
GOAL: Enhanced Understanding Of Global Change Science, How It Operates, & What It Means To Me Personally

WRAP UP:

TOPIC #7 Atmospheric Structure & Composition

Most Abundant Gases in the Atmosphere

GAS	Symbol	% by volume	% in ppm		
Nitrogen	N ₂	78.08	780,000		
Oxygen	02	20.95	209,500		
Argon	Ar	0.93	9,300		

Total = 99.96%

Review p 41

Next Most Abundant Gases:

GAS	Sym bol	% by volume	% in ppm
Water Vapor	H ₂ O	0.00001 (South Pole) to 4.0 (Tropics)	0.1 - 40,000
Carbon Dioxide	CO ₂	0.0390 (and rising!)	360 (in 1997) 390 ! (in May 2009)

Greenhouse Gases

Review p 41

Other Important Greenhouse Gases:

GAS	Symbol	% by volume	% in ppm	
Methane	CH ₄	0.00017	1.7	
Nitrous Oxide	N ₂ O	0.00003	0.3	
Ozone	O ₃	0.0000004	0.01	
CFCs (Freon-11)	CCI ₃ F	0.00000026	0.00026	
CFCs (Freon-12)		0.00000047	0.00047	

Greenhouse Gases! Review p 41

CH₄ (methane) Amount in atmosphere: 1,774 ppb

> N₂O (nitrous coide) Amount in atmosphere: 319 ppb

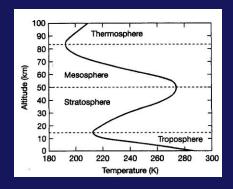
CFC-11 (trichlorofluoromethane) Amount in atmosphere: 0.251 ppb

> CFC-12 (dichlorodifluoromethane) Amount in atmosphere: 0.538 ppb

> > HCFC-22 (trifluoromethane) Amount in atmosphere: 0.169 ppb

Amount in Atmosphere = 386,000 ppb

From pp 29-29 in *Dire Predictions*

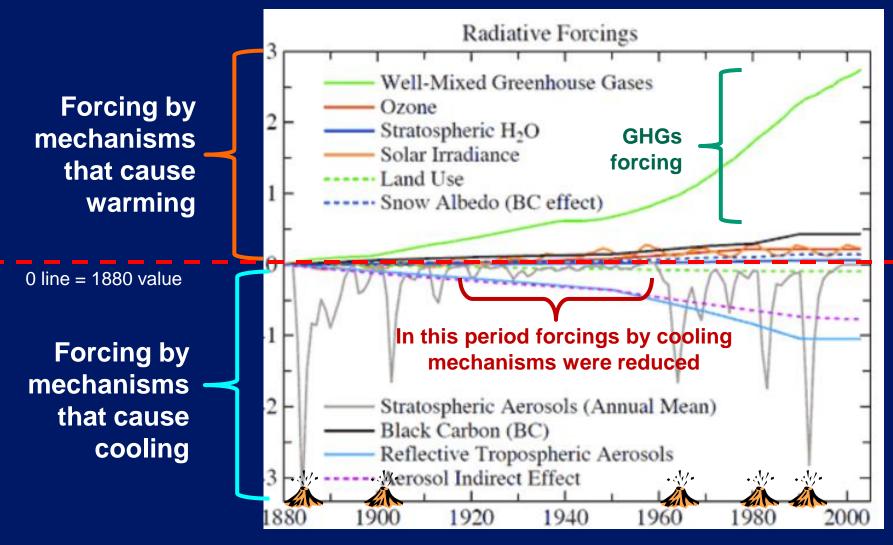

SUMMARY OF KEY CONCEPTS: short version

1. Four gases N_2 , O_2 , Ar, & CO_2 comprise about 99% of the volume – but "minor" trace Greenhouse Gases are extremely important.

