   

2. The confidence bands developed above (equation 22) are not simultaneous. In other 

words, the bands should be used strictly to test for significance of a peak at a specified 

frequency, and that frequency should be specified before running the spectral analysis.  

This approach can be contrasted with a “fishing expedition”, in which the spectrum is 

estimated and then browsed to identify “significant” peaks. Simultaneous confidence 

bands, which would be much wider than those given by equation 22, are needed if the 

spectrum is to be in such an exploratory mode to pick out significant peaks. A so-

called “Bonferroni correction” (Cochran 1989, p 115 and 167) may be applied to 

adjust confidence intervals to account for multiple tests or multiple comparisons. This 

correction essentially amounts to using a 1-α/m confidence interval in place of a 1- α 
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interval, where m is the number of independent tests evaluated. For the smoothed 

periodogram, spectral estimates separated by the bandwidth, bw, are essentially 

independent, such that however many bw’s are required to span the frequency axis [0 

0.5] is approximately the number of independent tests. In other words, m=0.5/bw. For 

example, if bw=.05, or 1/10 the width of the frequency axis of the spectrum, a 99.5% 

confidence interval instead of the 95% confidence should be used in equation 22 as 

the “corrected” 95% confidence interval [  1 / (1 0.05 /10) 0.995m    ]. The 

effect of the correction is to widen the confidence band, making it less likely to 

attribute significance to spectral peaks.      

 



Notes_6, GEOS 585A, Spring 2017 15 

 

Figure 6.9.  Spectra of Wolf sunspot number using two levels of 

smoothing of raw periodogram. (A) Smoothing with Daniell filter spans 

[3 5 7]. (B) Smoothing with Daniell filter spans [11 15 23]. Note the 

difference in range of y-axis.  
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To summarize, the test for periodicity begins with specification of a period or frequency of 

interest. Second, the spectrum and its confidence interval are estimated, possibly using a window-

closing procedure. Third, a null continuum is drawn so that the peaks in the spectrum can be 

compared to a “null” spectrum without those peaks but with the same broad underlying spectral 

shape. Finally, the peak is judged significant at 95% if the lower CI does not include the null 

continuum. 

 

6.6 Additional considerations: tapering, padding and leakage 

 

Tapering and padding.  Tapering and padding are mathematical manipulations sometimes 

performed on the time series before periodogram analysis to improve the statistical properties of 

the spectral estimates or to speed up the computations. In spectral analysis, a time series is 

regarded as a finite sample of an infinitely long series, and the objective is to infer the properties 

of the infinitely long series. If the observed time series is viewed as repeating itself an infinite 

number of times, the sample can be considered as resulting from applying a data window to the 

infinite series. The data window is a series of weights equal to 1 for the N observations of the 

time series and zero elsewhere.  This data window is rectangular in appearance. The effect of the 

rectangular data window on spectral estimation is to distort the estimated spectrum of the 

unknown infinite-length series by introducing leakage. Leakage refers to the phenomenon by 

which variance at an important frequency (say a frequency of a strong periodicity) “leaks” into 

other frequencies in the estimated spectrum. The net effect is to produce misleading peaks in the 

estimated spectrum. 

The objective of tapering is to reduce leakage. Tapering consists of altering the ends of the 

mean-adjusted time series so that they taper gradually down to zero. Before tapering, the mean is 

subtracted so that the series has mean zero.  A mathematical taper is then applied. A frequently 

used taper function is the split cosine bell, given by    
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where p is the proportion of data desired to be tapered, t is the time index, and ( )pw t are the taper 

weights. A suggested proportion is 10%, or 0.10p  , which means that 5% is tapered on each 

end (Bloomfield 2000, p. 69). 

 

Padding.  The Fast Fourier Transform (FFT), introduced by Cooley and Tukey (1965), is a 

computational algorithm that can greatly speed up computation of the Fourier transform and 

spectral analysis. The FFT is most effective if the length of time series, n, has small prime 

numbers. One way of achieving this is to pad the time series with zeros until the length of the 

series is a power of 2 before computing the Fourier transform. The padded data are defined as 
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where tx is the original time series, after subtracting the mean. It can be shown (Bloomfield 2000, 

p. 61) that the discrete Fourier transform of the padded series differs trivially from that of the 

original series 

As a side effect of padding, the grid of frequencies on which the transform is calculated is 

changed to a finer spacing. This change suggests that padding with zeros can also be used to alter 
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the Fourier frequencies such that some period of a-priori interest falls near a Fourier frequency. 

This is an acceptable procedure (e.g., Mitchell et al. 1966). The finer spacing of Fourier 

frequencies for a given span of Daniell filter gives a spectral estimate with a narrower bandwidth 

(see #3 under “Resolution” above), but the increase in resolution comes at the expense of a 

decrease in stability of the spectral estimate (see eqn (26) below).   

 

Effect of padding and tapering on stability.  Tapering and padding both have the effect of 

increasing the variance of the spectral estimate. If the time series is tapered by the split cosine bell 

taper and the total proportion of the series tapered is p, the variance of the spectral estimate (see 

eqn (20)) is increased by a factor of  
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If the time series is padded from an initial length of N to a padded length of 'N , the 

variance is increased by a factor of  
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If a time series has been padded and tapered, an equation of form (22) can still be used for the 

confidence interval for the spectrum, except with an effective degrees of freedom defined as  
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A simple example will serve to illustrate the computation of a confidence interval when the 

series has been padded and tapered before computation of the spectrum. Say the original time 

series has a length 300 years, a total of 20% of the series has been tapered, and that the tapered 

series has then been padded to length 512 by appending zeros. Equations (25) and (26) give 

variance inflation factors  
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and 
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1.7067
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If the periodogram is smoothed by a 5-weight Daniell filter,  {.125  .25 .25 .25 .125}, the 

quantity 2

*g is given by  

 2 2

* 1.1163(1.7067)(.2188) 0.4169,T P u

u

g c c g    (31) 

equivalent degrees of freedom are 
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and the 95% confidence interval is  
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