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8 Filtering  
The estimated spectrum of a time series gives the distribution of variance as a function of 

frequency. Depending on the purpose of analysis, some frequencies may be of greater interest 

than others, and it may be helpful to reduce the amplitude of variations at other frequencies by 

statistically filtering them out before viewing and analyzing the series. For example, the high-

frequency (year-to-year) variations in a gauged discharge record of a watershed may be relatively 

unimportant to water supply in a basin with large reservoirs that can store several years of mean 

annual runoff. Where low-frequency variations are of main interest, it is desirable to smooth the 

discharge record to eliminate or reduce the short-period fluctuations before using the discharge 

record to study the importance of climatic variations to water supply. Smoothing is a form of 

filtering which produces a time series in which the importance of the spectral components at high 

frequencies is reduced. Electrical engineers call this type of filter a low-pass filter, because the 

low-frequency variations are allowed to “pass through” the filter. In a low-pass filter, the low 

frequency (long-period) waves are barely affected by the smoothing.   

It is also possible to filter a series such that the low-frequency variations are reduced and the 

high-frequency variations unaffected. This type of filter is called a high-pass filter. Detrending is 

a form of high-pass filtering: the fitted trend line tracks the lowest frequencies, and the residuals 

from the trend line are what remains after the lowest frequencies have been removed. A third type 

of filtering, called band-pass filtering, reduces or filters out both high and low frequencies, and 

leaves some intermediate frequency band relatively unaffected. 

In this lesson, we cover several methods of smoothing, or low-pass filtering. We have already 

discussed how the cubic smoothing spline might be useful for this purpose. Four other types of 

filters are discussed here: 1) simple moving average, 2) binomial, 3) Gaussian, and 4) windowed 

(Hamming method). Considerations in choosing a type of low-pass filter are the filter length and 

desired frequency response of the filter.    

 

8.1 Mathematical operation   

A smoothed time series value is “merely an estimate of what the value in the series would be 

if undesired high frequencies were not present” (Panofsky and Brier 1958, p. 147),  A statistical 

filter, or digital filter, is a series of weights that when cumulatively multiplied by consecutive 

values of a time series gives the filtered series. The series of weights is sometimes called the 

filtering function, or simply the filter. The operation of 

filtering is illustrated in Table 1.  

Assume that the numbers 12, 17,…,14 in column 

three of the table are a time series, and that the filter 

has weights 0.25, 0.50, 0.25. The filtered values are 

the cumulative products of the weights and the 

original time series. Filtering proceeds by sliding the 

filter alongside the time series one value at a time, 

each time computing a cumulative product. For 

example, in Table 1, the filter is centered on year 3, 

such that the filtered value for year 3 is computed 

from the series at times 2, 3 and 4 as follows: 

       0.25 (17) 0.50 10 0.25 22 14.75    

 

 

 

Table 1.  Filtering 

 

Year 

 

Filter 

Time 

Series 

Filtered 

Values 

1  12  

2 .25 x 17 14.00 

3 .50 x 10 14.75 

4 .25 x 22 17.25 

5  15 15.75 

6  11 13.75 

7  18 18.50 

8  27 21.50 

9  14  
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Figure 8.1.  Examples of 

symmetrical 9-weight filters. 

Weights sum to 1. (A) Triangular 

filter. (B) Evenly weighted moving 

average. 

 

The filtering can be described by the equation 
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where tx is the original time series, 

, ,( 1),...0,1,...,iw i n n n    are the weights, with central 

weight 0w , and ts is the smoothed, or filtered, series. The 

filtered value is assigned to the year corresponding to the 

central value of the sliding weights, so that features in the 

smoothed series are not shifted relative to their position 

in the original series. Usually the weights are fractional 

values whose sum is one: this guarantees that the mean of 

the filtered series approximately equals the mean of the 

original series. The filter length is the total number of 

weights. A filter is symmetrical if the weights to left of 

the central weight are the same as those to the right of the 

central weight (Figure 8.1). For example, the filter used 

in Table 1 is symmetrical because the same weight (0.25) 

flanks the central weight on either side. Symmetry of the 

filter weights is important to avoid phase shifts (see 

frequency response) in filtering. For a filter with a central weight and n weights to either side, the 

filter length is  

 2 1N n   (2) 

The filtered series in Table 1 is shorter than the original time series because of the loss of 

starting and end values. For the example, the first available filtered value is centered on the 

second observation in the original time series, and the last filtered valued is centered on the next-

to-last original time series observation. For a filter length (odd) of N, a total of ( 1) / 2N  values 

are lost off the front and back of the series because of the requirement for startup values. For 

example,    1 / 2 3 1 / 2 1N     value is lost from each end in applying the three-weight filter 

in Table 1. 