2. Most of the MASS of the atmosphere is in the bottom few kilometers (i.e. the Toposphere!)

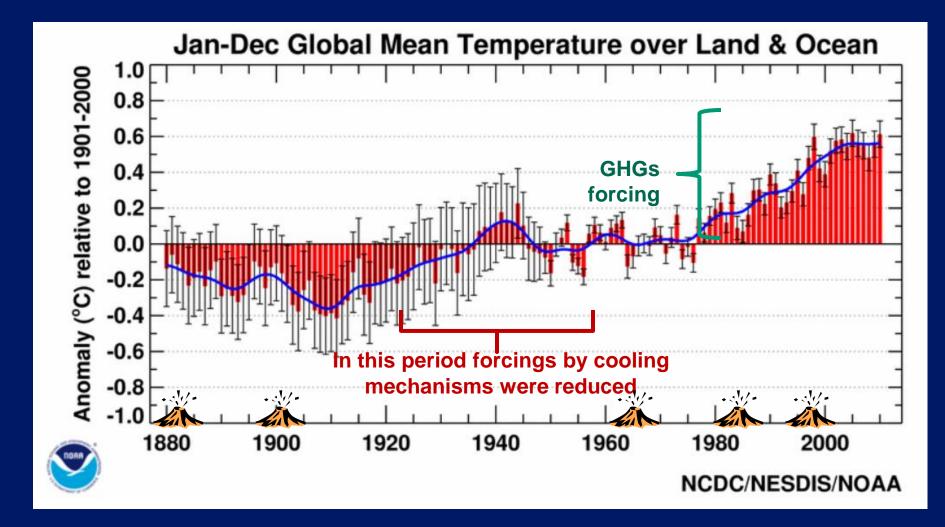
3. Different gases are abundant at certain levels in the atmosphere & where radiation is absorbed by these gases, leads to: <u>vertical temperature profile</u>...

4. ... which leads to the vertical structure of the atmosphere:


Two Important Global Change Terms Related to Atmospheric Composition:

RADIATIVE FORCING (RF) & GLOBAL WARMING POTENTIAL (GWP)

Radiative Forcing (RF) = Change in incoming minus outgoing radiation at the tropopause due to some factor.


Introduced last week – see small box on p 41

More on **RADIATIVE FORCINGS** . . .

Various global climate forcings relative to their 1880 value (figure from NASA GISS)

http://www.skepticalscience.com/global-cooling-mid-20th-century-intermediate.htm

Radiative Forcings help to explain temporal variations in the Global Mean Temperature Graph

Global warming potential (GWP) – An index that measures how much a given mass of greenhouse gas is estimated to contribute to global warming.

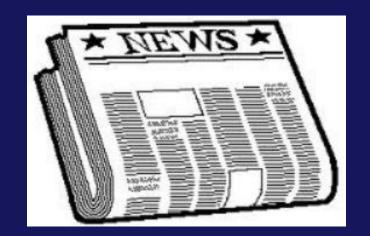
GWP depends on:

- the absorption of infrared radiation by a given gas,
- the location of its absorbing wavelengths on the electromagnetic spectrum
- the atmospheric lifetime of the gas

A high GWP correlates with a large infrared absorption and a long atmospheric lifetime.

→ A gas has the most effect if it absorbs in a "window" of wavelengths where the atmosphere is fairly transparent.

 \odot


LIFETIME AND GLOBAL WARMING POTENTIAL OF HUMAN-GENERATED GREENHOUSE GASES

Gas	CO ₂	CH_4	N_2O	CFC-11	CFC-12	HCFC-22
Lifetime years	Multiple	12	114	45	100	12
Global warming potential						
20 years	1	72	289	6,730	11,000	5,160
100 years	1	25	298	4,750	10,900	1,810
500 years	1	8	153	1,620	5,200	549

© 2009 Pearson Education, Inc.

From pp 29-29 in *Dire Predictions*

GLOBAL CHANGE IN THE NEWS!

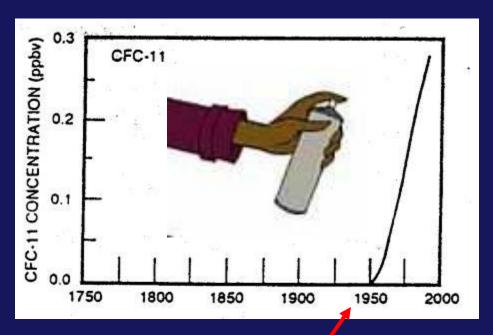
Application of course concepts to current news stories . . .

