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ABSTRACT 
 
 
Edge detection forms the key component in an image analysis system for application in 

dendrochronology. The nature and diversity of tree-ring patterns make it necessary to 

employ human intervention and intelligence in tree-ring detection. Numerous edge 

detection algorithms have been developed for various applications, but not all of them are 

amenable to analyst interaction. This thesis describes the design and implementation of 

an interactive image analysis system for dendrochronology. The primary focus is on the 

development of a flow-based edge detection algorithm that exploits the edge 

characteristics in a tree-ring analysis framework. Other issues addressed in the thesis are 

region-of-interest processing, interactive edge linking, tree-ring boundary extraction from 

averaged grayscale profile, and tree-ring width measurement from chain-code 

representation.
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Chapter 1   INTRODUCTION 
 
 

1.1 Problem Statement 
 
Edge detection forms the key component in a computer vision-based tree-ring analysis 

system for use in dendrochronology. The nature and diversity of tree-ring patterns make 

it necessary to employ human intervention and intelligence in tree-ring boundary 

identification. Any attempt to completely automate the process would mandate 

unacceptable levels of computation and could cause the system to become unpredictable 

when handling tree-ring samples with anomalies. A number of edge detection algorithms 

have been developed for various applications, but not all of them are amenable to analyst 

interaction. The work presented in this thesis is a part of a research project being carried 

out jointly by the Digital Image Analysis Laboratory of the Electrical and Computer 

Engineering Department and the Laboratory of Tree-Ring Research at the University of 

Arizona. This research was supported by the National Science Foundation, Grant 

SBR9601867, and the University of Arizona, Office of the Vice President for Research. 

1.2 Overview of Dendrochronology 
 
Dendrochronology is the science of dating events and variations in environment in 

former periods by comparative study of growth rings in trees and aged wood. Each year a 

tree adds a layer of wood to its trunk and branches, thus creating the annual rings that are 

seen when viewing a cross-section. Earlywood develops during the rainy season when 

there is abundant water for cellular growth. Latewood develops during the drier season 
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and consists of densely packed cells that cause the ring to appear darker compared to the 

earlywood. Thus a typical cross-section of a tree trunk exhibits alternating annular 

regions of earlywood and latewood. The transverse view of a tree ring sample is shown in 

Figure 1-1. The growth ring is the annular region consisting of the earlywood and the 

subsequent latewood, moving away from the wood center (pith). Transitions from the 

latewood to an adjoining outer earlywood mark the boundaries between growth rings. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-1. Transverse view of a tree sample. 
( Courtesy of the Laboratory of Tree-Ring Research, University of Arizona, 

http://www.ltrr.arizona.edu/dendrochronology.html ) 
 

The age of a tree is estimated by counting the number of growth rings from the pith to 

the bark. The outermost growth ring at the bark corresponds to the current year in the 

growth of a living tree or the last year in the span of a dead tree. The widths of growth 

rings vary across species, across geographical region and from year to year. Samples 

from trees of the same species in a geographical region exhibit similar patterns of 

Early wood 
Late 
wood 

One tree ring 
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variation in the width of growth rings. This is because the local climatic fluctuation tends 

to be fairly consistent over a given geographical region. These climatic changes or 

patterns in specific geographical regions can be traced by the study of old living trees. 

The samples taken from trees of unknown growth period can then be studied for matches 

with the samples from trees of known age and growth period. Using this process, known 

as cross-dating, when the widths of growth rings from different samples match or are 

found to be overlapping in age, a master chronology is built for the geographical region. 

1.2.1 The Douglass Method of Cross-Dating 
 
There are two popular techniques for cross-dating that vary in the method of 

representation used for the widths of growth rings. These representations are time-series 

plots and skeleton plots. Figure 1-2 shows an example of a time-series and a skeleton 

plot. A time-series plot is a graphical representation of the sequence of ring widths 

obtained from tree-ring width measurement. Methods of cross-dating based on time-

series plots usually employ a combination of computational and visual correlation 

techniques. A skeleton plot is a discrete-time graphical representation of the strength of 

outliers in the sequence of ring widths obtained from tree-ring width measurement. A 

ring is considered to be an outlier if its width is significantly different from that of the 

adjacent rings. Vertical bars mark the locations of outliers in the plot, and the length of 

the bar itself represents the outlier magnitude. Skeleton plots enable samples to be 

matched based on the similarity in ring width variation rather than the absolute ring 

widths. In practice, additional ring attributes are symbolically marked on the plot and 

play a crucial  
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role in the cross-dating process. These attributes, which represent features such as micro 

rings, false rings, frost rings, missing rings, etc., could be used to visually validate a 

match. This technique of dating tree-ring samples is known as the Douglass method[5]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1-2. Growth ring width representation. 

(a) Cross-section of a tree-ring sample marked with two outliers R1 and R2. (b) Skeleton 
plot for the sample in (a) shown for a 31 year span. (c) Time-series plot for the sample in 
(a) shown for a 31 year span (Individual ring points are connected for display). 
 
 

A successful match depends on the reliability of ring width measurements. The 

absence of width measurement for one or more rings in a sample offsets the 

corresponding skeleton plot and could render it undateable even though the samples have 

a chronological overlap. To resolve such issues, the Douglass method of cross-dating 

(a) 

R1 R2 

(b) 

R1 R2 

(c) 

R1 R2 
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makes it imperative for the wood sample to be available during the entire matching 

process. Termed wood-centered analysis, this is the distinguishing feature of the 

Douglass method of cross-dating. 

1.2.2 Review of Earlier Image Analysis Systems 
 
Image analysis techniques have been applied earlier to the problem of ring boundary 

detection in dendrochronology. Some of the commercially available software systems 

include DENDRO[7],[8],[16], and MacDRUID[20]. Reflected-Light Image Analysis 

system, developed at the University of Arizona, is another software system that estimates 

the ring density by a careful calibration of the light reflected from the 

sample[17],[18],[19]. The three systems primarily differ in the type and amount of image 

data that is analyzed. Absent in these systems is the ability to return to the wood sample 

that is critical to the Douglass method of cross-dating. The following section provides an 

overview of the TREES system and its features that make it suitable for the Douglass 

method of dendrochronology. 

1.3 Overview of the TREES System 
 
TREES is a computer-assisted tree-ring analysis system developed specifically to aid in 

the Douglass method of cross-dating. It uses a mosaic format to store the images captured 

from the wood to limit the amount of memory required to store and process a sample. 

The dependency of the TREES system on the hardware used for image capture limits the 

system from processing frames captured outside the TREES environment. 
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1.3.1 System Hardware 
 
A schematic diagram of the hardware setup is shown in Figure 1-3. The image capture 

device in the TREES system is a Kodak Megaplus 1.4i CCD monochrome digital camera 

capable of resolutions up to 1317x1035 pixels. The resolution of each frame captured by 

the TREES system is 1280x1024 pixels and the mosaic is composed from many such 

frames. The camera is coupled to the eyepiece of a Nikon SMZ-U microscope for 

imaging a cross section of the sample mounted on a positioning table under the 

microscope. The microscope magnification is set to 1.1X during any given sample 

acquisition. In order to increase the field of view of the captured frames, a video coupler 

lens with magnification set to 0.63X is used. This optical setup results in a combined 

magnification of 0.693X and a diagonal field of view of approximately 16.4mm for each 

frame. The resolution obtained from the combination is approximately 10µm, which is 

sufficient to resolve most small tree rings. A fiber-optic illuminator of approximately 

75mm in diameter is mounted on the objective lens of the microscope to provide the 

necessary illumination. Two stepper motors drive the positioning table, one in each of the 

X and Y directions. The stepper motors are under computer control and are capable of 

moving the positioning table by a span of up to 75cm in each direction, with a resolution 

of about 1mm. A third stepper motor, coupled to the focus knob of the microscope, is 

controlled by the TREES system for automatic focus adjustments. The entire hardware 

setup is under the control of a Sun Ultra-1 workstation running the Solaris operating 

system with 256 MB of RAM and a 4 MB video frame buffer. 
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Figure 1-3. TREES system hardware. 

 

1.3.2 Software Architecture 
 
The software architecture of the TREES system is shown in Figure 1-4. The topmost 

layer in the TREES system is the Tcl/Tk layer that creates the graphical user interface 

and handles all the user interaction. A few of the Tcl/Tk scripts used are modifications of 

the ones presented in [15] and [22]. Custom Tcl/Tk commands required to carry out 

image analysis tasks are defined in the command layer. The command layer serves to 

translate custom commands to the actual C code, in the algorithm layer, that implements 

them. Although most of the computation is done in the algorithm layer, a small 

percentage of it is handled in the command layer. The SADIE (System at Arizona for 

Digital Image Experimentation) library, developed at the Digital Image Analysis 

Laboratory, University of Arizona, is a set of image processing software routines written 
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in the C language. The algorithm layer interfaces extensively with the SADIE library to 

make use of the provided functions. The low-level routines to interface with the hardware 

are written in C++. The Tcl scripts communicate with the camera and positioning table 

through routines in the hardware interface layer. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-4. Software architecture in the TREES system. 

 

1.3.3 Sample Analysis 
 
A flowchart of the processing steps in the TREES system is shown in Figure 1-5. The 

following steps outline the procedure involved in analyzing a sample with the TREES 

system: 
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• The sample to be analyzed is mounted on the X-Y positioning table. 

• The analyst is prompted to select a cross-section within the sample to be dated. 

• The system computes the number of frames required to cover the cross-section. 

• Automatic focusing is done prior to the capture of each frame[4]. 

• Gain and bias adjustments are performed on each frame to ensure a smooth gray 

level transition across frame boundaries in the mosaic[4]. 

• The frames are combined after spatial registration to form a mosaic image. 

• Computer vision algorithms are used to detect rings in the mosaic image. 

• Tree-ring widths are then measured to generate the skeleton plot. 

• Skeleton plot data from the samples can be exported to the CROSSDATE 

program, which assists in cross-dating and master chronology composition[6]. 

1.3.4 Features 
 
The following is a list of the TREES system features that make it suitable for the 

Douglass method of cross-dating: 

• The TREES system allows the analyst to select a region-of-interest within the wood 

sample. This enables the analyst to visually inspect the sample and select a region 

free of wood anomalies. 

• The amount of data analyzed by the TREES system is significantly greater than that 

analyzed by other systems. The individual width measurements are averaged over the 

region-of-interest, resulting in better accuracy. 
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Figure 1-5. TREES data processing flowchart. 
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• The TREES system exports width measurements in a format suitable for skeleton 

plots, which form the basis for the Douglass method of cross-dating. 