Sometimes the original time series is extended forward and backward artificially before 

filtering so that the filtered series covers the same observations as the original series. Because no 

“real” data exist outside the ends of the original time series, this procedure can lead to 

disagreeable end effects in the filtered series. Two commonly used extension methods are 1) 

substituting the long-term mean or median, and 2) reflecting the data across the end points 

(Figure 8.2). 

8.2 Frequency response    

The frequency response of a filter describes the effect of the filter on sinusoidal inputs at 

different frequencies. The frequency response has two components – amplitude and phase.  The 

phase at a given frequency describes the shift in the position of a wave at that frequency along the 

time axis. For some filtering applications, it is desirable that the phase is zero, so that peaks and 

troughs representing waves in the original data are not shifted in the filtered data. Filters for 

which the phase of the frequency response is zero at all frequencies are called zero-phase.   

Symmetrical (example in Table 1) filters are zero-phase. Other types of symmetrical filters to be 
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discussed below are the moving average, binomial, Gaussian, and Hamming filters. 

 
 

The other component of the frequency 

response of a filter is the amplitude. The 

amplitude of the frequency response at a 

given frequency is the ratio of the amplitude 

of an output sine wave to an input sine wave 

at that frequency (Figure 8.3). Smoothing 

filters have little effect on the gradual, or low-

frequency, variations while damping or more-

or-less removing the high-frequency 

variations. For this reason, smoothing filters 

are also called “low pass” filters. The 

amplitude of frequency response as a function 

of frequency is sometimes called the 

frequency response function or just the 

response function (Figure 8.4).   

Symmetrical digital filters such as the filter 

in Table 1 are examples of finite impulse 

response (FIR) filters. The impulse response 

of a system is defined as the output for a unit 

pulse of input restricted to a single time step. An FIR filter has the property that if the input series 

 

Figure 8.2.  Artificial extension of data prior to filtering. (A) Padding by the median. (B) 

Reflection around endpoints. Original series covers years 1940-2007. Extended series covers years 

1935-2012. Extension avoids loss of data in filtering. In this example, filtering by a symmetrical 

11-weight filter would yield a filtered series with same coverage as original series. Reflection 

across endpoints can avoid imparting abrupt shifts in the extended series when the original series 

has a strong trend.   
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Figure 8.3. Effect on a sine wave of filtering by 

a filter with 0.50 amplitude of frequency 

response at the wavelength of the sinusoid. 

Because variance of a sine wave is proportional 

to the squared amplitude, the variance of the 

output is 25 % of the variance of the input. 
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has just a unit departure at one specific time, the response in the filtered series is restricted to a 

finite number of times. For example, the response to a unit impulse for the filter in Table 1 would 

be distributed over three time points.   

The frequency response function of an FIR filter can be computed as the Fourier transform of 

the filter weights. For a symmetrical FIR filter, the frequency response function can be written as  

 

 0

1

( ) 2 cos(2 )
n

k

k

u f w w k f t


    (3) 

where ( )u f is the frequency response, f is frequency, kw is the thk weight numbered outward from 

the central weight 0w , and t is the data interval, the time between successive observations in the 

time series  (Panofsky and Brier 1958, p. 149).   

 

8.3 Simple moving average    

An example of a symmetrical low-pass filter is the simple moving average filter of length N, 

where N is an odd integer. The individual weights of the moving average are equal to1/ N , so 

that the sum of the weights is  1 1
N

N  . An example of a simple moving average filter is the 9-

weight moving average 1 1 1 1 1 1 1 1 1
9 9 9 9 9 9 9 9 9

, whose weights 

are plotted in Figure 8.1B. Application of the N-weight moving-average filter is equivalent to 

computing a sample mean for each subset of N values. The simple moving-average filter is 

therefore also called the running mean. The running mean has the practical advantage of 

simplicity over some other types of filter.   

 

Figure 8.4.  Frequency response function of a low-pass filter designed for 

a time series with time step of 1 year. This filter will virtually eliminate 

fluctuations at frequencies higher than about 0.15, or wavelengths 

shorter than 6.7 yr. Frequencies lower than 0.05 (wavelengths longer 

than 20 years) will pass with almost no attenuation.   
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Figure 8.5.  Frequency 

response function of a 9-

year moving average. See 

Figure 8.1B for filter 

weights. 