The New Hork Times

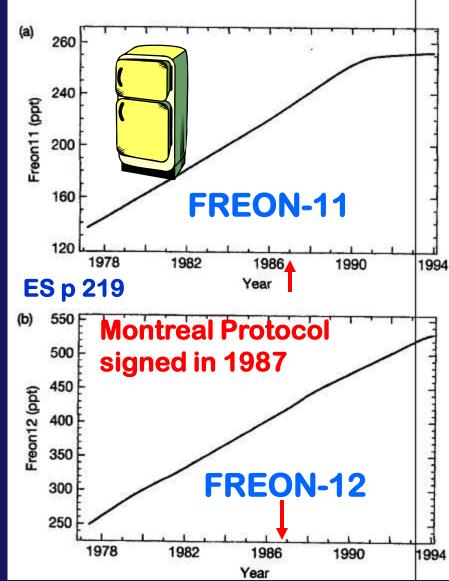
Energy & Environment

24 Sep 2011

Robots Extract Coolant From Old Refrigerators



General Electric


A machine in Philadelphia can dismantle a refrigerator in 60 seconds for recycling, removing 99.8 percent of the coolant.

http://www.nytimes.com/2011/09/25/business/energy-environment/recyclers-extract-coolant-from-oldrefrigerators.html?_r=1&scp=1&sq=Robots%20extract%20coolant%20from%20old%20refrigeratros&st=cse

CFCs (Freon-11 & Freon-12)

Human-made -- didn't exist before 1950! Now banned . . .

 \odot

Robots Extract Coolant From Old Refrigerators

By ANNE EISENBERG RECYCLING refrigerators — especially those made more than 15 years ago — is a tricky job. The coolant in old appliances (now banned from newer versions) can cause serious trouble, warming the atmosphere and depleting the ozone layer.

The refrigerator's foam insulation is turned into pellets that can be used as fuel.

Regulations forbid the release of liquid refrigerants during disposal. But what if the refrigerant was not in the cooling system, but stored up in the old foam used for insulation? The insulation in older machines is full of a gassy refrigerant that can waft away during dismantling and continue to diffuse later when the foam is shredded and sitting in a landfill.

Now a few American companies have embarked on voluntary recycling programs that go beyond what many local governments do when a resident leaves an old refrigerator on the curb for pickup. The companies use ingenious robotic systems to squeeze out almost all of the coolant in refrigerators — including the hard-to-reach coolant in the foam — before they head for the landfill.

"Companies can use credits from the proper destruction of refrigerants to cover part of their annual emissions," said Gary Gero, president of <u>Climate Action Reserve</u> in Los Angeles, which certifies projects that reduce greenhouse gas emissions and issues offset credits.

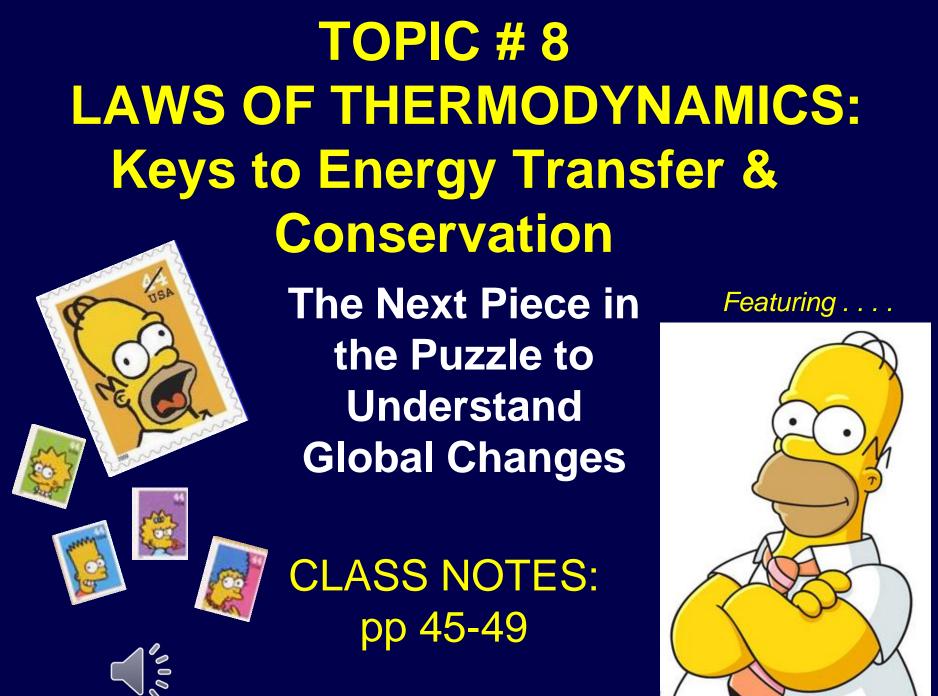
Mr. Dunham of JACO says his company is already taking one of the refrigerants it destroys, CFC 12, to the carbon offset market. "People are buying the credits and banking them, hanging on to them in hopes they will be more valuable when cap and trade comes into effect," he said.