1.4 Overview of Thesis 
 
This thesis describes the design and implementation of an interactive image analysis 

system for dendrochronology based on an edge detection algorithm that adapts itself to 

changing tree-ring orientation. This Chapter provided an introduction to 

dendrochronology and an overview of the TREES system. Chapter 2 begins with a 

description of TREES system v1.0 , the previous version of the TREES system. The new 

techniques and algorithms presented in this thesis have been tested as replacements, and 

some as enhancements, to the algorithms in the TREES system v1.0 and constitute 

TREES system v2.0, the current version of the TREES system described in Chapter 3. 

The data structure design and methods for archival, editing, and processing of edge maps 

are discussed in Chapter 4. A scheme for measuring tree-ring widths from the chain 

codes will be presented at the end of Chapter 4. Chapter 5 describes analyst interaction 

during various stages of the tree ring identification process and a technique for wood-

centered analysis in the TREES system. Finally, the work presented in the thesis is 

summarized in Chapter 6. 
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Chapter 2   TREES SYSTEM VERSION 1.0 
 
 
The main objective of the tree ring analysis system is to compute ring widths from the 

edge map. The edge map represents transitions from one ring to another, or more 

specifically, transitions from the latewood of one ring to the earlywood of an adjacent 

ring, moving away from the pith. Earlywood and latewood can be distinguished from one 

another by the gray scale intensity in the captured image. Latewood to earlywood 

transitions, representing ring boundaries, can be identified by abrupt changes in gray 

scale intensity. In an image analysis system, these are found by the process of edge 

detection. The following section will discuss the requirements of edge detection for tree 

ring analysis. 

2.1 Requirements for Tree Ring Analysis 
 
A primary requirement of edge detection for tree ring analysis is that the rings must be 

fully connected. Ring identification should not result in rings that are spatially broken. 

This plays an important role in the ring width measurement process. The problem posed 

by rings that are not fully connected is that fragments of the same ring appear as distinct 

rings to the algorithms that process the edge maps. Although methods exist for linking 

fragments, and are implemented in TREES system v1.0, it would be desirable to avoid 

fragmentation in the first place. Moreover, a mosaic formed from 25 frames could reach a 

size of 21,760x17,408 pixels, assuming one-third overlap between frames, and 
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connected-components labeling on the mosaic image during edge linking would require 

an unacceptable amount of memory for storing intermediate labels.  

 
The second requirement is that the edges representing ring boundaries must be singly 

connected. This requirement arises from the fact that the edge maps are to be chain coded 

before archiving on the disk. Edges that are not singly connected cause ambiguity during 

chain coding. A final, but important, requirement is that the edge detection algorithm 

must lend itself to analyst interaction. The presence of anomalies, such as resin ducts, 

shown in Figure 2-1, branch scars, cracks, prominent rays, etc. would mandate analyst 

intervention to guide in ring boundary identification. For this purpose, algorithms that 

operate on a ring-by-ring basis are more suitable than those that operate on a pixel-by-

pixel basis. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-1. Cross-section of a tree sample with resin ducts. 

 

2.2 Review of Edge Detection Algorithms 
 
The TREES system v1.0 has features that are beneficial in the Douglass method of cross-

dating. However, the edge detection algorithms used in this initial version of the TREES 

Resin Ducts 
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system have limitations. This section presents an overview of the computer vision 

techniques employed in the TREES system v1.0. The focus will be on the edge detection 

algorithm for ring boundary identification. 

2.2.1 Canny Edge Detector 
 
The Canny algorithm[1] has been applied to the problem of edge detection in various 

images. The primary advantage of this algorithm over the other edge detection techniques 

is that it is guaranteed to produce fully connected, one pixel wide boundaries, which is a 

requirement in the tree-ring analysis framework. The first step in implementing the 

Canny edge detector is to smooth the image to suppress noise edges. A Gaussian filter 

with a standard deviation of 3 pixels has been found to be appropriate for most tree ring 

samples [2]. The gradient magnitude and direction are computed at each pixel in the 

resulting smoothed image by applying a gradient operator, such as the Sobel edge mask. 

Non-maxima suppression in the Canny edge detector uses both the gradient magnitude 

and direction to suppress pixels along the gradient direction at each pixel. An 

implementation of non-maxima suppression is described in [10]. The gradient direction at 

each pixel is quantized into one of four sectors, and pixels that have a lower magnitude 

than their two directional-neighbors are suppressed. This guarantees the edges to be one 

pixel wide and fully connected.  

 
As evident from the non-maxima suppression, the algorithm relies on local pixel data 

to detect edges. Therefore, a straightforward implementation of the Canny edge detection 

algorithm for tree-ring analysis has the following drawbacks (Figure 2-2): 
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[1] Wood features like prominent rays that run perpendicular to the ring boundaries, 

cause connections between detected tree-ring edges. 

[2] Intra-ring earlywood-latewood boundaries are also detected. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-2. Edges found by the Canny algorithm for the image in Figure 2-1. 

 

2.2.2 Modified Canny Edge Detector 
 
The drawbacks of the Canny algorithm operating in a local scope are overcome by the 

modified Canny edge detection algorithm [2]. The modified Canny edge detection 

algorithm, employed in the TREES system v1.0, differs from the original Canny 

algorithm in the way non-maxima suppression is implemented. If the orientation of tree 

rings within a region of interest were fairly constant, then non-maxima suppression in a 

direction perpendicular to the ring direction would suppress the edges along prominent 

rays. This forms the basis for the modified Canny edge detection algorithm. The second 

drawback of the Canny algorithm is overcome by discarding pixels where the gradient 

direction is opposite to that of the assumed latewood-earlywood gradient direction. A 

 

Cross-connections Intra-ring boundaries 
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detailed discussion of the modified Canny edge detection algorithm as implemented in 

the TREES system v1.0 is provided in the following section. 

2.3 Algorithm Description 

2.3.1 Outline of Edge Detection Algorithm 
 
The image analysis flowchart in the TREES system v1.0 is shown in Figure 2-3. This is 

an expanded view of the first analysis block in the TREES data processing flowchart 

shown in Figure 1-5. 

 

 

 

 

 

 

 

Figure 2-3. Image analysis flowchart of the TREES system v1.0. 

 

2.3.2 Gradient Computation 
 
An edge in an image is a boundary or contour where there is appreciable variation in 

some physical aspect of the image that reflects as a change in intensity, color, or texture. 

Given that the ring boundaries are transitions from latewood to earlywood, edges of 

interest in the image are identified by abrupt changes in grayscale intensity values. The 

edge location is determined by computing the first derivative of the grayscale intensity 
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image. The generalization of first derivative to a two-dimensional intensity image, 

( )yxf , , is the gradient ( )yxf ,∇  defined as 

( ) ( ) ( )
yx i

y
yxfi

x
yxfyxf ˆ,ˆ,,

∂
∂+

∂
∂=∇ , 

where xî  is the unit vector in the x-direction and yî  is the unit vector in the y-

direction[13]. The gradient magnitude is computed by a discrete approximation to 

( ) ( ) ( ) 22 ),(),(,
y

yxf
x

yxfyxf
∂

∂+
∂

∂=∇ . 

A method developed by Sobel[13] computes the approximation to ( )yxf ,∇  as 

( ) ( ) ( )21
2

21
2

21 ,,, nnfnnfnnf yx +→∇ ,  

where 

( ) ( ) ( )212121 ,,, nnhnnfnnf xx ∗= , 

( ) ( ) ( )212121 ,,, nnhnnfnnf yy ∗= , 

with ( )21,nnhx  and ( )21,nnhy  as shown in Figure 2-4. 

 

 

 

 

 

Figure 2-4. Sobel edge masks used to approximate 
y∂
∂  and 

x∂
∂ . 
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Ring boundary identification in the TREES system v1.0 is based on the modified 

Canny edge detection algorithm. The algorithm requires that the image be smoothed prior 

to gradient computation. A 11 x 11 Gaussian smoothing filter, ( )yxg , , with a standard 

deviation of 3 pixels has been found to be suitable for this purpose[2]. The gradient 

magnitude, ( )yxs ,∇ , is then computed for the resulting smoothed image given by 

( ) ( ) ( )yxgyxfyxs ,,, ∗= . 

Since the rings are assumed to be vertical within each frame, directional non-maxima 

suppression evaluates to comparing the gradient magnitude of each pixel with that of its 

left and right neighbors and retaining only those pixels that have a gradient magnitude 

greater than that of both the neighbors. The image obtained from directional non-maxima 

suppression is 

( )
( ) ( ) ( ) ( ) ( )

�
�

�
�

� +∇>∇−∇>∇∇
=

else.               0

,,1yx,s   and   ,1yx,s  if   ,
,

yxsyxsyxs
yxp  

In order to suppress earlywood-latewood transitions, pixels in ( )yxp ,  that have a left 

neighbor of higher grayscale intensity than the right neighbor in the smoothed image, 

( )yxs , , are reset to zero, 

( )
( ) ( ) ( )

�
�

�
�

� +<−
=

else.            0

,,1,1   if   ,
,

yxsyxsyxp
yxq  
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2.3.3 Double threshold Linking 
 
The resulting image consists of noise edges and ring fragments in addition to the fully-

connected rings. This poses the problem of having to connect the ring fragments while 

discarding the noise edges. To solve this, TREES v1.0 employs a double-threshold 

approach. An example histogram of the gradient magnitude image of a tree sample is 

shown in Figure 2-5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-5. Histogram of gradient magnitude for the image shown in Figure 2-1. 

 
A low threshold image, ( )yxl , , is obtained from ( )yxq ,  by applying a threshold Lt  

that is sufficiently small to retain all the ring fragments, 

( ) ( )
�
�
� >

=
else.  0

,,   if   1
, Ltyxq
yxl  
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Owing to the low threshold, high contrast noise edges would be present in ( )yxl ,  as 

shown in Figure 2-6 (b). The high threshold image, ( )yxh , , is obtained from ( )yxq , by 

applying a threshold Ht  that is sufficiently large to suppress the noise edges, 

( ) ( )
�
�
� >

=
else.  0

,,   if   1
, Htyxq
yxh  

In effect, the high threshold image consists primarily of edges that represent tree 

rings. Fragments in the high threshold image that are smaller than a predefined size are 

discarded, and the size-filtered image is as shown in Figure 2-6 (c). Since the two 

thresholded images have pixels in common between them, retaining only those pixels that 

are absent in the high threshold image forms a mutually exclusive version of the low 

threshold image, 

( ) ( ) ( )
�
�
� =

=
else.          0

,0,   if   ,
,

yxhyxl
yxle  

Double-threshold linking is accomplished by retaining all the fragments from the 

high threshold image ( )yxh , , but only those from the low threshold image ( )yxle ,  that 

are in a τ -pixel neighborhood of the high threshold fragments. In effect, this approach 

serves to bridge the gaps between high contrast edge fragments of a ring with the low 

contrast edge fragments belonging to the same ring, as shown in Figure 2-6 (d). The 

value, τ , that defines the neighborhood is kept small to avoid connecting the fragments 

of adjacent rings together. 
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Figure 2-6. Double threshold linking in TREES system v1.0. 