 

The frequency response of the running mean of length N is 1.0 at the lowest frequency 0f  , 

corresponding to infinite wavelength, and decreases to 0 at 1/f N , corresponding to a 

wavelength the same as the filter length. Thus, for example, the frequency response of a nine-year 

running mean decreases from 1.0 at a wavelength of infinity to 0 at a wavelength of 9 years 

(Figure 8.5). But the frequency response of the running mean 

has an undesirable property: for wavelengths shorter than the 

filter length, N – or frequencies higher than 1/N -- the frequency 

response oscillates rather than stays close to zero. While the 

frequency response is zero at frequencies that are multiples of 

1/N (e.g., f=1/N,  f=2/N, …), it is nonzero at intermediate 

frequencies (Figure 8.5). Consequently, high-frequency 

variations in the original series at those intermediate frequencies 

are not removed. For example, a series smoothed with a 9-year 

running mean filter might retain considerable variance at f=0.15 

(wavelength ~6.7 yr) if the original series contains much 

variance near f=0.15. Essentially, this low-pass filter is letting 

high-frequency variation pass through at selected frequencies 

(e.g, at the high lobes in Figure 8.5). Because some higher-

frequency fluctuations may not be damped out, the interpretation of the filtered series is made 

more complicated.   

Ideally, a low-pass filter has a smoothly declining frequency response that remains low at 

frequencies higher than specified threshold frequency. Several classes of symmetrical filters 

whose filter weights decrease in size away from the central weight (unlike the moving average) 

have this desired trait. Such “better” low-pass filters include the binomial, Gaussian and 

Hamming. Another drawback of the moving average as a “smoothing” filter is that the smoothed 

series can jump abruptly in response to large single-year anomalies in the time series; the 

smoothed series can therefore appear jagged. Nevertheless, the moving average is often used 

because of the ease of interpreting each smoothed value as an arithmetic average over N 

observations.                                              

 

8.4 Binomial filter     

For the binomial filter, the weights are set proportional to the binomial coefficients (Panofsky 

and Brier, 1958; Mitchell et al. 1966). The binomial filter can be computed by repeated 

convolution of the sequence of weights [0.5 0.5], corresponding to equal probabilities of success 

or failure for a binomial distribution. If we let 0 [0.5 0.5]b  , the three-weight binomial filter is 

given by the convolution of 0b with itself 

 
01 0conv( , ) [0.25 0.50 0.25]b b b   (4) 

The four-weight binomial filter, say 2b , is formed by convoluting 1b with 0b . The five-weight 

binomial is formed by convoluting 2b with 0b , and so forth. The weights of an 1N  weight 

binomial filter can be computed conveniently as follows 
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 (5) 

Following Mitchell et al. (1966), the appropriate value of filter length, 1N  , can be computed 

for any desired period of 50% frequency response. The standard deviation of the binomial 



Notes_8, GEOS 585A, Spring 2017 6 

 

Figure 8.6.  Weights and frequency 

response of a binomial filter. 

Response is 0.5 at wavelength of 

about 9 years.  

 

distribution is / 2B N  , and the 50% response period occurs approximately at six standard 

deviations. Thus, considering an annual time series, if the 50% response period in years is p , the 

relationship 

 6 3B N p    (6) 

 

  

yields  

 

2

3

p
N

 
  
 

 (7) 

 

To ensure that the filter length 1N  is odd, N is rounded to the nearest even integer before 

being substituted into (5) to compute the filter weights. Weights much smaller than the maximum 

weight (say, less than 5% of it) are dropped, and then the filter is normalized such that the 

weights sum to 1 (Mitchell et al. 1966). 

As an example, say the desired 50% response period is 10 years.  The computed value of N  is  

 

2
10

11.111
3

N
 

  
 

 (8) 

which is rounded to 2. The coefficients, computed from (5), truncated to remove excessively 

small values, and normalized to sum to 1 are 

[0.0162    0.0541    0.1216    0.1946    0.2270    0.1946    0.1216   0.0541    0.0162] (Figure 8.6). 

As N becomes large, the weights for the binomial filter approximate the ordinates of the 

Gaussian, or normal, distribution.  An alternative to the binomial filter is to set the weights 

proportional to the probability points of a normal distribution.   