GWP!

Many refrigerants that are now banned from production, but are still legally captured and recycled, have about 700 to 10,000 times the heattrapping potential of carbon dioxide, Mr. Gero said. An average old refrigerator has about half a pound of the now-banned refrigerant in the cooling system and one pound in the foam, he said.

"So the refrigerator has an equivalent of approximately five tons of carbon dioxide," Mr. Gero said. "For comparison, that is like driving over 10,000 miles in an average car."

"If you capture these gases and take them to a destruction facility," he said, "you've prevented a problem, and we give you credit."


There are other GHG's (esp. human-made) . . .

Some examples:

Hydrofluorocarbons (HFCs) Perfluorocarbons (PFCs) Sulfur Hexafluoride (SF₆)

Some of these are especially harmful because they have high "Global Warming Potential" (GWP)

Now on to today's topic . . .

OUR QUOTE OF THE DAY . . .

> ... is from HOMER SIMPSON

In this house, we obey the LAWS of THERMODYNAMICS!

THERMODYNAMICS

(def) = The study of the general properties of ENERGY.

Thermal energy plays a central role in understanding these properties, hence the study of energy can also be called "thermodynamics."

Forms of Energy - Review

 Kinetic (KE or KinE) = energy of motion or the ability of a mass to do work.

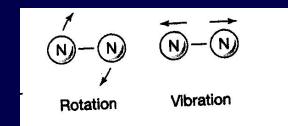
 $KE = \frac{1}{2}$ (mass x velocity²)

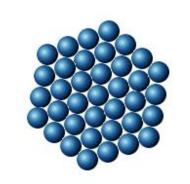
- Potential (PE) = energy a system possesses if it is capable of doing work, but is *not* doing work now
 - Includes: gravitational, elastic, chemical, electrical, and magnetic

review

Thermal Energy

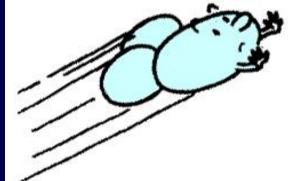
Thermal energy (def) = the grand total of all energies inside a substance (internal energy)

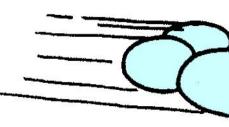

--also: a measure of the quantity of atomic kinetic & potential energy contained in every object;

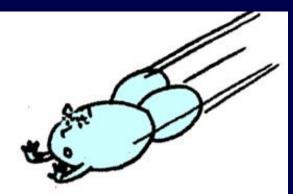

-- also: the total kinetic energy of molecules in matter.

Thermal Energy

Atoms and molecules are constantly "jiggling" in some sort of back-and-forth vibratory motion.


The greater this molecular kinetic energy is in a substance, the <u>hotter</u> the substance is.

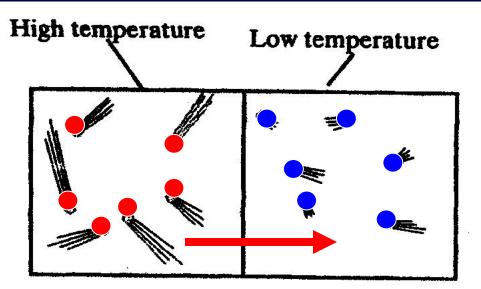

Thermal Energy & Temperature


- <u>Temperature</u> = tells how warm or cold a body is with respect to some standard (e.g., Fahrenheit (°F), Celsius (°C), or Kelvin (K) standard scales).
- Temperature is a <u>measure of the</u> <u>average kinetic energy</u> of each molecule in a body.

If a body has a high temperature, each of its molecules has, on the average, a large amount of kinetic energy.

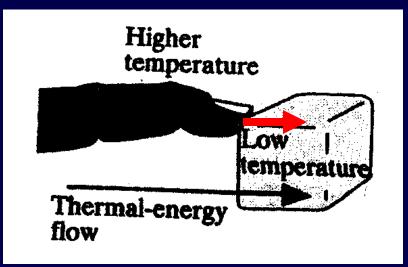
e.g. water vapor -- H₂O molecule at high temperatures

if a body has a low temperature, each molecule on the average has a small amount of kinetic energy.

