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7 Detrending  
 

Trend in a time series is a slow, gradual change in some property of the series over the whole 

interval under investigation. Trend is sometimes loosely defined as a long term change in the 

mean (Figure 7.1), but can also refer to change in other statistical properties. For example, tree-

ring series of measured ring width frequently have a trend in variance as well as mean (Figure 

7.2). Traditionally, seasonal or periodic components, and irregular fluctuations, and the various 

parts were studied separately. Modern analysis techniques frequently treat the series without such 

routine decomposition, but separate consideration of trend is still often required. Detrending is 

the statistical or mathematical operation of removing trend from the series. Detrending is often 

applied to remove a feature thought to distort or obscure the relationships of interest. In 

climatology, for example, a temperature trend due to urban warming might obscure a relationship 

between cloudiness and air temperature. Detrending is also sometimes used as a preprocessing 

step to prepare time series for analysis by methods that assume stationarity. Many alternative 

methods are available for detrending. Simple linear trend in mean can be removed by subtracting 

a least-squares-fit straight line. More complicated trends might require different procedures. For 

example, the cubic smoothing spline is commonly used in dendrochronology to fit and remove 

ring-width trend that might not be linear, or not even monotonically increasing or decreasing over 

time. In studying and removing trend, it is important to understand the effect of detrending on the 

spectral properties of the time series. This effect can be summarized by the frequency response of 

the detrending function.    

 

7.1 Identifying trend 

Identification of trend in a time series is subjective because trend cannot be unequivocally 

distinguished from low frequency fluctuations. What looks like trend in a short segment of a time 

series segment often proves to be a low-frequency fluctuation – perhaps part of a cycle -- in the 

longer series. By extension, we can view the entire observed time series as a segment of an 

unknown infinitely long series, and cannot be sure that an observed change in mean over that 

segment is not part of some low-frequency fluctuation imparted by a stationary process. 

 Sometimes knowledge of the physical system helps in identifying trend. For example, a 

decrease of ring width of a tree with time is expected partly on geometrical grounds: the annual 

increment of wood is being laid down on an ever-increasing circumference. If the volume of 

wood produced annually levels off as the tree ages, ring width would still be expected to decline.  

 
Figure 7.2.  Trend in mean and variance.  

Ring widths from a Douglas-fir tree in 

Jemez Mountains, New Mexico, 1785-

2007. Both mean ring width and variance 

of ring width decline with age of tree.  

 

 
Figure 7.1. Trend in mean. A strong 

trend dominates the December 

atmospheric CO2 concentration at 

Mauna Loa, Hawaii, 1958-2007. Source: 

http://cdiac.ornl.gov/ftp/trends/co2/maun

aloa.co2 

 

http://cdiac.ornl.gov/ftp/trends/co2/
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A hypothetical “age curve” in ring width can be computed assuming the cross-sectional area of 

wood added each year is constant (Figure 7.3). Such a conceptual model was used in 

dendrochronology as justification for “modified negative exponential” detrending (Fritts 1976).    

If a physical basis is lacking, we need to rely 

on statistical methods to quantify trend. 

Statistical methods can help distinguish trend 

from other variations.   

A simple statistical technique of identifying 

linear trend is to regress the observed time series 

against time and test the estimated slope 

coefficient of the regression equation for 

significance (Haan 2002). The null hypothesis is 

that the slope coefficient is zero (no linear trend) 

and the alternative hypothesis is that the slope 

differs from zero. A t-test applied to the 

estimated slope coefficient will indicate 

rejection or acceptance of the null hypothesis. 

This approach can be extended to multiple linear 

regression for trends in mean more complex 

than simple linear trend (Haan 2002). Nonparametric tests are also available for identifying trend.  

The Mann-Kendall test is one such test commonly used in climatology and hydrology (Salas 

1993).    

The frequency domain is particularly useful here. Granger and Hatanaka (1964 p. 130) give 

some insight into spectral interpretation of trend. They conclude that we are unable to 

differentiate between a true trend and a very low frequency fluctuation, and give the following 

advice: 

 
It has been found useful by the author to consider as “trend” in a sample of size n  all frequencies less than 

1 (2 )n  as these will all be monotonic increasing if the phase is zero, but it must be emphasized that this is 

an arbitrary rule. It may also be noted that it is impossible to test whether a series is stationary or not, given 

only a finite sample as any apparent trend in mean could arise from an extremely low frequency 

fluctuation. 