(a) Cross-section of a tree sample with resin ducts. (b) Low threshold image of the 
gradient magnitude. (c) High threshold image of the gradient magnitude. (d) Double 
threshold linked rings. 
 

2.3.4 Final Linking Stage 
 
Due to the constraint imposed by the τ  value on the neighborhood, some ring fragments 

still remain disconnected after double-threshold linking. A second and final stage of 

linking is used to connect ring fragments that occur between fully connected rings. The 

width of a ring relative to that of an adjacent ring usually remains fairly constant along its 

length due to the physical characteristics of growth rings. Therefore, fragments of a 

(a) (b) 

(c) (d) 
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broken ring would occur at the same fraction of width between the two enclosing fully 

connected rings, as shown in Figure 2-7. The second linking stage is based on this idea. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-7. Fragment linking in the TREES system v1.0. 

 
The number of broken rings, n , between two complete rings is estimated to be the 

most frequent fragment count that occurs at orthogonal profiles between the fully 

connected rings. To determine their positions, a histogram of the number of fragments 

that occur at each fraction of width, quantized into M bins between 0 and 100%, along 

the orthogonal profiles is computed. The n  largest bins in the histogram indicate the 

position of the broken rings relative to the width between the two enclosing fully 

connected rings, as shown in Figure 2-7. Fragments that occur at these positions are 

assigned labels to associate them with the broken rings. The remaining fragments are 

discarded as noise edges. Straight lines are then synthesized to connect the endpoints of 

fragments with the same label. 
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2.4 Limitations of TREES v1.0 

2.4.1 Ring Identification 
 
In TREES v1.0, the computer vision algorithms used in the ring identification process are 

based on the assumption that the tree rings are almost vertical and that they extend from 

the frame top to its bottom. Owing to the high magnification at which the frames are 

captured, this assumption usually holds for well-behaved samples. However, there exist 

samples that exhibit appreciable variation in the ring orientation within the mosaic image 

as shown in Figure 2-8. This would cause the edge detection and linking algorithms in 

TREES v1.0 to fail. Moreover, the system does not allow for analyst interaction during 

the ring identification process to resolve problems that the system may not be able to 

handle on its own. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-8. Gradual shift in the ring orientation within a Juniper sample. 

 
 

Near-vertical rings Rings at close to 
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2.4.1.1 Edge Fragmentation 
 
Edge fragmentation in the TREES system is a result of the modification to the Canny 

algorithm. Non-maxima suppression in the Canny algorithm relies on local gradient 

direction and assures one pixel wide, fully connected rings. Directional non-maxima 

suppression implemented in the modified Canny edge detector improves noise filtering 

but also fragments the rings in the presence of features like resin ducts and prominent 

rays. This is illustrated in Figure 2-6 (d). Note how the change in gradient direction 

because of the resin duct causes directional non-maxima suppression to fragment the 

ring. The Canny algorithm would have followed the gradient contour around the resin 

duct thus producing a false protrusion in the detected ring, as shown in Figure 2-2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-9. Ring fragmentation caused by prominent rays. 

 
Figure 2-9 illustrates ring fragmentation in the presence of a prominent ray. Recall 

that the Canny algorithm tends to follow the gradient along prominent rays and cross-

connects with the adjacent rings (Figure 2-2). The modified Canny algorithm suppresses 

Prominent rays 

(a) 

Ring fragmentation 

(b) 
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pixels along the noise edge gradient thus breaking continuity in the detected ring. A two-

stage edge linking process in the TREES system v1.0 attempts to link the fragments. 

2.4.1.2 Cross-connected Rings 
 
Cross-connection occurs as a result of linking fragments of different rings together. The 

high threshold applied to suppress noise edges in the double-threshold approach breaks 

the ring at places of low contrast. The linking phase attempts to connect the ring 

fragments by searching for low contrast ring fragments in a τ -pixel neighborhood of 

high contrast edge fragments. τ  defines the radius of a circle centered at the end point of 

a high contrast fragment. In case multiple low contrast fragments are encountered in the 

circular search region, the algorithm picks the nearest fragment. Since the algorithm does 

not incorporate the gradient direction at the point of discontinuity, there is a tendency to 

link with the fragment of an adjacent ring that happens to be in the search region as 

shown in Figure 2-10. The τ  chosen is a compromise between the number of missed 

rings and the number of cross-connections tolerable. In the TREES system v1.0, the 

search radius is kept relatively small to minimize cross-connections. This, however, 

degrades the edge linking performance and necessitates a second linking stage to ensure 

fully connected rings. 

 
In the second linking stage, the locations of broken rings are determined and 

fragments that occur at these locations are assigned a unique label to associate them with 

the broken ring. In regions of narrow rings obscured by resin ducts, fragmentation is 

severe and the algorithm occasionally assigns the same label to fragments of two adjacent 
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Figure 2-10. Cross-connections introduced by double threshold linking. 

 
rings due to its inability to distinguish between them. An example of wild fragment 

connection is shown in Figure 2-11. This causes wild fragment linking between 

fragments of different rings. In addition, the second stage of linking requires fully 

connected rings to be present on both sides of a fragmented ring for it to be able to 

connect the fragments. Therefore, ring fragments that lie outside the outermost connected 

rings cannot be linked together. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2-11. Wild fragment connection produced by final linking process.  

Note: Dotted circles highlight cross-connections due to double threshold linking. 
 

Wild fragment linking 
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2.4.2 Disk Usage 
 
Edge maps obtained during the ring identification process are stored as image files in the 

TREES system v1.0. Saving this image on the disk at 8 bits/pixel requires approximately 

1.25MB of disk space per frame. For a sample with 15 frames, this would translate to 

over 18MB of disk space. As more and more samples are archived, the disk space 

requirements grow rapidly. Also, this format of storing edge maps does not lend itself 

well to ring boundary editing involving insertion and deletion of rings from the edge 

map. 

2.4.3 Wood-Centered Analysis 
 
The Douglass method of cross-dating requires that the wood be available for reference 

during the entire process of dating. The ability to go back to the wood poses two 

requirements. First, there needs to be a stage co-ordinate system with an origin that 

remains constant across samples. And second, the mapping between stage and image co-

ordinates has to be recorded for each sample to be dated. Due to hardware limitations, the 

stage coordinates are reset each time the stage is initialized. Stage re-initialization affects 

the coordinate mapping established during a previous session, thereby hindering our 

ability to return to the wood sample. 
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Chapter 3   TREES SYSTEM VERSION 2.0 
 
 

3.1 Overview 
 
The performance of edge detection in the TREES system v1.0 is effected by the 

shortcomings of fragment linking. Fragmentation occurs as a result of thresholding the 

gradient magnitude and necessitates linking to ensure fully connected rings. The 

objective of double-thresholding in the TREES system v1.0 is to suppress noise edges. In 

a tree ring analysis framework, ring boundaries form the edges of interest and wood 

anomalies such as resin ducts and prominent rays contribute to the noise edges. Tree-

rings exhibit certain characteristics that distinguish them from other edges in an image. 

First, in most samples, there is very little change in the boundary profile from one ring to 

another (Figure 3-1), i.e., adjacent rings are almost parallel. Second, the change in ring 

direction in a given cross-section is gradual. Tree-ring detection in the TREES system 

v2.0 is based on these two properties.  

 
Kasaei et al., present a method for fingerprint feature extraction by considering 

fingerprints as sample images from non-stationary processes with flow patterns[11]. In 

this method ridge areas are treated as foreground and noise regions as background. The 

foreground-background segmentation is based on the assumption that clear regions flow 

in a particular direction while noise regions have no dominant direction. They present a 

block-direction approach, using 16x16 blocks, for determining the dominant ridge 

direction. A similar technique is used in the TREES system v2.0 for ring detection. 
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Figure 3-1. Ring boundary characteristics. 

 
The gradient is computed as in the modified Canny algorithm and the global 

dominant ring direction (GDRD ) is determined. In addition, since the tree-ring profiles 

vary from region to region within a sample, the local dominant ring direction ( LDRD ) is 

determined for each region in the image. The presence of high contrast noise edges would 

corrupt the LDRD  determined for a region. In order to identify these regions, the LDRD  

of each region is compared with theGDRD . When the LDRD  in a region deviates from 

the GDRD  in excess of a pre-defined threshold, a majority vote is taken among the 

neighboring regions. If there is a clear majority, the region under consideration is 

assigned the winning LDRD , else the region is assigned the average LDRD  computed 

from its compliant neighbors. Once the local dominant ring direction is resolved for all 

regions in the image, the gradient direction at each pixel is compared with the local 

gradient direction (perpendicular to LDRD ) of the region that contains the pixel. An 

algorithm that operates at a pixel level employing visual tests is described in [21]. Pixels 

where the gradient direction deviates from the local gradient direction are reset in the 
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gradient magnitude image to prevent them from contributing to an edge. In practice, a 

certain degree of flexibility is allowed to account for any variation in the ring direction 

within the region. Eliminating pixels this way results in a gradient magnitude image that 

consists of narrow bands of pixels, or ridge areas, around ring boundaries. The precise 

edge location could then be tracked by following the path of highest gradient within the 

ridge areas. A technique that incorporates test for consistency is described in [14]. Thus, 

the likely problem of ring fragmentation in curved sections of the ring is overcome by 

incorporating the local ring direction. In addition, since edges are identified on a ring-by-

ring basis, this approach lends itself well to analyst interaction. 

 
The image analysis flowchart of the TREES system v2.0 is shown in Figure 3-2. The 

algorithm development is based on the edge characteristics in a tree ring analysis 

framework. The image is divided into non-overlapping regions and the gradient direction 

histogram is computed for each individual region. The local dominant ring direction is 

determined from the observed histogram probabilities for each region. The global 

dominant ring direction is determined by merging the local histograms. After resolving 

the sLDRD , pixels that disagree with the local edge direction are eliminated. An edge 

tracking approach similar to ridge detection is then employed to track the ring 

boundaries. In view of the processing time constraints imposed by the high resolution of 

images, this approach is computationally efficient, allowing the edges to be chain-coded 

on the fly to eliminate the need for labeling and, thereby, easing the requirement on 

memory resources. 
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Figure 3-2. Image analysis flowchart of the TREES system v2.0. 