 

8.5 Gaussian filter   

Weights of the Gaussian filter are proportional to 

ordinates of a normal probability density function with a 

specified standard deviation (Mitchell et al. 1966). The 

Gaussian filter is convenient because the standard 

deviation of the appropriate Gaussian distribution can be 

related directly to the 50% frequency response of the 

filter. According to Mitchell et al. (1966), “the response 

… drops below 50 per cent at wavelengths equal to 

about 6 standard deviations of the Gaussian curve.”     

The appropriate Gaussian distribution therefore has 

standard deviation 

                           0.5

6
G


   (9) 

where 0.5 is the desired wavelength at which the 

amplitude of frequency response is 0.5. The filter 

weights are obtained by sampling the pdf of the standard 

normal distribution at 

valuest  0, 1/ , 2 / , 3/ ,G G G     .    These 

weights are next truncated to exclude values less than 5 

percent of the maximum weight, and then are scaled so 

that the weights sum to 1.0.   
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Figure 8.7.  Brick wall filter with 

cutoff frequency f0=0.2 yr-1, or 

cutoff wavelength 5 years.   

 

For example, say we want a Gaussian filter with frequency response of 0.5 at a 

wavelength of 10 years. The appropriate Gaussian filter has standard deviation  

 10/ 6 1.66667G    

The t-distribution is sampled at t-values 0, 0.6, 1.2, 2.4,   , where the sampling is continued 

out to a large number of points – say as many points as observations in the series to be filtered.  

For 21 sample points, the pdf values are (to 4 digits) 

 

0.0000    0.0000    0.0000    0.0001    0.0006    0.0044    0.0224    0.0790    0.1942    0.3332    

0.3989    0.3332    0.1942    0.0790    0.0224    0.0044    0.0006    0.0001    0.0000    0.0000    

0.0000 

 

Truncating to exclude all values less than 5 percent of 0.3989 yields 

0.0224    0.0790    0.1942    0.3332    0.3989    0.3332    0.1942    0.0790    0.0224. 

 

These weights sum to about 1.6565.  Dividing the weights by the sum yields the final 

weights 

0.0134    0.0474    0.1165    0.1999    0.2394    0.1999    0.1165    0.0474    0.0134. These weights 

sum to 1 (ignoring rounding error). 

 

8.6 Hamming-window filter  

The binomial filter approaches a “bell shape” as filter length, N, increases, and the Gaussian 

filter is by definition bell shaped. Other ‘bell-shaped’ filters have the desired trait for low-pass 

filtering of a frequency response that drops steadily from 1.0 at low frequencies to zero at some 

frequency and remains at zero at higher frequencies.   

A different approach to filter design consists of applying a smoothing window, or smoothing 

filter, to a mathematically derived ideal digital filter. The ideal filter is specified by a cutoff 

frequency, 0 ,f  defined such that the amplitude of the frequency response is 1 for all frequencies 

less than 0f and is 0 for all frequencies greater than or equal to 0f . Such a frequency response is 

called a brick-wall response. Recall that the frequency response of a filter is the Fourier transform 

of the impulse response of the filter, and that the impulse 

response of a symmetrical digital filter is proportional to 

the filter itself. The ideal filter is accordingly computed 

as the inverse Fourier transform of the brick-wall 

frequency response (Figure 8.7). The ideal filter as so 

defined is not implementable because its impulse 

response is infinite and non-causal (The MathWorks, 

1998, p. 2-19). To create a finite-duration impulse 

response, the ideal filter is truncated by applying a 

“window.”   

A useful window for this purpose is the Hamming 

window, or raised cosine window (Karl 1989, The 

MathWorks 1999). The Hamming window weights are 

computed as a function of a cosine  

  
1

0

(0.54 0.46cos 2 / 1 ) / 0 ( 1)
N

i i

i

w i N w i N




           (10) 
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Figure 8.8.  Low-pass filter 

by Hamming-window 

method. (A) filter weights. 

(B) Frequency response. 

Filter response is 0.5 at 

wavelength 20 yr.   

 

where N is the length of the window, or filter. N includes the central weight and the weights on 

either side of it.  For example, a 5-weight Hamming-window filter1, with 5N  and central 

weight 2w ,  has weights  [0.0357 0.2411 0.4464 0.2411 0.0357]. The Hamming window applied 

to the ideal low-pass filter yields an implementable filter that in a sense is ideal given the 

specified constraint on the filter length.   