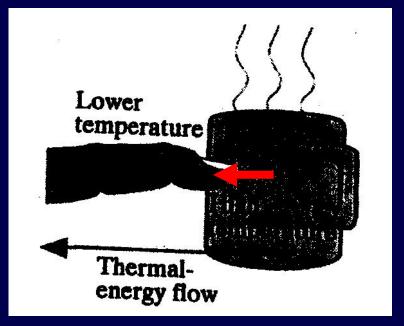

e.g. water vapor molecule – H₂O at lower temperature

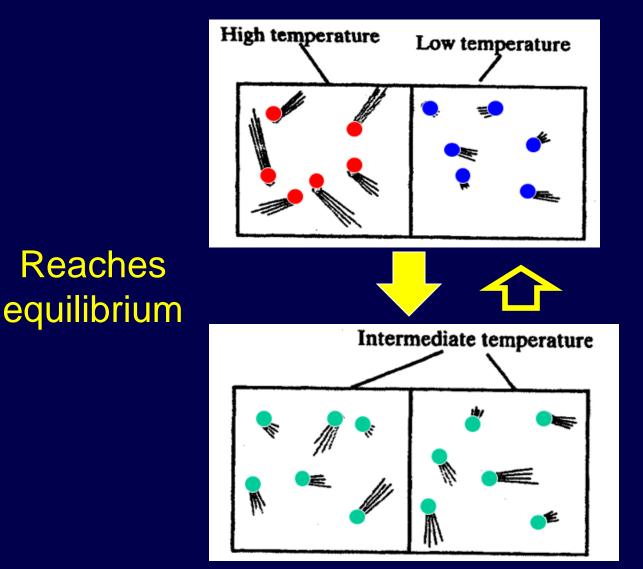
(and if atoms lose all their kinetic energy, they reach the **"absolute zero"** of temperature)

Thermal Energy Flow (Transfer)


(a) A hot box of gas and a cold box of gas, at the instant they are put into contact: Most of the molecules in the hot box move rapidly, while most of the molecules in the cold box move slowly. In which direction will THERMAL ENERGY be transferred?

Thermal energy flow = HEAT


Thermal Energy vs. Heat


Heat = the thermal energy that is transferred
from one body to another because of a
temperature difference.

Heat will always pass from a substance of higher temperature to a substance of lower temperature, until both come to a common temperature. Higher T → Lower T

Heat will always pass from a substance of higher temperature to a substance of lower temperature, until both come to a common temperature.

Will not spontaneously return to previous condition!

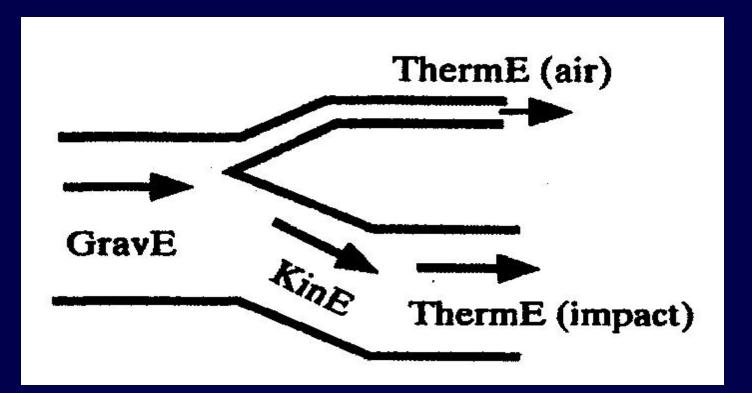
http://jersey.uoregon.edu/vlab/Thermodynamics/index.html

Skip to p 49

THE LAWS!

"Everything that happens can be described as energy transformations"

(a repeat quote) Was discussed earlier under ENERGY (p 28)


THE FIRST LAW OF THERMODYNAMICS (stated as the "Law of Conservation of Energy")

The total energy of all the participants in any process must remain unchanged throughout the process. There are no known exceptions.

Energy can be transformed (changed from one form to another), but the total amount always remains the same.

An "Energy Flow Diagram"

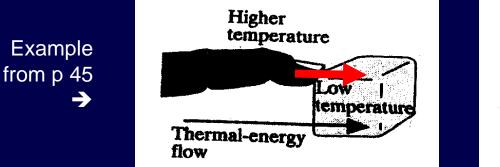
Energy flow for a falling book, with air resistance.