 

If we apply the above reasoning to a 500-year tree-ring series, we would say that variations 

with period longer than twice the sample size, or 1000 years, should be regarded as trend. In 

another paper, Granger (1966) defines ‘trend in mean’ as comprising all frequency components 

whose wavelength exceeds the length of the observed time series. Cook et al. (1990) refer to 

Granger’s (1966) “trend in mean” concept in giving suggestions for detrending tree-ring data: 

 
Given the above definition of trend in mean, another objective criterion for selecting the optimal 

frequency response of a digital filter is as follows. Select a 50% frequency-response cutoff in years 

for the filter that equals some large percentage of the series length, n. This is the %n criterion 

described in Cook (1985). The results of Cook (1985) suggest that the percentage is 67%n to 75%n 

based on using the cubic smoothing spline as a digital filter. The %n criterion ensures that little 

low-frequency variance, which is resolvable in the standardized tree rings, will be lost in estimating 

and removing the growth trend. This criterion also has a bias of sorts because of the stiff character 

of the low-pass filter estimates of the growth trend. It will not necessarily guarantee and, in fact, 

will rarely possess any kind of optimal goodness-of-fit. 

 

 
Figure 7.3.  Mathematical form of 

expected ring width as function of time 

assuming constant increment of cross-

sectional area.  
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7.2 Fitting the trend 

Four alternative approaches to detrending are: 1) first differencing, 2) curve-fitting, 3) digital 

filtering and 4) piecewise polynomials. This section is weighted heavily toward the piecewise 

polynomials approach, which is widely used in dendrochronology. 

 

First differencing. A time series that is non-stationary in mean (e.g., trend in mean) can be 

made stationary by taking the first difference. The first-difference is the time series at time t 

minus the series at time 1t  : 

 1t t tw x x    (1) 

   

where tx is the original time series and tw  is the first-differenced series. If the series is 

nonstationarity in not just the mean but in the rate of change of the mean (the slope), stationarity 

can be induced by taking the second difference, or the first difference of the first difference: 

 1t t tu w w    (2) 

  

Higher orders of differencing can likewise be applied. First differencing has been applied in 

hydrology in the context of ARIMA (Autoregressive-Integrated-Moving-Average) modeling of 

streamflow series (Salas et al. 1980). As with any detrending method, first differencing can be 

expected to strongly attenuate the variance at the lowest frequencies in a time series. Salas et al. 

(1980) report that first differencing can be problematic in hydrology because it tends to introduce 

spurious high-frequency variation. 

Anderson (1975) describes differencing as a way to remove nonstationarity from time series in 

general. According to Anderson (1975), each successive differencing will decrease the variance 

of the series, but at some point, higher-order differencing will lead to an increase in variance. 

When variance increases, the series has been over-differenced. First-differencing is most 

applicable with a linear trend in mean. 

 First-differencing can be illustrated with the trend-dominated Mauna Loa CO2 time series 

plotted in Figure 7.1. In this case, first-difference fails to remove the trend. The first-differenced 

series is positive at all times, reflecting the accelerating rate of increase in the original CO2 curve 

(Figure 7.4a). Second-differencing appears to remove the trend (Figure 7.4b). The variance, 

however, increases with second-differencing, suggesting possible over-differencing: standard 

deviations of the original, first-differenced and second-differenced series are 20.89, 0.60 and 

0.68. The huge drop in variance from the original series to the first-differenced series attests to 

the overwhelming importance of trend to variance of the Mauna Loa CO2 time series.  
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It is important to recognize that first-differencing implies that all the useful information in the 

time series is in the change from one observation from next, and that the level of the original 

series is unimportant. For example, if a time series of ring widths is first-differenced, a change 

from a very wide tree ring to a moderately wide ring can yield the same “detrended” value as a 

change from a moderately narrow ring to very narrow ring. First-differencing of ring widths 

ignores the fact that a year-to-year drop in tree-ring width toward the inner part of the radius or 

core is more likely attributable to “growth trend” than the same drop toward the outer part of the 

core.     

Curve-fitting. If a time series changes in level gradually over time, it makes sense to 

summarize trend by some simple function of time itself. A simple and widely used function of 

time is the least-squares-fit straight line, which assumes linear trend. Simple linear regression is 

used to fit the model  

 t tx a bt e    (3) 

 

   

where tx is the original time series at time t,  a is the regression constant,  b is the regression 

coefficient, and te are the regression residuals. The trend is then described by 

 ˆˆ ˆ
tg a bt   (4) 

where ˆ
tg is the fitted trend, â is the estimated regression constant, and b̂ is the estimated 

regression coefficient.     