 

3.2 Edge Direction 
 
The Canny algorithm performs non-maxima suppression based on the gradient direction 

at each pixel. In effect, it relies on the gradient direction in a higly-localized region. This 

is a pixel-level estimate of the edge direction and often reflects the direction of non-ring 

features running across ring boundaries. The gradient direction image for the sample in 

Figure 3-1 is shown in Figure 3-3. On the other hand, the modified Canny algorithm uses 

global ring orientation alone to implement directional non-maxima suppression. The 

global ring orientation is a coarse estimate of the ring direction within the image. The 

improved algorithm incorporates the following in identifying tree-rings in a region: 
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1. Global orientation of tree rings in the image as a whole (GDRD ). 

2. Local tree-ring orientation in the region ( iLDRD ). 

3. Orientation of tree rings in the neighboring regions ( ( ){ }iNjLDRD j 8| ∈ ). 

4. Gradient direction at each pixel in the region ( ( )cr,θ ). 

 
A discussion of the technique employed in the TREES system v2.0 to determine global 

and local dominant ring directions is presented in this section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-3. Gradient direction image for the sample shown in Figure 3-1. 

 

3.2.1 Local Dominant Ring Direction 
 
The gradient direction, ( )cr,θ , and magnitude, ( )crG , , are computed at each pixel in the 

image as in the Canny edge detection algorithm. The gradient direction values are 

quantized into m  bins in the range [ ]ππ +− , , resulting in a quantization step of 

m
π2=∆  radians 
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The gradient magnitude and direction images are divided into non-overlapping regions 

such that 

RR
i

i =� , 

where iR  is the region of support (ROS) for region i , and R  is the region of support for 

the whole image. The region of support, iR , could be selected depending on the spacing 

between ring boundaries in the image and the ring curvature. However, in the TREES 

system v2.0, the ROS is a nn x  square, with a constant n  both within an image sample 

and across samples. The n value used in the tests is 64 pixels, i.e. the ROS is a 64x64 

pixel square. This value has been found to be suitable for a wide range of samples. The 

grid overlay on the sample is shown in Figure 3-6. Once the image is partitioned, 

histograms of observed gray levels in the gradient magnitude image are determined for 

all regions in the image as: 

( ) ( ) ( ){ }jcrGRcrjH i
G
i =∈= ,|,# , 

where ( )jH G
i  represents the histogram count for gray level j  in region i . The histogram 

probabilities of the observed gray levels are computed as: 

( ) ( )
( ) ( ){ }i

G
iG

i Rcrcr
jH

jP
∈

=
,|,#

, 

where ( )jPG
i  represents the histogram probability of gray level j  in region i . From the 

regional gradient magnitude distributions, the q th percentile, [ ]qiπ , is determined for 

each region as: 
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[ ] ( )
�
�
�

�
�
�

≥= �
= 100

|min
1

qkPjq
j

k

G
iiπ . 

Using the value of [ ]qiπ  for each region, the histogram probabilities of gray levels in the 

gradient direction image are computed, taking into account only those pixels that have a 

gradient magnitude equal to or greater than [ ]qiπ . This ensures that only the pixels that 

constitute high-contrast edges contribute to the gradient direction histogram, and hence 

the role of any low-contrast noise edges is reduced. In the TREES system v2.0, the [ ]qiπ  

value chosen corresponds to the upper quartile, i.e. 75=q . The histogram of observed 

gray levels in the gradient direction image for region i  is given by: 

( ) ( ) ( ) [ ] ( ){ }jcrcrGRcrjH iii =≥∈= ,  and  75,|,# θπθ . 

The corresponding histogram probabilities for region i  are computed as: 

( ) ( )
( ) ( ) [ ]{ }75,|,# ii

G
i

i crGRcr
jH

jP
π

θ

≥∈
= . 

The largest bin in θ
iP  corresponds to the dominant gradient direction in region i  

( iLDGD ), i.e. 

( ) ( ){ }jPLDGDP ijii
θθ max= . 

Assuming that the local dominant gradient direction is an indication of the local ring 

direction, the local dominant ring direction for region i  is determined as: 

2
π±= ii LDGDLDRD  radians. 
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Figure 3-4. Distribution of gradient direction in region R2. 

 

 

 

 

 

 

 

 

 

 

Figure 3-5. Distribution of gradient direction in region R4. 

 

Gradient direction quantized into 64 bins 

Gradient direction quantized into 64 bins
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The gradient direction distributions for two of the regions are shown in Figure 3-4 and 

Figure 3-5. Figure 3-6 shows the image obtained from a tree ring sample and the local 

gradient direction determined for various regions in the image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-6. Local gradient direction determined for various regions in the image. 

 

3.2.2 Global Dominant Ring Direction 
 
The global dominant gradient direction (GDRD ) is determined by combining the local 

magnitude histograms. The global histogram of observed gray levels in the gradient 

magnitude image is computed as: 

( ) ( )�=
i

G
i

G jHjH . 

The histogram probabilities of observed gray levels are computed as: 

( ) ( )
( ){ }Rcr

jHjP
G

G

∈
=

,#
. 

From the global magnitude distribution, the upper quartile, [ ]75π , is determined as: 

R1 (-11°) R5 (4°) R3 (-19°)R2 (-23°) R4 (0°)
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[ ] ( )
�
�
�

�
�
�

≥= �
= 100

|min
1

qkPjq
j

k

Gπ , 

with 75=q . Similar to the technique for determining local ring direction, the upper 

quartile reduces the effect of pixels constituting low-contrast noise edges. Once the upper 

quartile is found, the histogram of observed gray levels in the gradient direction image is 

computed by counting pixels where the gradient magnitude exceeds [ ]75π . 

( ) ( ) ( ) [ ] ( ){ }jr,cθcrGRcrjH =≥∈=   and   75,|,# πθ . 

The global histogram probabilities of gradient direction are computed as: 

( ) ( )
( ) ( ) [ ]{ }75,|,# π

θ
θ

≥∈
=

crGRcr
jHjP . 

The largest bin in θP  is an indication of the global dominant gradient direction (Figure 

3-8). Assuming that the global dominant gradient direction is an indication of the global 

dominant ring direction, the dominant ring direction (Figure 3-7) is determined as: 

2
π±= GDGDGDRD  radians. 

 

 

 

 

 

Figure 3-7. Dominant gradient and ring directions. 
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Figure 3-8. Global distribution of gradient direction. 

 

3.2.3 Consistency Check for Local Ring Directions 
 
Recall that the upper quartile was incorporated to prevent low-contrast noise edges from 

contributing to the dominant gradient direction. However, there are regions in the image 

where the ratio of the number of pixels constituting ring boundaries to the total number of 

pixels in the region is relatively small. There might also be regions that do not contain 

any boundary pixels. The direction histograms of these regions are noisy. The dominant 

gradient direction determined in these regions is an indication of the direction of noise 

edges that are present. For the purpose of isolating ridge areas (flow patterns) in the 

gradient magnitude image, shown in Figure 3-9, a region in which the dominant ring 

direction deviates from the global ring direction in excess of a threshold will be termed as  

Gradient direction quantized into 64 bins
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Figure 3-9. Gradient magnitude image for the sample in Figure 3-1 

 

a non-compliant region. In order to effectively isolate the flow patterns without breaking 

them, it becomes necessary to resolve non-compliant regions. Retaining noise flow 

patterns would cause the edge-tracking algorithm to follow the noise edges and deviate 

from the actual ring boundary. A region is non-compliant if 

ε>− GDRDLDRDi . 

The threshold (or tolerance), ε , could be selected based on the curvature of tree-rings in 

the cross-section. However, in the TREES system v2.0 the value of ε  is chosen to be 

12π  radians, which translates to a tolerance band of 6π radians. The set of all non-

compliant regions is given by: 

{ }ε>−= GDRDLDRDiNC i|  

To resolve non-compliant regions, a majority vote is taken among its compliant 

neighbors as: 
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( ) { } NCijLDRDGDRDLDRDNkkjMV kk
i

i ∈∀=≤−∈=    and      and   |# 8 ε , 

where iN8  is the set of 8-connected neighbors of region i . If there is an absolute majority, 

the non-compliant region under consideration is assigned the winning LDRD , i.e. 

( ) ( )( )jMVkMVkLDRD ijii max| == . 

In the absence of a clear majority, the region is assigned the average LDRD  of its 

compliant neighbors, i.e. 

{ }

{ }ε
ε

≤−∈
=

�
≤−∈

GDRDLDRDNkk

LDRD
LDRD

k
i

GDRDLDRDNkk
k

i
k

i

  and  |# 8

  and  | 8 . 

 

3.3 Ring Identification by Edge Tracking 

3.3.1 Isolating Flow Patterns 
 
Figure 3-9 shows the gradient magnitude image for the sample in Figure 3-1. Note the 

presence of narrow bands of pixels (flow patterns) that stand out distinctly around each 

ring boundary. In addition to these, earlywood-latewood boundaries and prominent rays 

are also present. For the edge-tracking algorithm to work, the flow patterns corresponding 

to latewood-earlywood boundaries have to be isolated from the rest of the image. The 

pixels in the narrow bands fall within a small tolerance region centered at the local 

dominant gradient direction. Thus by filtering out pixels that lie outside the tolerance 

band in each region, the narrow bands could be isolated. 
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The gradient direction, ( )cr,θ , at each pixel is checked to see if it lies within the 

tolerance band around the local gradient direction, iLDGD . The flow pattern in the image 

is obtained by retaining the gradient magnitudes of pixels that lie in the tolerance band of 

each region, while discarding the rest of the pixels, i.e. 

( ) ( ) ( )
��

�
�

� ≤−
=

otherwise          0
2

,  if  ,
,

εθ crLDGDcrG
crF i  

where i  is the region containing the pixel ( )cr, .The threshold used is half of that used in 

identifying non-compliant regions. This follows from the fact that, in general, there is 

more variation in ring direction in the image as a whole than within a small region. The 

resulting ridge-isolated gradient magnitude image, ( )crF , , is shown in Figure 3-10. For 

comparison, the flow pattern isolated from the gradient magnitude image before resolving 

non-compliant regions is shown in Figure 3-11. Note the discontinuities in flow patterns 

in unresolved regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-10. Flow patterns isolated from gradient magnitude image. 
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Figure 3-11. Flow patterns with discontinuities. 