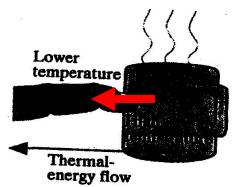
1st Law of Thermodynamics

FIRST LAW OF THERMODYNAMICS (another way of saying it)

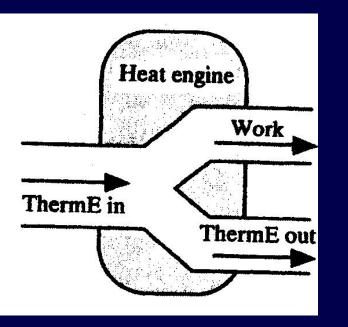
> In an isolated system the <u>total amount of energy</u> (including heat energy)

> > is <u>conserved</u>,


although energy may change from one form to another over and over again.


SECOND LAW OF THERMODYNAMICS (stated as the "Law of Heating")

Heat will not flow spontaneously from a cold to a hot body.


Thermal energy flows spontaneously (without external assistance) from a <u>higher</u> temperature object to a <u>lower</u>-temperature object.

It will not spontaneously flow the other way!

The 2nd Law stated <u>another</u> way:

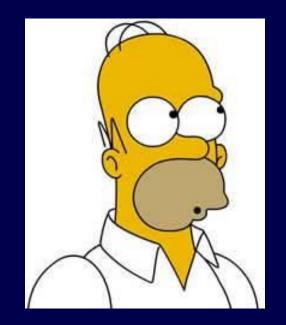
Energy flow diagram for a heat engine.

"2nd Law" = Any process that uses thermal energy as input to do the work must also have thermal energy output -- or exhaust!

WHAT TO REMEMBER: heat engines are always less than 100 % efficient! → IMPROVED ENERGY EFFICIENCY IS A KEY ASPECT OF GREEN TECHNOLOGIES! p 49 The 2nd Law stated a <u>THIRD</u> way:


Energy of all kinds in our material world disperses or dissipates if it is not hindered from doing so!

Entropy = the <u>quantitative measure</u> of this kind of spontaneous dissipating process:


i.e., how much energy has flowedfrom being constricted or concentratedto being more widely spread out(at the temperature of the process)

Irreversibility: Once a system creates thermal energy, that system will never by itself (spontaneously) be able to return to its previous condition. There is an irreversibility about any process that creates thermal

energy.

Got all that Homer?

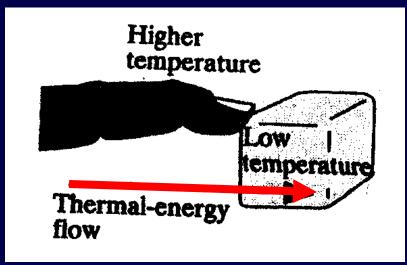
boring . . . !

CLICKER SELF-TEST TIME!!!...>

Channel 41

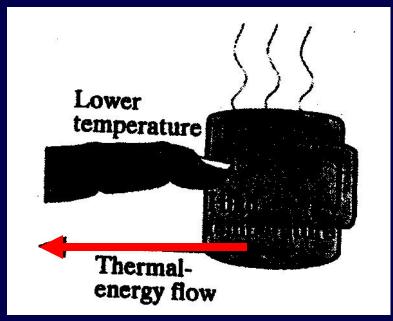
Q1 - Which way is heat being transferred?

- From the cold beer can into Homer's warmer beer belly
- 2. From Homer's beer belly to the colder beer can


3. From BOTH the beer can to Homer <u>and</u> Homer to the beer can

Q1 - Which way is heat being transferred?

- From the cold beer can into Homer's warmer beer belly
- 2. From Homer's beer belly to the colder beer can


3. From BOTH the beer can to Homer <u>and</u> Homer to the beer can

Explanation for answer to Q2:

The 2nd Law of Thermodynamics!

Heat will always pass from a substance of higher temperature to a substance of lower temperature, until both come to a common temperature.

Can I go now????

NO! It's time for a Sustainability Segment!!!

11 minute video on:

Photographic artist Chris Jordan

(originally aired on the Bill Moyers show Sep 2007) Can I go now????

YES!! But don't forget RQ-4 on Wednesday before class!!