 
Figure 7.4. First-differencing and second-differencing to remove trend. (A) First-difference of 

December atmospheric CO2 concentration at Mauna Loa. (B) Second-difference of CO2 

concentration. Original series, xt, is plotted in Figure 7.1.   
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While the straight-line method has the virtue of simplicity, the straight line may unrealistic, in 

restricting the functional form of the trend. Other functions of t (e.g., quadratic) might be better 

depending on the type of data. Sometimes the mathematical form of the trend function has 

physical basis. For example, a modified negative exponential curve with conceptual basis in the 

change of tree-geometry with time has been used to remove the “age trend” from ring-width 

series (Fritts 1976). The modified exponential follows the equation 

 
ˆ ˆˆ ˆ bt

tg ae k   (5) 

where the coefficients, ˆ ˆˆ, , and a b k are estimated such that the sum of square of differences of the 

smooth curve ˆ
tg and the original time series is minimized. 

     Ring-width trend alternatively described by a straight line and a modified negative exponential 

is illustrated in Figure 7.5. The curvature in the time plot of ring width is so slight that the choice 

of curve makes little difference for this example. At the recent end of the time series, however, 

the expected ring width according to trend is about 30 percent higher for the modified exponential 

than for the straight line.   

 

 

Digital filtering.  Another procedure for dealing with trend is to describe the trend as a linearly 

filtered version of the original series. The original series is converted to a smooth “trend line” by 

weighting the individual observations, tx : 

 
Figure 7.5. Trend in measured tree-ring width fit by straight line and modified negative 

exponential curve.  Tree-ring series is same series described in caption to Figure 7.2. Time 

variable (year) was shifted to begin with 1 before estimating parameters annotated on figure.  
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s

t r t r

r q

g a x 



   (6) 

where ra is a set of filter weights (summing to 1), and tg is the smooth trend line. The weights 

are often symmetric, with s q and j ja a .  If the weights are all equal, the filter is a simple 

moving average, which generally is not recommended for measuring trend (Chatfield 1975). 

Preferable is a symmetric filter with weights decreasing from the central weight.   

 

 

Piecewise polynomials. An alternative to fitting a curve to the entire time series (curve fitting) 

is to fit polynomials of time to different parts of the time series. Polynomials used this way are 

called piecewise polynomials. The cubic smoothing spline is a piecewise polynomial of time, t, 

with the following properties: 

 

 The polynomial is cubic (t raised to third power) 

 A separate polynomial is fit to every sequence of three points in the series 

 The first and second derivatives are continuous at each point 

 The “spline parameter” specifies the flexibility and depends on the relative importance 

given to “smoothness” of the fitted curve, and “closeness of fit”, or how close the 

fitted curve passes to the individual data points 

 

 Given the approximate values  i i iy g x   of some supposedly smooth function g at data 

points 1, , Nx x and an estimate iy of the standard deviation of iy , the problem is to recover the 

smooth function from the data. Let  is x be the spline curve, or the approximation to the smooth 

function g . Following De Boor (1978, p. 235), the spline curve is derived by minimizing the 

quantity 
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y s x
p p s

y

 
     

 
   (7) 

 

over all functions s for a given spline parameter, p , where 
2D s refers to the second derivative of 

s  with respect to time. The first term in (7) is similar to a sum-of-squares of deviations. The 

second term integrates curvature contributions (second derivative). Minimizing establishes a 

compromise between staying close to the given data (first term) and obtaining the smoothest 

possible curve (second term). The choice of p , where p can range from 0 to 1, depends on which 

of those two goals is given the greater importance. For 0p  , s is the least squares straight-line 

fit to the data. At the other extreme, 1p  , s is the cubic spline interpolant, and passes through 

each data point. As p ranges from 0 to 1, the smoothing spline changes from one extreme to the 

other (Figure 7.6). The term iy allows for differential weighting of data points. Following 

recommendations of Cook and Peters (1981) we use equal weighting of 1 to all points ( this is the 

default in Matlab).  
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7.3 Frequency response 

The frequency response function describes how a linear system responds to sinusoidal inputs 

at different frequencies (Chatfield 2004, p. 198). The frequency response function has two 

components -- the gain and the phase. The gain at a given frequency describes how the amplitude 

of a sinusoid at that frequency is damped or amplified by the system. The phase describes how a 

wave at that frequency is shifted in absolute time.    