 

3.3.2 Edge Tracking 
 
The exact location of ring boundaries within the ridge areas could be determined by 

following the path of highest gradient magnitude in the flow-pattern image, ( )crF , . The 

algorithm starts by horizontally scanning the image searching for non-zero pixels to 

identify the location of ridges. A pixel, 1p , with the highest gradient magnitude, along 

the scan direction, before encountering a zero pixel is taken to be the starting point of a 

ring boundary. The test for consistency incorporated during flow-pattern isolation ensures 

that the gradient direction at 1p , ( )1pθ , is consistent with the local dominant gradient 

direction, i.e. 1p  is consistent since: 

( )
21
εθ ≤− iLDGDp , 

Unresolved regions 
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where i  is the region containing 1p . With 1p  as the starting point, the next pixel in the 

ring being tracked is determined to be a consistent neighboring pixel with the highest 

gradient magnitude using the search operator shown in Figure 3-12. 

 

 

 

 

Figure 3-12. Search operator used for edge tracking. 

 
This is a modification of the tracking algorithm presented in [14] since the cross-section 

of samples selected for analysis usually comprise rings that run top-down, rather than 

sideward. Under this assumption, it is reasonable to reduce the neighborhood operators 

used in [14] to ( )pS . The next pixel is found as: 

( ) ( )
( ){ }

( )( ) ( ) ( )
2

  and  max|
|1

εθθ ≤−=∈=
∈+ ijkpSpkjiji pppGpGpSpp

ik

, 

where ip  is the previous pixel that was tracked on the tree-ring boundary. In certain 

regions of the image, wood features such as prominent rays run perpendicular to the ring 

boundaries. In such cases, the flow pattern breaks up at the point where the rays intersect 

with the ring boundary. Thus, at the point of break, the tracking algorithm fails to find 

any consistent neighbors. To handle these issues, the TREES system v2.0 has two modes 

of operation.  

 

X ( )pS
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The first is an automatic, non-interactive mode. In this mode, the average gradient 

direction of a 20-pixel long segment of the ring preceding the point of break is computed. 

The algorithm proceeds by synthesizing a virtual straight-line segment in the direction of 

the ring segment at the point of break. The length of this virtual line segment is increased 

in steps of one pixel, until a limiting value is reached, and at each of the resulting end 

points of the virtual line, the neighborhood operator is applied to search for non-zero 

pixels. If a pixel is found within the threshold, the virtual line segment is used to connect 

the ring identified so far with the newly found pixel. From here on, the algorithm 

proceeds as before. If, however, the line segment reaches the limiting value and no pixels 

are found, then the algorithm discards the ring identified so far. In addition to the limiting 

value of the search region, the algorithm incorporates a limit on the number of breaks that 

a ring could have and still be connected using synthesized line segments. This is helpful 

if the algorithm happens to track a non-existent edge by tracking and connecting stray 

clusters of pixels. In such events, the limiting value forces the algorithm to discard the 

edge being tracked and proceed to the next ring boundary. Since a complete ring 

boundary is identified before proceeding to the next ring, this algorithm easily lends itself 

to chain coding on the fly. The second mode, involving analyst interaction is described in 

Chapter 5. 

3.4 Test Results 
 
In this section, a set of edge maps obtained using the improved algorithm on the samples 

used to discuss the limitations of the modified Canny edge detection algorithm will be 

presented. Figure 3-13(a) shows the image obtained from a tree sample consisting of 
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resin ducts. Recall that the Canny algorithm has a tendency to follow the edges around 

resin ducts and connect with the adjacent rings (Figure 2-2). The modified Canny 

algorithm causes the ring to fragment at the resin dust locations (Figure 2-6(d)). The ring 

boundaries identified by the new algorithm are shown in Figure 3-13(b). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-13. Ring detection in the presence of resin ducts. 

 
Figure 3-14(a) shows the sample obtained from a tree sample with prominent rays. The 

Canny algorithm follows the gradient along prominent rays and cross-connects with 

adjacent rings. The modified Canny algorithm fragments the ring boundaries at points of 

intersection with the prominent rays (Figure 2-9(b)). The latewood-earlywood boundaries 

identified by the new algorithm are shown in Figure 3-14(b). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-14. Ring detection in the presence of prominent rays. 

(a) (b) 

(a) (b) 
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Figure 3-15(a) shows the image obtained from a sample consisting of narrow rings. This 

image was used to illustrate the limitations of the double-threshold linking process 

(Figure 2-10) in the modified Canny algorithm. The tree-rings detected by the new 

algorithm are shown in Figure 3-15(b). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-15. Ring detection in the presence of narrow rings. 

 
Figure 3-16(a) shows the image used to illustrate the limitations in the final linking 

process of the modified Canny algorithm. Recall that the modified Canny algorithm 

performed a wild-fragment linking (Figure 2-11). The edge map obtained from the new 

algorithm is shown in Figure 3-16(b). 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-16. Ring detection in the presence of low-contrast narrow rings. 

 

(a) (b) 

(a) (b) 
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Chapter 4   EDGE MAPS 
 
 

4.1 Memory and Disk Requirements 
 
Edge maps obtained in the TREES system indicate the location of latewood-earlywood 

boundaries in the image. The non-zero pixels in an edge map represent edges while the 

zero-pixels represent background. In the TREES system v1.0, the edge maps are 

represented as raster images both in the main memory and on the disk. Due to the high 

resolution of image capture in the system (10µm/pixel) and the large scan  areas, the 

raster images representing edge maps tend to be large in size. For example, to cover a 

25cm section of a sample, a total of 29 frames would be required. The resulting edge map 

would be approximately 1024 x 25,000 pixels, assuming a horizontal scan. This translates 

to over 25MB of memory to hold the edge map. Since multiple samples will have to be 

archived on the disk, the raster image representation for edge maps causes the disk space 

requirements to grow rapidly. 

 
In addition, during the process of ring width measurement, edge map scaling, 

boundary insertion, etc., there is a need to identify the components in the edge map. A 

connected-components labeling on this image would require approximately 102MB of 

memory, initially, using the iterative algorithm presented in [9]. Considering that the 

TREES application resides in the system memory, this requirement poses an additional 

burden on the resources. Moreover, each connected-components labeling operation 

would mandate at least two scans over the entire edge map. This significantly increases 



58 

the time required to analyze a sample. To reduce both the memory required and the 

analysis time, a chain-coding scheme is presented in the following section.  

4.2 Chain Codes 
 
Chain codes provide a compact format for representing one-pixel wide edges in an image. 

Recall that a binary raster image would suffice for archiving edge maps, using a 1-bit to 

mark an edge pixel and a 0-bit otherwise. However, a raster image is just a block of 

pixels as compared to the chain-code notation, which allows object handling while 

keeping the memory requirement low. An example chain-code operator for 8-connected 

edges is shown in Figure 4-1. The starting pixel for chain coding is usually an end point 

of the edge and all the other edge pixels are coded with reference to this pixel. In the 

example below, the co-ordinates of the reference pixel, (0,2), constitutes the chain 

initializer and the code segment is the sequence 3, 3, 4, 5, 3, 5, 5. 

 

 
 
 
 
 
 
 
 
 
 

Figure 4-1. Edge pixels in a raster image and the chain code operator. 

 
As evident from the example, for an edge with p  pixels, the number of bytes required, 

n , is 

0    1     2    3    4     5    6    7 

0
1
2

3
4
5
6
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6

1 
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( ) ( )rinitializesizecodesizepn +∗−= )1(  

Thus for a 1024 x 15,000 pixel edge map having 100 rings, each of length 1024 pixels, 

the size of the chain code map would be approximately 100KB compared to 15MB for a 

raster map. This evaluates to a compression factor of approximately 150. The actual 

compression achieved would vary according to the ratio of edge to non-edge pixels. In 

general, the compression achieved for a sample with narrow tree-rings is lower than that 

for a sample with wide tree-rings.  

4.2.1 Data Structure 
 
An efficient data structure design allows for easy manipulation of ring boundaries. The 

data structure components, as implemented in the TREES system v2.0, for representing 

edge maps with chain codes are shown in Figure 4-2. The variables used are described in 

TABLE 4-1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-2. Components of the chain code data structure. 

(a) Chain header. (b) List node. (c) Chain node. 

nlin npix 

code valid 

startx starty

typering id

(a) 

(b) 

(c) 
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Parameter Variable Name Data Type (bytes) 
Number of Lines nlin unsigned integer (4) 
Number of Columns npix unsigned integer (4) 
X Co-ordinate of Starting Pixel startx unsigned integer (4) 
Y Co-ordinate of Starting Pixel starty unsigned integer (4) 
Ring Index ring_id (ring id) signed integer (4) 
Ring Type ring_type (type) unsigned character (1) 
Chain Code code unsigned character (1) 
Pixel Validity valid unsigned character (1) 

 

TABLE 4-1. Elements of the chain code data structure. 

 
The chain header is the starting point in the data structure. It stores the number of lines in 

the image, nlin, and the number of pixels per line in the image, npix. In addition, the 

header points to the list of rings in the edge map. The list node is the starting point for a 

ring boundary. It contains the chain initializer, i.e. the co-ordinate pair formed by startx 

and starty, as the reference for the rest of the chain codes to follow. The list node also 

stores the ring index, ring id, and the ring type. The ring index is a number that is used to 

uniquely identify a ring in the list. The ring type is one of normal, added, or removed. 

Rings that are found by the system are tagged as normal rings. Ring boundaries that are 

inserted by the analyst after the edge detection process are tagged as added rings. In case 

the system identifies false rings, the dendrochronologist is allowed to remove them from 

analysis by tagging them as removed rings. The chain node contains the actual chain 

code, in addition to a valid field that indicates whether or not the pixel is part of a link. 

The chain code data structure is composed from the chain header, list nodes, and chain 

nodes as shown in Figure 4-3. 
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Figure 4-3. Sample chain code structure. 

 

4.2.2 File Format 
 
The binary file format for archiving edge map chain codes to the disk is shown in Figure 

4-4. This format simplifies the reading of chain codes from the disk into the data 

structure. Though, at present, the header consists only of nlin and npix, a 512-byte space 

allows for future expansion. The termination sequence 9,0 marks the byte boundary 

between the code segments of adjacent rings. Considering the overheads of the chain 

Pixel p1 
Pixel p2 Pixel pn 

Pixel 3 Pixel 3 Pixel 3 

Chain Header 

Ring 1 Ring 2 Ring n 

Pixel 2 Pixel 2 Pixel 2 

List Nodes 

Chain Nodes 
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header, ring id, ring type, and valid fields, the compression achieved, on an average, 

drops to approximately 75. While this format requires much more disk space than a raw 

bitmap, the advantages of object handling justify the additional overhead. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-4. Binary file format for archiving chain codes. 