The filter design problem in the windowed method is reduced to 1) specifying a desired cutoff 

frequency, and 2) specifying a desired filter length. As the filter length is increased, the algorithm 

comes closer to the objective of an “ideal” filter in terms of frequency response, but more data is 

lost off the ends of the series because of the large number of weights. The filter weights sum to 1, 

but for longer filter lengths some weights can be negative (Figure 8.8). This is a necessary 

consequence of the mathematics, but can be disturbing for practical interpretation.   

The windowing method of filter design can be useful for 

band-pass and high-pass as well as low-pass windows. The 

method is probably most applicable when well-defined 

frequency ranges are of interest. For example, a tree-ring series 

might be filtered with a band-pass filter targeted on the 

frequencies that dominate the variance of the 11-year sunspot 

cycle. In most dendroclimatological studies, however, the 

precise cutoff frequency of variations of interest is difficult to 

specify, and the complexity of the windowing method might be 

overkill. If so, a simpler filter (e.g., binomial, Gaussian) with a 

more gradual transition between the frequencies retained and 

eliminated may suffice. 

 

8.7 Effects of filtering on the time series and 
its spectrum    

 

The effect of low-pass filtering on a pure sine wave is to 

“damp”, or reduce the amplitude, of the wave to some degree, 

depending on the wavelength of the sine wave and the 

frequency response of the filter (e.g., see Figure 8.3). 

Geophysical time series are generally mixtures of variance at a 

wide range of frequencies, such that application of a low-pass 

filter will smooth out the high frequencies and leave the lower frequencies relatively unaltered.  

Because high-frequency variance is removed, the filtered series can be expected to have a 

lower variance than the original series. How much lower depends on the spectrum of the original 

series and the frequency response of the filter. If a time series has no variance at high frequencies, 

smoothing with a low-pass filter will have relatively little effect on the total variance. Conversely, 

if the time series is dominated by high-frequencies variations, low-pass filtering will greatly 

reduce the total variance of the series.   

As an example of the effects of low-pass filtering, consider a time series of an annual tree-ring 

index plotted (Figure 8.9). The series does not appear to be cyclic, but does have some large-

amplitude fluctuations with wavelength exceeding a decade, as well as considerable high-

frequency variability. 

As expected, filtering with a 9-weight binomial filter yields a smoother time plot and reduced 

range in the time series (Figure 8.10).  The frequency response for the binomial filter (see figure 

                                                      
1 Matlab function hamming yields a hamming window. Function fir1 returns the weights of a low-pass 

filter designed by the Hamming-window method. 
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8.6b) indicates that variance at frequencies higher than about f=0.2 will be severely reduced in 

filtering.2 Indeed, the spectra plotted in Figure 8.11 show that variance has essentially been 

completely eliminated at those high frequencies. The ratio of the areas under the two spectra is 

about 1/3, meaning that filtering has removed 2/3 of the original variance.  

 

 

 

 

 
 

                                                      
2 Theoretically, for a linear system with the original time series as input and the filtered time series as 

output, the spectrum of the input multiplied by the square of the frequency response at a given frequency 

will give the spectrum of the output at that frequency (see Chatfield 2004). 

 

Figure 8.9.  Time plot of an annual index of tree growth. Series is a standard index of 

growth for a Pseudotsuga menziesii from Echo Amphitheater, New Mexico (data provided 

by Ramzi Touchan).  
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Figure 8.10.  Annual index of tree growth, before and after smoothing by binomial filter.  

Series was extended by reflection across endpoints prior to filtering to provide filtered series 

with same time coverage as original series.  

 

 

Figure 8.11.  Spectra of tree-ring index before and after low-

pass filtering with binomial filter.   

 



Notes_8, GEOS 585A, Spring 2017 11 

8.8 References 

 
Chatfield, C., 2004. The analysis of time series, an introduction, sixth edition: New York, Chapman & 

Hall/CRC.  

Karl, J.H., 1989. An introduction to digital signal processing, Academic Press, Inc., San Diego, California 

92101. 

Mitchell, J.M., Jr., Dzerdzeevskii, B., Flohn, H., Hofmeyr, W.L., Lamb, H.H., Rao, K.N., and Wallen, 

C.C., 1966. Climatic change, Technical Note 79: Geneva, World Meteorological Organization. 

Panofsky, H.A., and Brier, G.W., 1958. Some applications of statistics to meteorology: The Pennsylvania 

State University Press, 224 p. 

The MathWorks, Inc., 1998. Signal processing toolbox for use with Matlab, User’s Guide, version 4.  

Apple Hill Drive, Natick, MA 01760-2098 

 