For a cubic smoothing spline, the phase is zero, such that the "frequency response" merely 

describes the gain, or the amplitude, of the response function. The input to the "system" in this 

case is the original time series; the output is the smoothed curve intended to represent the trend.  

The frequency response measures how strongly the spline curve responds to or “tracks” a periodic 

component at a given frequency, should the time series have such a component. The amplitude of 

frequency response at a given frequency is the ratio of the amplitude of the sinusoidal component 

in the smoothed series (the spline curve) to the amplitude in the original time series.   

 

Relation of frequency response to spline parameter 

The cubic smoothing spline has become increasingly popular as a detrending method in 

dendrochronology because the spline is adaptable and easily applied to a wide range of types of 

“age trend” or “growth trend” found in tree-ring data. Application of the spline to 

dendrochronology was first proposed by Cook and Peters (1981), who derived a mathematical 

relationship between a spline parameter and the frequency response of the spline.  Jean-Luc 

Dupouey (INRA, Forest Ecology and Ecophysiology Unit, Champenoux, France), has pointed out 

(personal communication) that the spline parameter p is defined somewhat differently in Matlab 

 
Figure 7.6. Cubic smoothing splines of differing stiffness fit to a time series of tree-ring ring 

width.  Spline parameter is p. Spline has a frequency response of 0.50 at wavelength 0.50 , 

which is expressed as a decimal fraction of the series length, N, in parentheses. Spline p for 

upper left plot is small enough that straight line is approximated. 
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Spline Toolbox1 than in Cook and Peters (1981), and has provided equations that give the correct 

relationship for use with Matlab. 

In terms of the parameter p in equation(7), the frequency response of the spline is given by  

 

 
 

2

1
( )

cos 2 11
1 12

cos 2 2

u f
fp

p f






  
  

   

 (8) 

 

 

where  u f is the amplitude of frequency response at frequency f, and p is the spline parameter 

as defined earlier. A plot of  u f against f shows the relative response of the spline to 

hypothetical input variations at different frequencies. For a smoothing spline, this response is 

higher toward the low-frequency end of the spectrum (Figure 7.7) .    

Equation (8) can be rearranged with p on the left-hand side to get the spline parameter 

corresponding to a spline with a desired amplitude of frequency response at a specified 

frequency: 
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




      
            

 (9) 

where 0f is the target frequency,  0 0u f is the desired amplitude of response at that frequency, 

and 
 0 0u f

p is the corresponding spline parameter. Cook and Peters (1981) define an “n-year 

spline” as the spline whose frequency response is 50%, or 0.50, at a wavelength of n years.   

 

                                                      
1 Spline Toolbox was discontinued with release 2010b of Matlab.  Spline functions are now available 

from the Curve Fitting Toolbox. 

 
Figure 7.7. Frequency response function of a cubic smoothing spline with spline parameter 

p=3.1257E-6 as applicable to an annual time series. (A) Full frequency response. (B) Frequency 

response zoomed to frequency range 0 to 0.01 (period ∞ to 100 years).  Response rises above 0.2 

at a wavelength slightly longer than 100 years, and reaches 0.5 at a wavelength of about 149 

years (frequency of 0.0067). Plot of full response emphasizes that this spline tracks only low 

frequencies. 
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Equation (9) can be used to compute the required spline parameter for the “n-year spline” by 

setting  0 0) 0.50u f  , where 0 1/f n  . For example, substitution into equation (9) for the 

“100-year” spline yields: 
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
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             


               


    
          

 -005

 

 

Function csaps in the Curve Fitting Toolbox of Matlab can be used generate the spline-

smoothed curve for a given input time series and spline parameter (middle curve, Figure 7.8). It is 

important to keep in mind that the spline parameter in equation (9) will not give the desired spline 

smoothness if applied in tree-ring standardization program ARSTAN; for that application, the 

correct versions of the equations for the spline parameter and frequency response are those in 

Cook and Peters (1981).   
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Figure 7.8.  Spline parameter as a function of wavelength 

of frequency response. Curves shown correspond to 

amplitude of frequency response 0.05, 0.50 and 0.95. For 

example, a spline with parameter p=2E-07 has a 

frequency response of 0.50 at wavelength 300 years, a 

response of 0.95 at wavelength slightly longer than 600 

years, and response of 0.05 at wavelength of about 150 

years. Such a spline strongly tracks variations with 

wavelength longer than 600 yr and hardly tracks at all 

variations with wavelength shorter than 150 yr. If the 

original time series were a sine wave with wavelength 

300 years, the smooth curve would be a damped sine 

wave with 25 percent (0.50 squared) of the variance of 

the original series. The detrended series—the difference 

of the original series and smooth curve-- would have 75 

percent of the variance of the original series. 