 

4.3 Operations on Chain Codes 

4.3.1 Down Sampling Edge Maps 
 
Due to the high magnification of image capture, the mosaic image tends to be too large to 

be displayed at full resolution even for small samples. To overcome this problem, the 

mosaic is down-sampled and displayed at a lower resolution as a browse image. In the 

TREES system, the browse image corresponds to down sampling by a factor of six. At 

nlin npix 

Byte 

0

512

Rest of Chain Header 
4 8

startx starty ring id type
516 520 524 525

code valid 
526 527 

code valid 9 0 startx starty ring id type

code valid code valid 

9 0 startx starty ring id type code valid 

9 0 code valid 

Ring 1 

Ring 2 

Ring n 
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this resolution, the analyst could scroll through the browse image viewing four frames at 

a time. Figure 4-5 shows a sample tree-ring image at full resolution.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-5. Sample tree-ring image at full resolution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-6. Edge map for the sample in Figure 4-5. 
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(a) (b) 

The ring boundaries identified by the system will also have to be displayed on the browse 

image to allow the analyst to identify missed or false rings. Figure 4-6 shows the edge 

map obtained for the image in Figure 4-5 at full resolution. Since the rings are detected at 

full resolution, it becomes necessary to down-sample the edge map for an overlay on the 

browse image. A low resolution edge map, ( )21, nnel , obtained from the full resolution 

edge map, ( )21 , nne f , as 

( ) ( )6,6, 2121 nnenne fl =  

would break the continuity in ring boundaries as shown in Figure 4-7. 

 
 
 
 
 
 
 
 
 
 

Figure 4-7. Down-sampled image and edge map for the sample in Figure 4-5. 

 
To overcome this problem and to avoid recreating the raster edge map, the chain-coded 

ring boundaries are down-sampled along their length as outlined in the algorithm below: 

 
procedure Subsample 
for R = 1 to NRINGS 
 [Lstart_x, Lstart_y] = [Hstart_x/6, Hstart_y/6] 
 [Hprev_x, Hprev_y] = [Hstart_x, Hstart_y] 
 [Lprev_x, Lprev_y] = [Lstart_x, Lstart_y] 
 skip = 0; 
 for P = 2 to NPIXELS 
  [HCurr_x, HCurr_y] = DECODE(HPrev_x, HPrev_y, HCode(R, P)) 
  if  skip =  5 
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  then  
   LCode(R, P/6+1) = ENCODE(LPrev_x, LPrev_y, HCurr_x/6, HCurr_y/6) 
   LPrev_x = HCurr_x/6 
   LPrev_y = HCurr_y/6 
   skip = 0 
  else 
   increment skip 
 end for 
end for 
 

The prefix H (eg. Hstart_x) implies that the co-ordinates refer to the full-resolution 

image. An L prefix (eg. Lstart_x) is used for low-resolution co-ordinates. The down-

sampled edge map obtained by this approach is shown in Figure 4-8. Since the down-

sampled edge map is required only for display and no measurements are obtained from it, 

this approach is adequate for representing ring boundaries on the browse image. 

 
 
 
 
 
 
 
 
 
 

Figure 4-8. Edge map obtained by down sampling along the tree-ring direction. 

 

4.3.2 Width Measurement from Chain Codes 
 
For the purpose of cross-dating tree ring samples, the most commonly used features are 

the ring widths. As stated earlier, it is possible to match different samples based on the 

pattern of variation in ring widths rather than comparing absolute widths. In the manual 

measurement method, ring widths are often measured along a single line. However, since 
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the TREES system analyzes much more data, i.e. the entire region of interest, more 

accurate width measurements could be obtained by averaging the widths obtained at 

different points between two rings. In other words, ring width in the TREES system 

refers to the average distance between a pair of adjacent rings. This method of width 

measurement is less prone to errors arising due to the presence of wood anomalies along 

the ring boundaries. 

 
Since tree rings exhibit appreciable variation in their orientation at different regions 

within a cross-section, it becomes necessary to define the direction of width 

measurement. If the tree rings were known to be concentric, it would be possible to 

define ring width as the radial distance between a pair of ring boundaries. However, this 

is rarely the case and a more practical approach would be to measure width orthogonal to 

the ring at the point of measurement. But since the ring boundaries are often not smooth 

curves, the normal vector used for measurement should be orthogonal to the low 

frequency component of the tree ring curve rather than the high frequency components, 

which contain small dips and bumps in the ring [2]. 

 
The gradient direction ( )cr,θ  computed at each pixel is an indication of the 

maximum grayscale intensity change at that pixel. For pixels that constitute ring 

boundaries, it is an indication of the orthogonal to the latewood-earlywood boundary at 

those points. However, the local gradient direction is extremely sensitive to wood 

anomalies along the ring boundary such as resin ducts, prominent rays, etc. Since the ring 

boundaries identified by the system are reliable representations of the location of 
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latewood-earlywood transitions, a better approach is to model the ring boundaries to be 

piecewise linear. The segment length for the model should be large enough to smooth the 

effects of small twists and curves. However, the segment length should be kept small 

enough to follow large curves in the rings. At the magnification of image capture used in 

the TREES system, a segment length of twenty to thirty pixels has been found to be 

sufficient, with the point of interest at the center of the segment [2]. 

 
A least squares fit algorithm is used in the TREES system to approximate the 

orientation of tree ring boundaries. To determine the orthogonal to the ring boundary at 

each pixel, a segment length of N  pixels, centered at the point of interest, is used. If the 

co-ordinates ( )ii yx , of the pixels in the data set are known, the center of the set is at: 

N
x

x
N

i i� == 1  

N
y

y
N

i i� == 1  

The angle of orientation of the edge points that minimizes the sum of squared errors 

for the points in the segment can be computed as [10]: 
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Since it is common to analyze a sample going from the pith outwards to the bark, with the 

pith to the left, the orthogonal angle to the tree ring boundary is obtained by subtracting 

2π  radians from the computed tangent angle α . 

 
Once the orthogonal directions are computed for all pixels on the ring boundaries, the 

average distance between two adjacent rings is computed along the orthogonal vector. To 

measure the distance at a pixel on the left ring, pixel-by pixel steps are taken along the 

orthogonal vector at that pixel, until a pixel on the right ring is encountered. At this point, 

the angle between the orthogonal at the pixel on the left ring and the orthogonal at the 

ending pixel on the right ring is compared. If the two orthogonal vectors are within ten 

degrees of each other, then the distance measured is considered valid. These distances are 

then averaged over the number of valid measurements that were made between the two 

rings. Since the edge maps are chain coded, the technique used in the TREES system v2.0 

is to compute the normal, α , at each pixel on the left ring. With the chain initializer as 

the starting point, the co-ordinates of the remaining pixels on the left ring could be 

decoded serially from the chain codes for the left ring. Then, the normal at each pixel on 

the right ring is computed similar to the left ring but using the chain codes for the right 

ring. Once the normal is computed at all pixels for a pair of adjacent rings, a series of 

width measurements are made, one for every pixel on the left ring along the width line 

(orthogonal vector). For each measurement, pixel-by-pixel steps are taken along the 

orthogonal at the pixel under consideration (starting point). Upon encountering a pixel on 
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the right ring (ending point), the normal at the ending point is checked with the normal at 

the starting point for that measurement. If they lie within ten degrees of each other, the 

measurement is considered valid. A counter that keeps track of the number of valid 

measurements is incremented for that pair of ring boundaries. Once measurements are 

obtained for all pixels on the left ring, the average ring width for a ring-boundary pair is 

computed.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-9. Width lines overlaid on a sample edge map. 

 
This approach is computationally efficient since the edge pixels of a ring boundary 

could be serially decoded from a chain code representation for calculating the normal. 

This technique also eliminates the need to label the raster edge map, as in the TREES 

system v1.0, to identify edge pixels of a ring boundary. In addition to reducing the time 

required to analyze a sample, width measurement from chain code representation 

significantly lowers the memory required. 
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4.4 Average Grayscale Profile 
 
In addition to latewood-earlywood boundaries, other features such as the average 

grayscale profile could be extracted from the image. Once the ring width measurements 

have been made, it is possible to compute the average grayscale profile. The average 

grayscale profile is a one-dimensional sequence of numbers that represents the average 

variation in the grayscale intensity along a profile orthogonal to the ring boundaries. It is 

important to note that the average grayscale profile is determined along the width lines 

used for measurement and not along the rows in the image [2]. To create the average 

grayscale profile, the width lines between two adjacent ring boundaries are traversed 

pixel-by-pixel, and at each pixel, the grayscale intensity is added to an accumulator array 

at an index that is determined by the location of the pixel on the width line expressed as a 

fraction of ring width. A counter array is incremented at the same index. Once this 

procedure is repeated for the other width lines, the average grayscale profile between the 

pair of ring boundaries is computed by dividing the grayscale accumulator array by the 

counter array at the corresponding indices. The average grayscale profile so obtained has 

a length equal to the average width of the ring. 

 
The grayscale accumulator and counter arrays are initialized to be of length W , i.e. 

the average width for the ring under consideration. For a pixel that occurs at the thj  

position along the thi  width line, its grayscale value is added to the accumulator at the 

index: 
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This procedure is repeated for all the rings, and the average grayscale profile is 

determined for each adjacent pair of ring boundaries. Concatenating the individual 

average grayscale profiles then forms the average grayscale profile for the cross-section 

of the image being analyzed. The average grayscale profile obtained for a sample image 

is shown in Figure 4-10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-10. Average grayscale profile for a sample cross-section. 

 

4.4.1 Extracting Missed-Ring Boundaries 
 
Though the edge detection algorithm implemented in the TREES system v2.0 is more 

robust than the modified Canny algorithm used in the TREES system v1.0, there could 
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still be circumstances under which the system might fail to identify one or more ring 

boundaries. These rings are termed missed rings, implying that the system failed to find 

them, as opposed to missing rings that refer to the rings that are actually absent in the 

sample. Recall that the edge-tracking algorithm incorporates a threshold that limits the 

number of break points a ring boundary could have and still be connected. The TREES 

system v2.0 could fail to detect a ring boundary because of the limiting value of the 

threshold. For example, if the number of prominent rays cutting across a ring boundary 

were to exceed this limit, the algorithm discards the edge, treating it as a non-ring feature. 

However, the average grayscale profile determined for a sample could be used to identify 

missed rings, as shown in Figure 4-11. Since the average grayscale profile is computed 

by summing and averaging the grayscale intensity along the orthogonal width lines, the 

average locations of missed rings obtained from the average grayscale profile is fairly 

accurate. The location of missed rings could be determined as a percentage of the 

distance between the enclosing ring boundaries. By knowing the fraction of width at 

which the missed ring boundary lies between the two enclosing ring boundaries, the 

missed-ring profile could be extracted with reasonable accuracy for the purpose of 

display.  

 
To extract the ring profile, first the missed-ring location is determined from the 

average grayscale profile as shown in Figure 4-11. The first derivative of the average 

grayscale profile is computed. Notice the peaks in the first derivative at the locations of 

ring boundaries. In the TREES system v2.0, a threshold is defined for each pair of ring 

boundaries. This is computed as 31  the average of the first derivative of the 
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average grayscale profile at the locations of the enclosing ring boundaries. Locations of 

peak overshoots of the first derivative above the computed threshold are taken as an 

indication of the location of missed rings. The fractional location of the missed ring is 

determined as: 

leftright

leftmissed

indexindex
indexindex

f
−
−

= , 

where index  refers to the pixel position in the one-dimensional grayscale profile. Let 

i
leftp  represent the thi  pixel on the left boundary. Similarly i

rightp  represents the thi  pixel 

on the right boundary. The notation ( )iprow  will be used to represent the row co-ordinate 

of the thi  pixel. Similarly ( )ipcolumn  will be used to represent the column co-ordinate of 

the thi  pixel. Once the relative location, f , of the missed ring is determined, the next 

step in extracting the missed ring profile is to determine the vertical overlap between the 

enclosing rings. The starting point of vertical overlap, start
leftp , on the left boundary is 

determined as: 

( ) ( ) ( )( )11 ,max| rightleft
i
left

i
left

start
left prowprowprowpp ==  

Similarly the starting point of vertical overlap, start
rightp , on the right boundary is determined 

as: 

( ) ( ) ( )( )11 ,max| leftright
i
right

i
right

start
right prowprowprowpp ==  

Since the profile of the missed ring boundary could be determined only to the extent of 

vertical overlap between the enclosing ring boundaries, the end points of vertical overlap 

on the left and right boundaries are determined: 
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end
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where 1n  and 2n  are the number of pixels constituting the left and right ring boundaries 

respectively. The starting pixel on the missed boundary is computed as: 

( ) ( )start
leftmissed prowprow =1  

( ) ( ) ( ) ( )( ) fpcolumnpcolumnpcolumnpcolumn start
left

start
right

start
leftmissed −+=1  

The remaining pixels on the missed boundary are determined as: 

( ) ( )istart
left

i
missed prowprow ++ =1  

( ) ( ) ( ) ( )( ) fpcolumnpcolumnpcolumnpcolumn istart
left

istart
right

istart
left

i
missed

++++ −+=1  

The average grayscale profile shown in Figure 4-11 corresponds to the Juniper sample 

shown in Figure 4-12. The missed ring boundaries extracted from average grayscale 

profile are shown in Figure 4-13. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4-12. Cross-section of a Juniper sample with narrow rings. 
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Figure 4-13. Missed rings extracted from average grayscale profile. 

 

4.4.2 Extracting Earlywood-Latewood boundaries 
 
The primary tree ring attribute used for cross-dating samples is the ring width variation. 

Ring width refers to the distance between latewood-earlywood boundaries of adjacent 

rings. Other ring attributes are often used to validate the chronological match established 

between samples. One example is the width between earlywood-latewood boundaries of 

adjacent rings. In order to measure earlywood-latewood widths, the exact locations of 

these boundaries have to be established. Recall that the earlywood-latewood boundaries 

are transitions from light-colored to dark-colored annular regions in the wood. This is in 

contrast to the latewood-earlywood boundaries that have been referred to as ring 

boundaries in this thesis. The gradient at pixels on the earlywood-latewood boundary is 

opposite ( π±  radians) to the gradient at pixels on the latewood-earlywood boundary. 

Therefore, it appears logical to locate the earlywood-latewood boundaries by isolating 
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their flow patterns using phase reversed dominant gradient directions. However, unlike 

the latewood-earlywood boundaries that are well defined, the earlywood-latewood 

boundaries tend to be ill-defined. To address this problem, the earlywood-latewood 

widths are extracted directly from the average grayscale profile. This ensures that the 

width measurements are less prone to errors arising due to the noisy nature of earlywood-

latewood boundary profiles. 

 
The average grayscale profile obtained for a sample image is shown in Figure. From 

the first derivative of the average grayscale profile, it is seen that negative peaks mark the 

locations of earlywood-latewood boundaries. These negative peaks, which correspond to 

the zero-crossings in the second derivative of the average grayscale profile, indicate the 

points of steepest fall in the gradient magnitude along the width lines. Thus by 

identifying negative peaks in the first derivative, the earlywood-latewood widths could be 

determined. The earlywood-latewood boundary profiles are extracted similar to the 

technique used to find missed rings. 
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Chapter 5   ANALYST INTERACTION 
 
 
An important design philosophy in the TREES system is to incorporate analyst 

interaction at every stage during sample analysis. In view of this philosophy, the TREES 

system has been developed to be a computer-assisted, rather than a fully automated 

system. However, the initial version of the TREES system is limited in its ability to 

process analyst inputs. The improvements in the TREES system v2.0 allow analyst 

interaction before, during, and after the ring identification process. A discussion of the 

interactive features in the TREES system v2.0 is presented in this Chapter. 

5.1 Region-of-Interest Selection and Processing 
 
Recall that the TREES system v1.0 allows the analyst to select a section within the wood 

sample for analysis. The system then captures a linear sequence of partly overlapping 

1024 x 1280 pixel frames to compose the mosaic image. In the TREES system v1.0, ring 

identification is carried out on the entire mosaic image. However, there could be regions 

in the mosaic image that the analyst might want to avoid. The TREES system v1.0 lacks 

the capability to allow the analyst to select a region of interest within the mosaic image. 

In addition, the TREES system v1.0 cannot analyze core samples, Figure 5-1, since it 

requires tree rings to extend from the frame top to the bottom. To overcome this problem, 

TREES system v2.0 incorporates region-of-interest selection and processing using a 

boundary-marking approach. 
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Figure 5-1. Single frame captured from a core sample. 

 

5.1.1 Processing Modes 
 
Processing mode in the TREES system v2.0 refers to the combination of processing 

resolution, region-of-interest, and ring detection mode. Each of these parameters could be 

selected independent of the others. The processing resolution defaults to 1:1 (image 

capture resolution), but the system provides an option to process the mosaic at a lower 

resolution (1:2). The lower processing resolution is useful for well-behaved samples with 

complacent rings. In all samples, the analyst is required to visually inspect the mosaic 

image for narrow rings before choosing the processing resolution. The low-resolution 

mosaic image is obtained by averaging and sub-sampling the mosaic image. Therefore, in 

samples with narrow rings, the system would be unable to resolve two closely spaced 

ring boundaries if they were to merge on sub-sampling. Although there is a loss in 

accuracy at lower resolution, the time required to analyze a sample is drastically reduced. 
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The TREES system v1.0 lacks the capability to process a region-of-interest within the 

mosaic image. The presence of wood anomalies in the mosaic image would mandate 

selection of a sub-section within the mosaic image. The TREES system v2.0 processes 

the entire mosaic by default, but also allows the analyst to select a region-of-interest 

within the mosaic. The region-of-interest is restricted to a rectangular region, oriented at 

any angle, as shown in Figure 5-2. In addition, since the core samples do not cover the 

entire frame along its vertical dimension, it becomes necessary to select just the core and 

leave out the blank pixels, as shown in Figure 5-1. This enables the system to analyze 

core samples. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2. Region-of-interest selection. 

 
The TREES system v2.0 can operate in one of the two modes during the ring 

detection process. The first is an automated mode suitable for well-behaved samples that 

are fairly easy to handle. In this mode, the system operates without analyst intervention. 

The second is an interactive mode that is suited for ill-behaved samples and samples with 
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procedure scan 
for row = 1 to numLines 
 for col = 1 to numPixels 
  ………….. 
  ………….. 
  image[row][col] = ………. 
  ………….. 
  ………….. 
 end for 
end for

wood anomalies. In this mode, the analyst is prompted to assist the system in ring 

identification when the algorithm encounters a break in the ring boundary. A detailed 

discussion of the interactive mode is presented in section. 

5.1.2 Data Structures for Boundary Marking 
 
The pseudo-code for a typical raster scan is shown in Figure 5-3. Irregular regions require 

sophisticated data structures to mark the image boundaries. The data structure adopted in 

the TREES system v2.0 for region-of-interest processing is shown in Figure 5-4. 

Although the region of interest in the TREES system is restricted to a rectangle, this data 

structure could be used for any arbitrary region. The raster scan method employed in 

conjunction with the data structure is shown in Figure 5-5. Note that unlike a regular 

raster image, both the number of columns per row and the number of rows per column 

vary within an irregular region. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-3. Pseudo-code for a typical raster scan. 

 
Though the scan method described above is fairly simple when used in conjunction with 

an appropriate data structure, operations on the image such as median filtering, 
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procedure scan 
for col = hstart to hend 
 for row = vstart[col] to vend[col] 
  ………….. 
  ………….. 
  image[row][col] = ………. 
  ………….. 
  ………….. 
 end for 
end for

 
col = 1 numPixels 

hstart 

hend 

col = j 

vstart[j]

vend[j] 

convolution, etc., involve neighborhood pixels to be taken into account. Each 

neighborhood pixel has to be checked to see if it lies within the region of interest. The 

pseudo-code for convolution on an irregular region using an nm x operator is shown in 

Figure 5-6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-4. Data structure for boundary marking. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-5. Pseudo-code for scanning an irregular region. 