 

7.4 Removal of trend 

Once a trend line has been fit to 

the data, we can regard that line as 

representing the “trend.” The 

question remains, how to remove 

the trend? If the trend-identification 

method has identified a trend line, 

two options are available. First is to 

subtract the value of the trend line 

from the original data, giving a time 

series of residuals from the trend.  

This “difference” method of 

removing trend is attractive for 

simplicity, and for giving a 

convenient breakdown of the 

variance: the residual series is in the 

same units as the original series, and 

the total sum of squares of the 

original data can be expressed as the 

trend sum-of-squares plus the 

residual sum-of-squares.   

The other method of removing 

trend is to compute the ratio of the 

time series to the trend line at every 

point in time. This ratio will exceed 

1.0 when the series is above the 

trend line and will below 1.0 when 

the series is below the trend line. 

The “ratio” option is attractive for 

some kinds of data because the ratio 

is dimensionless, and because the 

ratio operation tends to remove 

trend in variance that might 

accompany trend in mean. Tree-ring 

width is one such data type: 

variance of ring width tends to be 

high when mean ring width is high, 

and low when mean ring width is 

low. Ratio-detrending should not be 

used if the original time series contains negative values, and can become problematic when the 

fitted trend line crosses zero (e.g., division by zero yields infinity). These issues are addressed in 

the context of detrending tree-ring width by Cook and Peters (1997). 

  

7.5 Effect of detrending on spectrum 

Whether the “detrended” series is a difference of the original series and a fitted smooth curve 

or a ratio of the original series to the smooth curve, the effect is removal of the gradual, or low-

frequency, fluctuations tracked by the smooth curve. The effect is therefore to remove low-

frequency variance. Detrending in essence is equivalent to high-pass filtering. That is, the 

variance at low frequencies is diminished relative to variance at high frequencies. In detrending 
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by a cubic smoothing spline, the frequency response of the spline is high for those frequencies 

tracked closely by the spline. In the subsequent removal of the trend line, these frequencies are 

mostly removed. Frequencies at which the frequency response of the spline is high are therefore 

those at which variance is most suppressed or damped in the spectrum of the detrended series. In 

general, at the lowest frequencies, the spectrum of the detrended series will be diminished relative 

to the spectrum of the original data. The more flexible the spline, the higher the frequency-range 

affected by the detrending.  

 

 
Normalized spectrum.  The objective in comparing two spectra is sometimes restricted to 

discerning differences in the relative distribution of variance as a function of frequency. The 

 
Figure 7.9.  Contrast of time series detrended as difference and ratio. (A) Ring-width time 

series and fitted spline with 0.50 frequency response at 70 percent of series length. (B) Index 

computed as difference of original time series and fitted trend line. (C) Index computed as ratio 

of original time series to fitted trend line. Ratio-detrended series converted to same overall 

mean and variance as difference-detrended series before plotting. Time trend of variance 

evident in original ring width and difference-detrended series is not evident in ratio-detrended 

series. Data: ring-width from New Mexico, USA, described in caption to Figure 7.2. 
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visual comparison can be muddied by differences in total variance of the two series. To eliminate 

spectrum differences due to differences in total series variance, the spectra in this case are best 

plotted as normalized spectra. The total areas under two normalized spectra are by definition 

equal, as the spectra are standardized to have a unit area of 1.02. The normalized spectrum is 

computed by dividing each ordinate of the original spectrum by the area under the spectrum 

(Figure 7.10). A normalized spectrum can also be arrived at by first converting a time series to 

“Z-scores” (zero mean, unit standard deviation) before spectral estimation. (Recall that the area 

under the spectrum equals or is proportional to the variance.) 