 



84 

procedure convolve 
for col = hstart to hend 
 for row = vstart[col] to vend[col] 
 sum = 0 
  for j = -n/2 to n/2 
  if col + j < hstart or col + j > hend 
   skip j 
   for i = -n/2 to n/2 
    if row + i < vstart[col + j] or row + i > vend[col + j] 
     skip i 
    sum = sum + mask[i][j].image[row + i][col + j] 
   end for 
  end for 
  outImage[row + i][col + j] = sum 
 end for 
end for 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-6. Psedo-code for convolution on an irregular region 

 

5.2 Ring Boundary Detection 
 
The interactive mode in the TREES system v2.0 allows analyst intervention during the 

ring identification process to assist the edge-tracking algorithm. Recall that ring 

boundaries are identified by tracking the path of highest gradient magnitude in the ridge 

areas. The presence of high contrast noise edges running across ring boundaries, shown 

in Figure 5-7, breaks the tree-ring flow pattern at the point of intersection, as shown in 

Figure 5-8. The automatic mode in the TREES system v2.0 attempts to bridge the 

discontinuities by fitting a polynomial to a 20-pixel wide segment of the ring just before 

the break point. It then extends the edge by using a piecewise-linear model until the 

discontinuity is bridged. This method is suited for regions that contain wide rings. In the 

presence of narrow rings, this approach could lead to cross-connections with adjacent 
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rings, similar to the fragment linking technique in TREES system v1.0. To address this 

problem, the TREES system v2.0 provides for an interactive mode that allows the analyst 

to manually bridge discontinuities in tree-ring boundaries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-7. Noise features obscuring ring boundaries. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-8. Gradient magnitude image for the sample in Figure 5-7 

 
In the interactive mode, the TREES system v2.0 prompts the dendrochronologist to 

manually link tree-ring boundaries. When there is a break in the tree-ring flow pattern, 
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the absence of a consistent neighborhood pixel prompts the edge-tracking algorithm to 

seek analyst intervention. At this point, the system displays the partly tracked ring 

boundary in zoom window, as shown in Figure 5-9, and prompts the analyst to either 

manually link the discontinuity or discard the edge. Tree-ring boundaries identified by 

the system, with the help of analyst inputs, are shown in Figure 5-10. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-9. A partly detected tree-ring in the zoom window. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-10. Fully detected tree-rings in the zoom window. 
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5.3 Wood-Centered Analysis 
 
The TREES system has been developed to assist in the Douglass method of dating. The 

Douglass method of matching samples requires that the wood be available for reference 

during the entire process of cross-dating. Thus the Douglass method is a wood-centered, 

rather than image-centered, approach to tree ring analysis. However, the TREES system 

v1.0 lacks the ability to return to the wood sample due to hardware limitations in the X-Y 

stage system. The TREES system records information pertaining to a sample in its data 

file that allows the analysis to be stopped at any stage and continued later on. As long as 

the sample remains on the stage, in the same position as that of image acquisition, and the 

stage motors remain powered, the mapping between the browse image and the stage co-

ordinates is maintained. This enables the system to command the stage motors to move 

the sample such that the desired region is in the field of view. However, if the sample is 

removed from the stage and returned later for analysis, or if the analysis session is 

different from that of acquisition (by restarting the application), then the mapping 

between the browse image co-ordinates and the stage co-ordinates is broken.  

 
One way to overcome the problem is to have a limit switch for each of the X and Y 

directions that would communicate to the system when the stage hits the origin in either 

of the directions. Each time the application is restarted, the system could command the 

stage to move to the origin. At this point, the stage co-ordinates could be reset to (0,0). 

The stage co-ordinates, then, have a common reference that is maintained across sessions, 

samples, and application restarts. Returning to the wood involves replacing the sample, if 
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it was moved, in exactly the same position as it was during the acquisition session. The 

mapping established during acquisition could be retrieved from the data file and reused in 

the current session. There is a one-to-one relation between the browse image and the 

stage co-ordinates, and mouse clicks on the browse image could be translated to stage 

motion commands. However, due to the high magnification of image capture in the 

system, the sample has to be returned to exactly the same position during acquisition. As 

a more feasible solution, an approach based on co-ordinate registration is employed in the 

TREES system v2.0.  

 
The TREES graphical interface is shown in Figure 5-11. For linking stage motion 

with the analysis graphical interface, a live video display is brought up in a window as 

shown in Figure 5-12. The current stage and pixel coordinates are shown in the window 

next to the video. The coordinate registration would require three control points to be 

specified in each of the live video image and the browse image. However, since the 

magnification remains the same across samples, the coordinate transformation evaluates 

to just rotation and translation. Thus only two control points would actually be required. 

In the TREES system v2.0, the control points required for coordinate transformation are 

specified by the analyst. Unique features on the wood such as resin ducts, pinprick marks, 

etc, could be used to specify control points on both the browse and live video image. 

Once ontrol points have been identified, the coordinate transformation is computed using 

a method described by Wolberg in [12]. 
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Let ( )ii mymx ,  represent the coordinates of control point i  on the mosaic image. The 

mosaic coordinates of the control points are obtained from the browse image coordinates 

as: 

( )zoomfactorxmx ii = , 

( )zoomfactorymy ii = , 

where zoomfactor  is the down-sampling factor for the browse image. The orientation of 

a line, m
ijl , formed by the ( )ji,  pair of control points in the mosaic coordinate system is 

found as: 

�
�

�

�

�
�

�

�

−
−

= −

ij

ijm
ij mxmx

mymy1tanθ . 

The orientation of a line, s
ijl , formed by the ( )ji,  pair of control points in the stage 

coordinate system is found as: 

�
�

�

�

�
�

�

�

′−′
′−′

= −

ij

ijs
ij xx

yy1tanθ . 

The angle of rotation between the stage and mosaic coordinate systems is found as: 

m
ij

s
ij θθα −= . 

Once the parameters of rotational coordinate transformation have been determined, the 

linear translation is computed using a specific control point, say i ,as: 

( ) ( )αα sincos iii ymxmxa ′+′−′= , 

( ) ( )αα cossin iii ymxmyb ′−′−′= . 
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With α , a , and b , the coordinates, ( )mqmp, , of a point in the mosaic image could be 

transformed to stage coordinates as: 

( ) ( ) amqmpp ++= αα sincos , 

( ) ( ) bmqmpq +−= αα cossin . 

Using this transformation, every pixel on the browse image could be mapped to a 

corresponding point in the stage coordinate system. It then becomes possible to translate 

mouse clicks on the browse image to stage motion commands such that the region of 

interest could be examined in the live image of the wood. 
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Chapter 6   SUMMARY 
 
 

6.1 Summary 
 
Tree ring analysis has applications in diverse fields ranging from archaeology to 

climatology, providing means to establish dates of environmental events. 

Dendrochronology aids in collecting and analyzing environmental data preserved in the 

samples of dead and living trees and is one of the very few methods of studying patterns 

of climatic fluctuation in the past. The present-day techniques of measuring tree ring 

widths and correlating data from different samples, though accurate enough to be used as 

a reference for Carbon-14 dating, are primarily manual methods and, hence, time-

consuming. The TREES system[2] provides a computer-assisted platform to carry out 

tree ring analysis and is an outcome of the research being carried out jointly between the 

Digital Image Analysis Laboratory of the Electrical and Computer Engineering 

department and the Laboratory of Tree-Ring Research at the University of Arizona. 

 
This thesis describes version 2.0 of the TREES system, with a primary focus on the 

computer vision issues involved in ring identification. The techniques and algorithms 

presented in this thesis have been tested as part of the initial TREES system (version 1.0) 

developed by Conner[2]. The TREES system framework consists of image acquisition 

and analysis components. The techniques presented here replace only the image analysis 

component of the TREES system v1.0 while retaining the image acquisition subsystem.  
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Chapter 2 presented a discussion of edge detection techniques in the TREES system 

v1.0 and its limitations. Noting that tree ring samples tend to be diverse in nature, we 

discussed the outcome of ring identification in the presence of wood anomalies and 

emphasized the need for an interactive environment. We addressed the edge 

fragmentation problem and showed that the modified Canny edge detection algorithm 

operating on a pixel-by-pixel basis is less suitable for analyst interaction. In Chapter 3, 

we discussed in detail the computer vision issues involved in the development of a flow-

based edge detection algorithm that is suitable for tree-ring analysis. By considering tree-

ring boundaries to be slow-varying features, we presented a method to extract the flow 

patterns and track the edges within them.  

 
Chapter 4 provided a discussion of edge maps and chain codes. We discussed a 

technique for scaling edge maps represented by chain codes. Considering that the 

earlywood-latewood boundaries tend to be ill defined, we presented a technique for 

extracting them from the average grayscale profile. We also presented a method for 

extracting missed latewood-earlywood boundaries from average grayscale profile in a 

post-processing step. Chapter 5 discussed the interactive features in the TREES system 

with an emphasis on interactive edge linking. The Douglass method of cross-dating 

requires the ability to return to the wood sample and at the end of Chapter 5, we 

presented a technique for overcoming the hardware limitation in the TREES system to 

support wood-centered analysis. 
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6.2 Conclusions 
 
The TREES system provides a semi-automated platform for tree-ring analysis that 

drastically reduces the time spent by researchers on tree-ring width acquisition. Version 

2.0 of the system adds an interactive dimension to the image analysis system. The 

techniques presented in this thesis have been tested on a diverse set of conifer samples. 

The edge detection performance has been compared against the modified Canny edge 

detection algorithm using samples with wood anomalies. From the results obtained, the 

accuracy of edge detection has been verified visually, both against the image sample and 

against the edge map obtained from the modified Canny algorithm. The results obtained 

are promising despite the presence of resin ducts, prominent rays and other wood 

features. It is interesting to note that the flow-based edge detection algorithm operates 

significantly faster than the modified Canny algorithm owing to its ring-by-ring nature of 

operation. The system memory requirement is also considerably lower due to the 

elimination of the 5-odd connected-component labeling operations that were required 

earlier. This allows the TREES system to analyze samples that contain a large number of 

frames. 

6.3 Scope for Future Contributions 
 
The features of the TREES system make it a very promising tool that could find 

widespread use in the field of dendrochronology. At present, the system is constrained by 

its inability to process image samples captured outside the TREES environment. For 

example, an image sample obtained on-site from a digital camera would be unusable with 
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the TREES system. Since it is not practical to carry the TREES hardware setup to remote 

sites for image capture, the system has to be modified to accept and process samples 

captured outside of its environment. The modular design methodology implemented in 

the TREES system makes it fairly easy to incorporate such changes. The SADIE library 

implements and provides for functions to create mosaics from multiple individual frames. 

This feature could be made use of in the TREES system to allow the dendrochronologist 

to patch together frames obtained from sources such as digital cameras and scanners. In 

addition to allowing the TREES system to process such mosaics, it would also allow the 

image samples to be exchanged across multiple research laboratories for analysis. 

 
The algorithms used in the current version of the TREES system are based on the 

assumption that the tree rings in an image sample run top-down, rather than sideward. 

While this assumption holds in most cases, there are exceptions. For example, a core 

sample obtained from a tree could have inclined rings to one end of the core. This 

happens when the tool used to extract the core misses the pith. In such cases, the current 

TREES system requires the core sample to be analyzed in sections, with the image 

capture setup in such a way that in each section, the rings in the mosaic run top-down. A 

more feasible solution would be to modify the algorithms such that the entire core sample 

could be analyzed in one mosaic, but with multiple regions of interest specified within 

the image sample. The analyst could select the regions in a manner that the rings within 

each region are aligned in the same direction. This would allow the TREES system to 

patch together the widths obtained from the individual regions to compose a single time 

series or skeleton plot. 
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