7.6 Quantifying the importance of trend 

A simple measure of the practical importance of trend in a time series is the fraction of 

original variance of the series accounted for by the fitted trend line, which can be computed by 

 
 

 
2

var
1

var

t

t

e
R

x
   (10) 

  

where  var tx is the variance of the original time series, and  var te is the variance of the 

residuals from the trend line.   

Equation (10) measures the importance of the tend component in a time series time series, and 

can range from 0 for no importance to 1 if the series is pure trend (Figure 7.11). Note that for 

ratio detrending, the total variance of the original series cannot be decomposed into variance due 

to trend and residual variance because the detrended series is NOT a residual. 

 

                                                      
2 Depending on plotting convention, the area under a plotted normalized spectrum may appear to differ 

from 1.0. For example, areas under the normalized spectra in Figure 7.10 are 1.0 only if the frequency axis 

is scaled such that the range {0 0.5} is scaled to {0 1}. The important point is that the total area under the 

normalized spectrum is the same regardless of total variance of the time series.   
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to  

 

 

 

 
Figure 7.10. Normalized spectrum as tool for comparing spectral features in two time 

series. (A) Time plots of annual (Oct-Sept) point precipitation and divisional precipitation 

for northern New Mexico. (B) Spectra of the two precipitation series. (C) Normalized 

spectra. Without normalization, the spectra might be miss-interpreted as showing higher 

low-frequency variance in the divisional series. The vertical offset in spectra in the middle 

plot merely reflects the differing total variances of the two series. Total areas under the 

two normalized spectra are equal.    



Notes_7, GEOS 585A, Spring 2017 14 

 

7.7 References 

 
Anderson, O., 1976, Time series analysis and forecasting:  the Box-Jenkins approach: London, 

Butterworths, p. 182 pp. 

Chatfield, C., 2004, The analysis of time series, an introduction, sixth edition: New York, Chapman & 

Hall/CRC.  

Cook, E.R., 1985, A time series approach to tree-ring standardization, Ph. D. Diss., Tucson, University of 

Arizona. 

-----, Briffa, K., Shiyatov, S., and Mazepa, V., 1990, Tree-ring standardization and growth-trend estimation, 

in Cook, E.R., and Kairiukstis, L.A., eds., Methods of Dendrochronology, Applications in the 

Environmental Sciences: Kluwer Academic Publishers, p. 104-123. 

-----, and Peters, K., 1981, The smoothing spline: A new approach to standardizing forest interior tree-ring 

width series for dendroclimatic studies, Tree-Ring Bulletin 41, 45-53. 

-----, and Peters, K., 1997, Calculating unbiased tree-ring indices for the study of climatic and 

environmental change: The Holocene, v. 7, no. 3, p. 361-370. 

de Boor, C., 1978, A practical guide to splines: New York, Springer-Verlag, 392 p. 

 
Figure 7.11. Variance due to trend in a trend-dominated series. (A) December free-

air CO2 concentration at Mauna Loa, fit with cubic smoothing line to describe 

monotonic trend. (B) Residuals from the fitted trend line. While original time series 

varies over a range of more than 60 parts per million by volume (ppmv), the 

residuals have a range of less than 2 ppmv. The percentage of variance due to 

estimated trend according to equation (10) exceeds 99.9 percent.   

 



Notes_7, GEOS 585A, Spring 2017 15 

-----, 1999, Spline toolbox for use with Matlab, user's guide, version 2: Natick, MA, The MathWorks, Inc. 

Fritts, H.C., 1976, Tree rings and climate: London, Academic Press, 567 p. 

Granger, C.W.J., 1966, On the typical shape of an econometric variable: Econometrics, v. 34, p. 151-160. 

Granger, C.W.J., and Hatanaka, M., 1964, Spectral analysis of economic time series: Princeton, New 

Jersey, Princeton University  

Haan, C.T., 2002, Statistical methods in Hydrology, second edition: Ames, Iowa, Iowa State 

University Press. 
Salas, J. D, 1993.  Analysis and modeling of hydrologic time series, Chapter 19 in Handbook of Hydrology, 

edited by D.R. Maidment. McGraw-Hill, New York.  

Salas, J.D., Delleur, J.W., Yevjevich, V.M., and Lane, W.L., 1980, Applied modeling of hydrologic time 

series: Littleton, Colorado, Water Resources Publications, p. 484 pp. 

World Meterorological Organization, 1966, Technical Note No. 79: Climatic Change, WMO-No, 

195.TP.100, Geneva, 80 pp. 


